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INCLUDING UNCERTAINTY IN THE DESIGN OF FLOOD CONTROL PEAK REDUCTION SYSTEMS

T. V. Hromadka II, M.ASCE}

. ABSTRACT: The classic single area unit hydrograph (UH} approach is widely used to
-model runoff response from a free draining catchment. Because the UH method cor-
relates the effective rainfall distribution to the runoff hydrograph distribution,
the resulting catchment UH should be considered a correlation distribution in a
probabilistic sense. Should the uncertainty in rainfall over the catchment be a
major concern in modeling refiability, then the UH output in the predictive setting
must be considered to be a random variable. A case study demonstrates the procedure
for including uncertainty in any peak flow reduction system.

INTRODUCTION

Many hydrologic models allow for the subdivision of the catchment into subareas,
each Tinked by channel routing submodels {i.e., a link-node model). The effect of
subdividing a catchment on modeling accuracy has not been fully investigated. The
calibration of a Tink-node modeil to available rainfail-runoff data is a related
issue, and the method of selecting the model parameters is important to the accuracy
of the Tink-node modeiing approach. Aiso, the uncertainty in the modeling boundary
conditiions (i.e., the true precipitation distribution over the catchment) is pro-
pogated into the fitted parameters of the model itself, and the effect of insuffi-
cient knowledge of storm morphology affects model accuracy. These three factors
(i.e., watershed subdivision, parameter estimation, and storm morphology effec's)
are important to the accuracy of hydrologic designs.

In this paper, the unit hydrograph method (UH) is used to develop estimates of
runoff modeling error in the frequently occurring cases where the uncertainty in the
rainfall distribution over the catchment dominates all other sources of modeling
uncertainty. Indeed, the uncertainty in the precipitation distribution appears io
be a limiting factor in the successful development, calibration, and application of
all surface runoff hydrolegic madels {e.g., Loaque and Freeze, 1985; Beard and
Chang, 1979; Schilling and Fuchs, 1986; Garen and Burges, 1981; Nash and Sutcliffe,
1970; Troutman, 1982;.

Schilling and Fuchs (1986} write "that the spatial resolution of rain data input is
of paramount importance to the accuracy of the simulated hydrograph" due to "the
high spatial variability of storms" and "the amplification of rainfall sampling

1 Director of Water Resources Engineering, Williamson and Schmid, Irvine,
California and Research Associate, Princeton University, New Jersey
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errors by the nonlinear transformation" of rainfall into runoff. They recommend
that a model should empioy a simplified surface flow model if there are many sub-

basins; a simple runoff coefficient Toss rate; and a diffusion (zero inertia) or
storage channel routing technique.

In their study, Schilling and Fuchs (1986} reduced the rainfall data set resolution
from a grid of 81 gages to a single catchment-centered gage in an 1,800 acre catch-
ment. They noted that variations in runoff volumes and peak flows “"are well above
100 percent over the entire range of storms implying that the spatial resolution of
rainfall has a dominant influence on the reliability of computed runoff.* It is
also noted that “"errors in the rainfall input are amplified by the rainfall-runoff
transformation so that “a rainfall depth error of 30 percent results in a volume
error of 60 percent and a peak flow error of 80 percent.” They also write that "it
is inappropriate to use a sophisticated runoff model to achieve a desired level of
modeling accuracy if the spatial resolution of rain input is low" {in their study,

the raingage densities considered for the 1,800-acre catchment are 81, 9, and a
single centered gage).

Similarly, Beard and Chang (1979) write that in their study of 14 urban catchments,
complex models such as continuous simulation typically have 20 to 40 parameters and
functions that must be derived from recorded rainfall-runoff data. "Inasmuch as
rainfall data are for scattered point locations and storm rainfall is highly variable
in time and space, available data are generally inadequate for reliably calibrating
the various interrelated functions of these complex models.”

Garen and Burges (1981) noted the difficulties in rainfall measurement for use in
the Stanford Watershed Modet, because the Kl parameter {rainfall adjustment factor)

and UZSN parameter (upper Tevel storage)} had the dominant impact on the model
sensitivity.

In the extensive study by Loague and Freeze, (1985}, three event-based rainfall-
runoff models (a regression model, a unit hydrograph model, and a kinematic wave
quasi-physically based model) were used on three data sets of 269 events from three
small upland catchments. In that paper, the term "quasi-physically based", or QPB,
is used for the kinematic wave model. The three catchments were 25 acres, 2.8
square miles, and 35 acres in size, and were extensively monitored with rain gage,
stream gage, neutron probe, and soil parameter site testing. For example, the 25
acre site contained 35 neutron probe access sites, 26 soil parameter sites (all
equally spaced)}, an on-site rain gage, and a stream gage. The QPB model utilized

22 overland flow planes and four channel segments. In comparative tests between

the three modeiing approaches to measured rainfall-runoff data it was concluded that
all models performed poorly and that the QPB performance was only slightly improved
by calibration of its most sensitive parameter, hydraulic conductivity. They write
that the “"conclusion one is forced to draw...is that the QPB model does not represent
reality very well; in other words, there is considerable model ervor present. UWe
suspect this is the case with most, if not all conceptual models currently in use."”
Additionally, "the fact that simpler, less data intensive models provided as good

or better predictions than a QPB is food for thought."

Based on the literature, the main difficulty in the use, calibration, and develop-
ment, of complex models appears to be the lack of precise rainfall data and the high
model sensitivity to {and magnification of) rainfall measurements errors. Nash and
Sutcliffe (1970) write that "As there is Tittle point in applying exact lTaws to
approximate boundary conditions, this, and the limited ranges of the variables en-
countered, suggest the use of simplified empirical relations."
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“froutman (1982) also discusses the often cited difficulties with the error in preci-
fpitgtion measurements "due to the spatial variability of precipitation." This source
‘of error can result in “serious errors in runoff prediction and large biases in
‘parameter estimates by calibration of the model."

While surface runoff hydrologic models continue to be developed in technical compo-
nent complexity, typically including additional algorithms for hydraulic routing
effects and continuous soil moisture accounting, the problem setting continues to be

orly posed in a mathematical approximation sense in that the problem boundary con-
ditions (i.e., the storm rainfall over the catchment) remain unknown. Indeed, the
usual case in studying catchment runoff response is to have only a single rain gage
and stream gage available for data analysis purposes; and oftentimes, neither gage
1s within the study catchment. As a result, the rainfall distribution over the catch-
ment remains unknown; hence, the problem's boundary conditions must be approximated
as part of the problem solution. The fact that the uncertainty in the rainfall dis-
tribution over the catchment has a major impact on the success of any hydrologic
model's performance and accuracy (e.g., Schilling and Fuchs, 1986, and Troutman,
1982) indicates that the underlying assumption used to specify the storm rainfall
over the catchment must necessarily be a major factor in the development, calibra-
tion, and application, of any hydrologic model.

CATCHMENT AND DATA DESCRIPTION

Let R be a free draining catchment with negligible detention effects. R is discre-
tized into m subareas, Rj, each draining to a nodal point which is drained by a
channel system. The m-subarea 1ink node model resulting by combining the subarea
runeffs for storm i, adding runoff h{drﬁgraphs at nodal points, and routing through
the channel system, is denoted as Qn'(t). It is assumed that there is only a single
rain gage and stream gage available for data analysis. The rain gage site is moni-
tored for the ‘true' effective rainfall distribution, e,'{(t). The motivation in
using a measured e,i(t) at the rain gage site is to avo?d the necessity of using a
multiparameter subﬂodel to approximate e,?(t); rather we assume that an accurate
value of eq'(t) is available, even thougﬂ this data is measured at the rain gage
site which may be located outside of the catchment. The stream gage data represents
the entire catchment, R, and is denoted by Qg‘(t) for storm event i.

LINEAR EFFECTIVE RAINFALLS FOR SUBAREAS

The effective rainfall distribution {rainfall less losses) in Rj is given by eji(t)
for storm i where ej‘(t) is assumed to be Tinear in eg1(t) by :

i i i i .
ej (t) = E ;\jk eg (t'sjk)’ J=1,2,%++,m (1}

where A:k and Bik are coefficients and timing offsets, respectively, for storm i
and subarea Ry.  In Eq. (1), the variations in the effective rainfall distribution
over R due to"magnitude and timing are accounted for by the Afk and B-L,
respectively. As an alternative to Eq. (1), the eql(t) may bd defined as a set of
unit effective rainfalls, each unit associated witg its own proportion factor;
however for simplicity, the use of the entire e,'(t) function will be carried for-
ward in the model development. Figure 1 111ustgates the linear effective rainfall
corresponding to arbitrary subarea, Rj.
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SUBAREA RUNOQFF

The storm 1 subarea runoff from Rj, qji(t}, is given by the linear convolution
integral: t

q‘ji(t) = [ eji(t - s} ¢j1(5) ds (2)
s=(

where ¢ji(s) is the subarea unit hydrograph (UH) for storm i such that Eq. (2}
applies. Combining Egs. (1) and (2) gives

t
i _ i i i i
F (t) [ ) eg (t ajk s) Ajk ¢j {s) ds (3)
s=0
Rearranging variables,
t
i - T, i Ve _al
q; (t) [ e, (t-s) ) Agg &5 (s - 85) ds (4)
s=0

where throughout this paper, the argqument of the arbitrary frunction F(s - Z) is
notation that F(s - Z) = 0 for s < Z.

APPLICATION

To illustrate the linear effective rainfall concept, a simple model will be developed
for the severe storm of March 1, 1983 over the 25 square mile Compton catchment in
Los Angeles, California. This catchment is fully urbanized and is served by a well
designed storm drain system which would have only minor backwater effects for the
subject storm. The catchment has available a singie rain gage and stream gage. The
U.S. Army Corps of Engineers (Los Angeles District Office) or COE previously
developed regionalized unit hydrographs for this area and, consequently, synthetic
unit hydrographs can be estimated from the catchment characteristics of slope and
other physical factors.

For demonstration purposes, the two-subarea model of Compton is used where the up-
stream subarea, R,, runoff is modeled to be routed by pure translation (without peak
flow attenuation) to the Compton stream gage where the second subarea, R, runoff is
directly summed.; For the above assumptions, the two-subarea model for sform event

i is given by Q21(t) where

i i i i
Q, (t) =q ' (t-1")+q (t) (5)
where q, ' (t-T, ') is the qli(t) runoff from R, for storm i, offset in time by T i
due to translation routing; and q,'(t) is the runoff from R,. From Eqs. (1) and (2),
Q,'(t) is rewritten as

1‘



t
0,'(t) = [ ) Alik egi(t-efk) o' (s-t ') ds

1
5=0

t

i, :
J ! A eg‘(t-s;k) 6, (s) ds
$=0

The subarea UH's, ¢1(s) and ¢2(s) are estimated using,the COE regionalized data.

The appropriate sum of subared runoffs, q 1(t) and Q, 1(t), are then set equal to the
stream gage for the storm, Qq'(t), and the respect1ve parameters Ajk and 6 1 are
estimated by minimizing the Teast-squares error, E, where J

= 1u,8g (8) - 6, (£ =1, ), # w0y (8) - q, (81, (7)

In Eq {7), w, and w, are proportion factors defined by w A J(A +A ) and

Az/ A -+A ), whére A/, A, are the areas of R;, R, respec%1ve1y Additiona11y,
E is m1n1m1zed with the constraint that all factors A L are nonnegative., The timing
offsets, 84}, used in Eq. (6) for this example are 15-minute offsets for the entire
24-hour stBrm duration. Thus, there are 96 translates being used to minimize E, for
each subarea.

The resulting estimates for e 1(t) are shown in Figs. 2a,b for subareas R, and R,
respectively. Shown in the figures are the approximations of the e;'(t) in compar1~
son to the measured rain gage data, P.! From the f1gures it is seen that the
estimated eJ‘(t) are guite feas1ble ad be1ng the 'true' average effective rainfall
distr1but1ons over R, and R2 Figure 3 shows the comparison between the mode1ed

T(t) results {using the ej 1{t) from £q. (7)) and the stream gage data, Qg (t), for
tﬁe subject storm.

Obviously, a different set of UH’s in Eq. (6} will result in different e; 1(t) esti-
mates in Eq. (7). However, the main objective of this simple app11cat1o% is only to
demonstrate %hﬁ feasibility and utility of the linear effective rainfall relation-
ship of Eq. (1

Each subarea‘s effective rainfall distribution, €5 1(t), can only be accurately deter-
m1ned by the use of runoff data from each subareg”used in the model. Should subarea

have a stream gage to measure e;'(t), then e :V(t) can be equated to the "available"
rg1n gage site measured effective ra1nfa11, e it), by means of Eq. (1)}. Ffor example,
should subarea R; experience zero rainfall du?1ng storm event i, the Ai in Eq. (1)
would all be zerg Equation (1) provides a means to correlate the subgrea R: runoff
for storm i, q;1{t), to the available effective rainfall data measured at thg rain
gage site, e {t)

It is noted that in the application problem, the A were optimized in Eq. {7) such
that nonnegative values resulted. This constraint”is used for the preference of
avoiding negative runoff hydrographs which would result in the UH convolution
process. Additionally, the use of the w, and w, factors in £q. (7) based on the
subarea arial proportions is used to facilitate the approximation effort.
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LINEAR ROUTING

Let Il(t) be the inflow hydrograph to a channel flow routing Tink (number 1), and
Q,(t) the outflow hydrograph. A linear routing model of the unsteady flow routing
process is given by

m
0.{t) = I.(t - 8

where the ay are coefficients which sum to unity; and the o, are timing offsets.

Again, Il(t-3ak ) = 0 for t <a . Given stream gage data forlll(t) and 0,(t), the
. 1 1 :

best fit values'for the Ak, and’oy can be determined.

Should the above ocutflow hydrograph, Ol(t), now be routed through another 1ink
{number 2}, then I,{t) = 0,(t) and from the above

n2
0{t)y= 3} a I (t-aq )
2 k2=l kz 2 kz

(9)

P a1 )
a a t-o, -«

k,=1 k, K = k, "1 K, K,

=

For L Tinks, each with their own respective stream gage routing data, the above
linear routing technique results in the outflow hydrograph for link number L, Qu(t),
being given by

(t) = It n"il % a1 )
0 (t) = a a see a a t-a, -a, =c+--a -
- R TR T TS R Tt Y- M b S0 k-1 K
L L-1 1 _
(10)
Using the vector notation, the above OL(t) is written as
OL(t) =<E> ks Ii(t-cx<k>) (11)

For subarea R;, the runoff hydrograph for storm i, qi'(t), flows through L; links
before arrivifig at the stream gage and contributing o the total measured runoff
hydrograph, Q,(t). A1l of the constants al, > and a'c . are available on a storm
by storm basig. Consequently from the linearity of the royting technique, the
m-subarea 1ink node model is given by the sum of the m, qj1(t) contributions,

ne-15

Q' (t) =

i i i
; I a <k>j qj (t-a <k>) (12}

k> .
1 < j
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" where each vector <k>? is associated to a Rj, and all data is defined for storm i.

It is noted that in all cases,
i -
Z a <k>' - 1 (13)
<k>j h|

APPLICATION

The linear routing technique of Eq. (8) is a variant of the stream flow routing con-
volution technique of Doyle et al (1983). For channel reach #1 (1ink #1), the linear
routing parameters of proportions, a, , and timing offets, o\, , can only be accur-
ately determined by use of stream gagé data which precisely glve both the I,(t) and
Ol(t) used in Eq. (8)}.

Fortunately, the derived parameters from Eq. (8) provide good approximations for
channel routing effects (without significant backwater effects) for a range of flow
hydrographs. Hence for a class of hydrographs of similar magnitude, a single set of
routing parameters may be appropriate with the linear routing model. Similarly,
another class of hydrographs would have another associated set of calibrated routing
parameters (e.g., Doyle et al, 1983). Hence, the linear routing technique is actual
quasilinear in that the method is linear for specific ranges of runoff hydrographs.

To demonstreate the utility of the Tinear routing technique, a set of four hydro-
graphs are considered in a channel reach of 10,000-foot length. A7l four hydrographs
are routed through a prismatic channel using a fully-dynamic model solution as the
'true' solution. Using one hydrograph (Fig. 4), the model of Eq. (8} is calibrated.
In this example, a least-squares error norm is used with the constraint that all
proportions, ap ., are nonnegative. Only four timing offsets, ay , were used in this
application. #ﬁe resulting calibration approximation and the 'exact' solution is
shown in Fig. 4 for a fast flow {peak flow rate velocity of 24 feet/sec) and also a
slow flow channel condition (peak flow rate velocity of 12 feet/sec). Using both
sets of calibration parameters, four other hydrographs are tested and compared to
the 'exact' solution in Fig. 5 for both the fast flow and slow flow conditions.

From Fig. 5 it is seen that the Vinear routing method provides a good approximation
of both translation and storage effects for a useful range of hydrograph magnitudes,
even though only four timing offsets were used in the approximation effort.

This application not only illustrate the utility of the linear routing technique but
also demonstrates that a calibrated linear routing model is also a good model for a
range of hydrograph magnitudes. As noted in Doyle et al (1983), different sets of
calibration parameters would be needed for different classes of hydrographs (e.g.,
Tow-flow hydrographs versus high-flows). However for specified range of classes of
hydrographs, a single set of routing parameters may be appropriate. Hence, on a
hydrograph class basis, the routing effects are essentially 1inear and are adequately
described by the model of Eq. (8).

The above conclusions {i.e., that the routing effects are approximately linear for
classes of hydrographs, and that a single set of calibrated routing parameters are
appropriate for a class of hydrographs) will be useful in the latter sections of
this paper when developing uncertainty estimates for hydrologic models.
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LINK-NGDE MODEL, Qm‘i(tl

For the above Yinear approximations for storm i, Egqs. (1), (4}, and (12} can be com-
bined to give the final form for the m subarea link-node model, Qp'(t).

t
. m . . . .
i i i
W=l k2, j g (1-5) Ty o' (s =05 - a'gp, ) 0 (14)
J
5=0

Because the measured effective rainfall distribution, egi(t), is independent of -the
several indices, Eq. (14) is rewritten in the form

t
Pron i m i i i i
Qm (t} J. eg (t 5) JZ]_ <E> a <k>j 2 ;\jk ¢.] (S'BJk-O‘- <k>j) ds (15)

s=Q

where all parameters are evaluated on a storm by storm basis, i.

Equation {12) described a model which represents the total catchment runoff response
based on variable subarea UH's, ¢;1(s); variable effective rainfall distributions

on a subarea-by-subarea basis with differences in magnitude (A; ), timing (84}, and
pattern shape (1inearly assumptign); and channel flow routing irans]ation an& storage
effects (parameters al ... and ol ). All parameters employed in Eq. (15) must be
evaluated by runoff data Jwhere strebm gages are supplied to measure runoff from
gach subarea, Ry, and stream gages are located upstream and downstiream of each
channel reach ({ink) used in the model.

MODEL REDUCTION

The m-subarea model of Eq. {15) is directly reudced to the simple singie area UH
model (no discretization of R into subareas) given by Q,(t) where

t
q,'(t) = [ egi(t - s) a'(s) ds (16)
5=0

where n1(s} is the correlation distribution between the data pair {Qgi(t), egi(t)},
for storm event i.

From Eq. (16) it is seen that the classic single area UH model equates to the highly
complex 1ink node modeling structure of Eq. (15}, where considerable runoff gage
data is supplied interior to the catchment, R, so that all modeling parameters are
accurately calibrated on a storm-by-storm basis. For the case of having available
only a single rain gage site {where the effective rainfall is measured, e,'(t)) and
a stream gage for data correlation purposes, the nl(s) properly representg the
several effects used in the development leading to £q. {15), integrated according to
the observed sampling from the severa] modeling parameters' respective probability
distributions. Because the simple Q,'(t) model structure actually includes most of
the effects which are important in fiood control hydrologic response, it can be used
to develop usefyl probabilistic distributions of hydrolegic modeling output.
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"In comparing the two models of Egs. (15) and (16), it is noted that Qu'(t) = § (¢}
wly when interior runoff data is supplied to accurately evaluate all the modeiing
Jarameters used in Eq. (15). For example, should the catchment be discretized into
many small subareas. with small channei routing links {(e.g., such as used in highly
subdivided catchments with UH approximations, or as employed in kinematic wave (Kw)
type models such as MITCAT, or the KW version of HEC-1), then with a stream gage
located at each subarea (or overland flowpiane) and at each channel 1link, all model-
ing parameters could be accurately evaluated on a storm-by-storm basis, resulting
{n the formulation of Eq. (15).

Indeed, only by means of subarea stream gage data can the subarea linear effective
rainfall distribution parameters of A'L and 8;L be accurately determined for each
storm event i. But it is these 1inea; effective rainfall distribution parameters
that reflect the important spatial and temporal variability of storm rainfall over
the catchment which in turn causes the major difficulties in the development, cali-
bration, and use, of hydrologic models (Schilling and Fuchs, 1986; Troutman, 1983;
among others).

It is assumed in this paper that only a single rain gage {(which is monitored to
accurately develop the effective rainfall at the rain gage site, e, '(t)) and stream
gage are available for data analysis. Consequently, any hydroiogig model serves to
correlate the data pair {eg1(t), 091(t)} for each storm event i.

The current direction of advanced development for hydroleogic models is a modeling
structure such as Eq. (15). With subarea and channel-link stream gage data, the
Q,'(t) parameters can be accurately determined, and

0, (t) = 0 () (17a)

But in the typical case of having only the single rain gage and stream gage, all the
parameters in Eq. (15) must be approximated, resulting in the estimator, m‘(t),
wherein the subarea linear effective rainfall parameters of EQ. (1) are misrepre-
sented by setting 64} = 0 (i.e., zero timing offsets between the measured rainfall
at the gage and the subarea rainfalls), and also by assuming that the magnitudes

of rainfall intensities are invariant between subareas and the rain gage.

From the above discussion, the estimator model, ﬁmi(t), cannot achieve the accuracy
of Qn'(t), {and hence, Q,1{t)):

6 () # 0, (0) ‘ (17b)
and from Eq. {17},
6 'ty # 0, (1) (17¢)

From £gs. (17), the simple single area UH model, Q11(t}, properly represents the
appropriate UH for each subarea (or overland flow plane) for storm i; the appropriate
linear routing parameters for each channel link, for storm i; the appropriate timing
offsets and proportions of the measured effective rainfalls, for each subarea; and
the appropriate sympation of runoff hydrographs at each confluence. In contrast, the
model estimator, Qu'(t), uses estimates for all of the parameters, and subarea effec-
tive rainfall factors, and hence cannot achieve the accuracy of Ql’(t) without the
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addition of interior rainfalil-runoff data to accurately validate the parameter values,

STORM CLASSIFICATION SYSTEM

To proceed with the analysis, the full domain of effective rainfall distribut.ons
measured at the rain gage site are categorized into storm classes, <§,>. Because
the storm classifications are based upon effactive rainfalls, the measured precipi-
tations, Pg‘(t). may vary considerably yet produce similar effective rainfall dis-
tributionsT That is, any two elements of a class <£,> would result in nearly
identical effective rainfall distributions at the rain gage site, and hence one
would "expect® nearly identical runoff hydrographs recorded at the stream gage.
Typically, however, the resulting runoff hydrographs differ and, therefore, the.
randomness of the effective rainfall distribution over the catchment, R, results in
variations in the modeling "best-fit" parameters (i.e., in Q,7(t), the ni(s) varia-
tions) in correlating the available rainfall-runoff data.

More precisely, any element of a specific storm class <€,> has the effective rain-
fall distribution, e 9(t). Howeveg, there are several runoffs associated to the
single eq%(t), and afe noted by Q03(t). In correlating {Q97(t), eq®(t)}, a
differen% ni{s) results due to thg variations in the measuaed 081(%) with respect to
the single known inpyt at the rain gage site, eg°(t).

In the predictﬁvs mode, where one i5 given an assumed {or design) effective rainfﬁii
distribution, e,”(t), to apply at the rain gage site, the storm class of which g4 {t)
js_an element of is identified, <¢p> , and the predictive output for the input,
egD(t). must necessarily be the random variable or distribution,

t
(%61 = [ e(t - 5) [n(s)]; as (18)
s=0

whege [n(s)]D is the distribution of ni(s) distributions associated to storm class
(£,

Generally, however, there is insufficient rainfa'l-runoff data to derive a statis-
tically significant set of storm classes, <§,>, and hence additional assumptions
must be used. For example, one may lower the eligibility standards for each storm
class, <§,>, implicitly assuming that several distributions [n(s)], are nearly
identical; or one may transfer EH(S)]X distributions from another rainfall-runoff
data set, implicitly assuming that the two catchment data set correlation distri-
bution are nearly identical. A common occurrence is the case of predicting the
runoff response from a design storm effective rainfall distribution, egl(t], which
is not an element of any observed storm class. In this case, another Storm class
distribution must be used, which implicitly assumes that the two sets of correlation
distributions are nearly identical. Conseguently for a severe design storm condi-
tion, it would be preferable to develop correlation distributions using the severe
historic storms which have rainfall-runoff data available for the appropriate condi-
tion of the catchment.

EFFECTIVE RAINFALL UNCERTAINTY AND THE DISTRIBUTIONS, [n(s)]x

This paper's introduction includes brief statements from several reports which con-
clude that the variability in the rainfall (and hence the effective rainfall) over
the catchment is a dominant factor in the development, calibration, and application,
of hydrologic models (e.g., Schilling and Fuchs, 1986; among others}.
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Including this premise in hydrologic studies would indicate that hydrologic model
wtimates must be functions of random variables, and hence the estimates are random
variables themselves.

fFrom Eq. (15), the correlation distribution for storm event i, n'(s), includes all
the uncertainty in the effective rainfall distribution over R, as well as the uncer-
tainty in the runoff and flow routing processes. That is, ni{s) must be an element
of the random variable [n(s)]x where

afts) = 1 Ea’ Fad e l(s-0l -’ ) (19)
=1 < )j <k>j jk 73 | jk <k>j

and £Eq. (19) applies to storm event i for some storm class <€ .>. For severe storms
of flood control interest, one would be dealing with only a subset of the set of all
storm classes. In a particular storm class, <g4>, should it be assumed that the sub-
area runoff parameters and channel flow routing uncertainties are minor in comparison
to the uncertainties in the effective rainfall distribution over R (e.g., Schiiling
and Fuchs, 1986; among others), then Eq. (15) may be written as

m
[n(s)]o = Z <E> a<k>j Z [}\Jk] $j (5" [ejk] _&<k>j) (20)

J=1

where the overbars are notation for mean values of the parameters for storm class
<En>. But the mean values for the linear routing parameters are essentially the
calibrated parameters corresponding to a class of hydrographs (see the application
following Eq. (13)) which accommodates a range of hydrograph magnitudes. And for a
highly discretized catchment model, the use of a mean value UH for each subarea,

¢ ?s), has only a minor influence in the total model results (Schilling and Fuchs,
1;86). Although use of Eq. (16) in deriving the {n(s)}], distributions results in
the uncertainties of both the effective rainfalls and a?so the channel routing and
other processes being integrated, Eq. (20) is useful in motivating the use of the
probabilistic distribution concept in design and planning studies for all hydrolonic
madels, based on just the magnitude of the uncertainties in the effective rainfall
distribution over R. That is, although one may argue that a particular model is
"physically based" and represents the "true” hydraulic response distributed through-
out the catchment, the uncertainty in rainfall still remains and is not reduced by
increasing hydraulic routing modeling complexity. Rather, the uncertainty in rainfall
is reduced only the use of additional rainfall-runoff data. In Eq. (20}, the use of
mean value parameters for the routing effects implicitly assumes that the variations
in storm parameters of [Aj] [85,] are not so large such as to develop runoff hydro-
graphs which cannot be moaeled ﬂy a single set of 1inear routing parameters on &
channel link-by-link basis.

DISCRETIZATION ERROR

In the general case, the practitioner generally assigns the recorded precipitation
from the single available rain gage, P,7(t), to occur simultaneously over each R
subarea, Ry. That is from Eq. (1), th& 85 ' = 0 and the A5¥ are set to constants )
which reflect only the variations in Joss rate nonhomogeneq y. Hence, the 'true'
Q' (t) model of Eq. (15}, (and also Eq. {16)}), becomes the estimator Qyp'(t) where



t
m

A _ ~ i
Qm (t) = I eg (t-s) ng <E>
5=0

B )

<k>, ) Aj $j1(s '&1<k>.) ds (21)
J J

where hats are notation for estimates. These incorrect assumptions result in
'discretization error'. Indeed, an obvious example of discretization error is the
case where a subarea Rq actually receives no rainfall, and yet one assumes that

n

Pol(t) occurs aver R the discretized model. (It is easily shown that the Egq. (16)
mgde1 accommodates tﬂis example case.) .

DISCRETIZATION CALIBRATION ERROR

A current tr?nd among practitioners is to develop an m-subarea link-node model
estimator (t) such as Eq. (21), and then "calibrate" the model parameters using
the availabie {single) rain gage and stream gage data pair. Because subarea rainfall-
runoff data are unavailable, necessarily it is assumed that the random variables
associated to the subarea effective rainfalls are given by

[ejk] 0

{estimator, ami(t), assumptions)} (22}
ii

]

But these assumptions violate the previously stated premise that the uncertainty in

the effective rainfall distribution over R has a major effect in hydrologic modeling
accuracy. The impact in using Eq. (22) becomes apparent when calibrating the model

to only storms of a single storm c¢lass, <g°>.

Again, for all storms in <£%>, the effective rainfall distributions are all nearly
identical and are given by the single input, e 9(t). But due,to the variability in
rainfall across the R;, the associated runoff ﬂydrographs, QB‘(t), differ even though
ego(t) is the single fode input,

It is recal]ed that in Eq. (21), the effective rainfall distribution is now the
estimator, e9'(t). That is, due tp the several assumptions leading to Eq. (22) for
the discretiged model estimator,Q..'(t), the variatjons due to [Ajk] and [8:.] are
transferred frgm the [n(s)] distribution to the &g'{t) function.
the estimator Qm°1(t) can be written from Eqs. (28) and {21) as

t
. ) m
~01 " ~0j - A -
Qm (t) = J eg (t-s) jgl (E) a<k>j ) Aj ¢j(5"a<k>) ds {23)
5=0

For stor&kclass <Eg>»

where in Eq. (23), it is assumed that the variations in model output due to using
mean values (overbar notation) are minor in comparison to the variations in model
putput due to [Ajk] and [©:;,]. That is, even though the rainfall djstributions over
the catchment, R, are varigble with respect to the single input, eg‘(t), the resulting
subarea runoffs still fall within a single linear routing parametef class for each

channel routing link, respectively. But then Eq. (23) is but another single area UH
model :
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t
() = [ e (t - s) myls) ds (24)
s=(

where ﬁo(s) is an estimated distribution whigh.is 'fixed' for ali storms in a
specified storm class <gg>. In'calibrating Qo' (t), therefore, the work effort is
focused towards finding the best fit effective rainfall distribution eE’(t), which
correlates the data pairs {Qg’(tla.n%(s)}, for each storm i. That is, the 'true'
single ego(t) is modified to“be eg1( ) in order to correlate the {Q97(t}, ny(s)},
for each”storm i. This contrasts®with finding the best fit ni(s) wﬁich correlates
the pairs, {Q81(t), egg(t)}, such as in Eq. (16). It is recalled that from Eqs.
20), (21), aﬂd (24),7ng(s) is a single distribution due to the assumptions of Eq.
22), and due to using a single storm class, <€y>, which develops runoffs that fail
within a single class of Tinear routing hydrographs.

The effective rainfall estimator, Egl(t), used in Eqs. (23) and (24) is the correla-
tion between the, data pair {Q87(t), Ng(s)}. Consequently, similar to the nl(s) dis-
tributions, the e21(t) must hdve an infinite degrees of freedom in order to provide
the needed correTgtion. However, hydrologic models prescribe a given model structure
to the effective rainfall estimator which involves only a finite number of degrees
of freedom, or parameters. This fixed model structure develops effective rainfalils,
noted as &,'(t), for storm event i. Convoluting &,'(t) with the n,(s) estimated for
storm clasg <Eo> develops the general hydrologic mgdel, Qq1(t), for storm i. The
model §,'(t) is the model that practictioners use. For s%orm class <£,>, the corre-
lation aistribution is the fixed n (s), and the effective rainfall estimator is the
single calibrated distribution ego?t) Thus, for storm class <g,>, the 'true’
hydrologic model structure of EqT (15) becomes the point estimate:

t
G (t) = J[ 80t = 5) Ryls) ds (25)
s=0

Because the effective rainfall submodel used in Qm1(t) has a prescribed structure,
it cannot match the best fit 891(t) for all storms and, consequently, modeling error
is introduced into the parametgrs of the loss rate submodel, égott), when calibrated
to storm class <€,>.

An error_which results due to use of Eq. (25) is that the estimator modeling distri-
bution [Qp(t)] for storm c]ass~<g > will be imprecise due to the variation in de-
rived loss rate parameters in e ?t) not achieving the true variation in egl(t)
needed to correlate {Qg‘(t), no?s)} in Eq. {24).

HYOROLOGIC MODEL QUTPUT DISTRIBUTIONS
The previous development resulted in the identification of four modeling structures:

(i) Qn'(t) -~ this is the m-subarea link node model with channel iinks connecting
the subareas, (Eq. (15)). Stream gage data is supplied for each subarea (or
overland flowplane) and also along each channel link so that all modeling
parameters and subarea effective rainfall factors are accurately determined
for each storm event i. For storm class <£,>, (measured at the single



"available” rain gage site}, Omi(t) results in the distribution, [Qmo(t)].

(i1) Q, (t) -- this 1is a 51mp1e single area UH model. For only a single rain gage
and stream gage, Q,1(t} is equal to Q 1(t) in predicting runoff at the stream
gage (see Egs. 153 and (16)}). For storm class <€4>, Q;1(t) becomes the dis-
tribution [Q, °(t)] where {Q,0(t)] = Q0 (¢)1.

{111} Qw {t) -~ should all the parameters in QO (), b$ estimated for a storm class,
then Q'(t) i3 gpproximated by the est1matnr (t}. However on a storm
class basis, %m (t) reduces to, another sing]e area UH model of Eq. (24 where
the correlatign distr1bution, ols), is fixed for storm c?ass <Eg>. Q
equates to Qn'(t) when the effective rainfall estimator, & (t], is g1ven an
infinite numger of degrees of freedom.

(iv) Qu'(t) == because the effective rainfall estimates in an m-subarea link node
model are of a prescribed structure, the estimates have a finite number of
degrees of freedom. For storm c1ass <EqQ> 1{t) reduces to another single
area UH model where the correlation d1s%r1bu jon is identical to that used in
Qn'(t). But the effective_ ra1nfa11 distritubion in the single area UH repre-
sentatlon is 8,1 (t) whare &.7{t) is calibrated to best fit the distribution of

d1str1b3tions which gre needed to correlate the data pairs,
{8 (t), no[s)}. in storm class <ggy>.

From the four modeling structures, the parameter calibration process can be inter-
pretted. For storm class <&g3, distribut1ons are deveioped for [Qn°(t)] and

[Q O(t)]. A distribution of Qm‘(t). noted as [Q 0(t)], can be developed provided
the effective rainfall estimator is._given an 1nf1n1te number of degrees of freedom.
However, the "calibrated" model of Qm‘(t) develops only a single point estimate
Gpo(t) for storm class <€u>.

For storm class <€g>, the several modeling output distributions are as follows:

t
[q, (t)] = ego(t.-s) § <E> <k> ) [AJkJ $.2(s- [BJk]-a j) ds (26)
$=0
t
[Q,%(t)] = l eg°(t~ s} [n(s)], ds (27)
s=0
P [ o ~
[Q, (t)] = } [e, (t-s)1 ny(s) ds . (28)
t
(G, ()] = 0, °(¢) = )[ ey (t-s) fy(s) ds (29)
5=0
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Again. e, %(t)] = (Q, O(¢)]. [ﬁmo(t)] = [Qn (t)] only when ng(t) is given an

infinite number of degrees of freedom such as to correlate Q

T(t) to na{s) for
ch storm i. Finally, e,%(t} is some weighted average of the dTStribu%ion of
Teg 0(t)], usually, the expected value is used:
&g (1) = E[B°(0)] (30)

APPLICATION: THE CALIBRATION PROCESS

In calibrating the model structure, Q, 1(t), for storm class <€y>, the data Qgi(t)
and eg°(t) is used to determine the d1stribution of [n(s)]0

In calibrating the model struggqre, , the data Q° (t) and the rigid “0(5) is
used to determine a best fit eg (t) for each storm i iR class <gg>.

In calibrating the model structure, Qm (t) the effective rainfall function, € Oy,
is calibrated to best fit the distribution of [e O(t)] such as by using a simple
average.

To demonstrate the above discussion, a 25-subarea link-node model of an.idealized
catchment is used which satisfies the several assumptions leading to Q,'(t), {see

Fig. 6) The single "available" rain gage is shown as a triangle in Fig. 6. Not
shown in Fig. 6 are subarea-centered rain gages and link stream gages which are

used in Gy 1(t), but are "unavailable" to the estimator, Qh {t}. The catchment, R,

is 1000 acres in size, with each R; being 40 acres. A1l channel links are rectangular
channels with d1men51ons of depth * 20-feet (so as to guarantee no overflow), width =
8-feet, slope = 0.01 ft/ft, and a Mannings friction factor of 0.015.

fach subarea has its own UH (standard SCS triangular unit hydrograph) which is assumed
to be a function of its time of concentration, Tc. Each subarea is assumed to have a
uniform loss rate function. The rain gage site is monitored to determine the 'true’
effective rainfall, e 1(t), (Fig. 6).

To evaiuate the calfbratlan process, a series of identical effective rainfall distri-
butions (i.e., storms e%(t) are defined at the rain gage site, which satisfy that
each storm is in the safie storm class, <Eg>). For the model structure of Gnl(t)s..
the subarea effective rainfalls are assumed related to the e,?(t) by the factors Xx;
listed in Table 1. Other parameter data js also listed in tﬁis table. The 'true’
dfﬁtrtbut1ons of e?'{t) are random variab?es distributed according to Fig. 7a for

ks and Fag 7b fﬂr timing offsets, 069 k: where mean values are 11sted in Table 1.
Tﬂ “ture' runoff hydrographs are devefoped for each storm using G,’'{t) of £q. (15),
and are shown in Fig, 8. The variations in runoff shown in Fig. 8 are of the order
of magnitude reported in Schilling and Fuchs (1986), and should provide a useful case
study in examining the model calibration process.

Because ego(t) is fixed, the Qmo(t) model structure must have a fixed output.
Therefore; because 7, (s) is fixed, a least-squares best fit for eg‘(t) can be
developed for each storm in <€g>. Some of the resulting plots of effective rainfall
distributions are shown in Fig 9. In the figure, it is seen that a different e81(t
is derived for each storm i (in class <fp>) in correlating {Q°1(t), n(s)}.

For QO‘(t) however, the variations.in e91(t) are reflected in the ne'(s) variations.

Some Of the elements of the set {ny'(s}}"are shown in summation (mass] graph form in
Fig. 10.
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TABLE 1. APPLICATION PROBLEM DATA

— —_
Subarea R[ Iii Eii ii;i fii_
l 30 1 1 ¢
2 30 1 1 0
3 45 1 1 0
4 45 1.1 1.1 3
5 3¢ 1.1 1.1 3
6 30 .9 .9 3
7 45 .8 .8 3
8 30 .8 .8 3
9 30 .7 7 3
10 30 7 7 3
11 45 .8 -8 6
12 45 l. 1. 6
13 43 l. 1. 3
14 45 1.3 1.3 6
15 30 1.3 1.3 6
16 30 1.2 1.2 6
17 45 1.2 1.2 6
18 30 1.1 1.1 6
19 3¢ 1.1 1.1 6
20 45 l. 1. 6
¢l 30 l. L. 6
22 30 1. 1. 6
23 30 .9 6
24 45 ' 6
25 4% .8 6

Te = time of concentration in minutes
assumed ratio of effective rainfall at subarea to rain gage site

e
]

A = f
ik mean value for AJ# Not? that Agk
ejk * mean value for ejk. in minutes
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rom Fig. 9, the set of e2¥(t) plots needed to correlate the Q@1 (t) to the singie
(s) cannot be dup11categ by a fixed loss rate model structurg because the storm
rec1pitatlon is identical for each event and, therefore, a loss in accuracy must
-occur during parameter calibration. Add1t1ona11y, the final calibrated parameters
lose some of the physical meaning for what they were intended, in that they reflect
variations in effects other than the loss rate. The model structure, Qm'{t), uses a
“calibrated" effective rainfall distribution, e (t), which is usually an average of
the derived eg’(t) this is shown as the heavy ?1ne in Fig. 9. Whether e O(t) can
:it the heavy line in Fig. 9 depends on the prescribed model structure ofthe loss
unction.

In Fig. 10, however, the resulting n, Es) plots (summation graph form) are used to
populate a frequency distribution for n(s)] to develop the uncertainty distribution
for [Q,%(t)] using the sing'e measured e ? as the model input.

It is noted that in this appiication, the estimated " are assumed "correctly" in
that the X; equal the mean_ va1ue of Ai} (see Table 1). Hence the actual applications,
the d1scre3anc1es between eg 1) could be augmented.

DISCUSSICN

The app11cat1on demonstrates how the unknown effective rainfall distribution mani-
fests itself in the, s1ng1e area UH, Q,'(t), model, and in a discretized 1ink node
mode] estimator, Qﬂ {t), when using s%orms of a s1m11ar class to calibrate model
parameters. For the Q 1(t) model, the uncertainties are incorporated intc the UH
correlation distributidn, ni{s). In the estimator, q“ (t), however, the uncertainties
are transferred to the effective rainfall submodel parameters used in & 1(t)

Because the ni(s) are allowed to freely vary, the frequency distribution [n{s)], of
the n0i(s) reflect the several modeling uncertainties as well as the important un-
certainty in the effective rainfall distribution over R, for storm class <>

With the estimator, Qm (t), however, the effective rainfall estimator, e, {t), is a
fixed model structure which cannot fit the irregular effective rainfall distributions
needed to correlate measured runoff data, QQ'(t), to the 0 m (t) model single UH
correjation distribution, n (s), for storm 81ass SEN> As a result, the calibration
of e,1{t) must be imprecise and therefore the Qm1?t) must be a more uncertain model
in tﬁe predictive mode than the 01 (t) model on a storm class basis.

THE VARIANCE OF HYDROLOGIC MODEL QUTPUT

Consider the Q, (t) model structure in correlating the single rain gage and stream
gage. For storm class <>, there is an associated distribution of correlation dis-
tributions, [n{s}],- Then in the predictive mode, the predicted hydrelogic model
output is the disteibution [Q,°(t)] where

t
[Qlo(t)] = e %(t-s) [n(s)]0 ds {from £q. 26)

g
s=0

For storm time 2, the distribution of flow rate values is by {Qlo(z)], where
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t
[0,°(2)1 = [ &g (z-5) [n(s)]y ds (31)
s=0

Let t be the storm time where the peak flow rate, Q,, occurs for storm class <Eg>.
Not1n8 that tp is 2 function of [n(s)],, then the digtribution of [Qp]0 is given by

%

(95 = 0 e2(t, - 5) [n(s)], ds (32)
£=

Let D be a single time duration. Of interest is the maximum volume of runoff during
duration, U, for storm ciass <£,>. Then the distribution of this estimate is given

by
{ t
[max j Qlo(t)dt] = max J [ ego(t - s)[n(s)]0 ds (33
D D =0
Let A be an operator which represents a hydrologic process algorithm (e.g., detention

basin, etc.). Then the output of the operator for storm class <E4> 15 the
distribution

t

34

[l = A { [ e, (t - ) [n(s)]; ds } .
s=0

The expected value of the hydrologic process A for storm class <50> is
[t
E[A], = T A( e ’(t - s) n(s) dSJ P{n(s))
0 [n(s)]o J g (35)

5=0

where P(n(s)) is the frequency of occurrance for distribution n{s) in [n{s)]s.
The variance of predictions of hydrologic process A for storm class <€,> 1s {for A
( ) being a mapping into the real number line; i.e., giving a single number resuit},

t
iA( { eg°(t-s) n(s) ds) - E[A], ]2 P{n(s)) (36}

5=()

o oy

0
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“From the above standard statistical definitions, and Egs. (26)-(29), it is seen
‘that the var[A], is computed correctly when the single area UH model structure
_distribution, [Blo(t)], is used for storm class <g,>. The use of additional sub-
-areas in the modeling structure (for the given assumptions) must be accompanied

‘by runoff data in order to properly evaluate the effective rainfall discribution

n each subarea with respect to the available single rain gage data site. Without
.this additional data, the variance in modeling output will not equate to the true
-variance provided by [Q ©(t)] for storm class <f,>. Because the model estimator

of Eq. (29) cannot produce design estimates more accurately than the single area UH
_;nge} of Eq. (27}, the variance of Eq. (36) must be a lower bound for all hydrologic
models.

APPLICATIONS

Ppominguez Wash is a fully deveiop 35 square-mile catchment located in Los Angeles,
California. It has been essentially fully improved with a well-drained flood control
system for nearly 50-years. Of concern is the design of & flood control detention
basin at the stream gage site.

The design objective is to build a flow-through type detention basin which provides a
level of protection for a prescribed storm pattern and Toss rate. The available
rainfall data is a single rain gage located off-site of the catchment.

In reviewing the rainfall data, no storms were found which precisely matched the
design condition effective rainfall distribution, egD(t). Consequently, a storm
class <gp> could not be developed.

The assumption that similar storm classes, <£,>, have similar correlation distribu-
tions, [n{s)],, was then involved. By examining the available rainfall records and
the runoff dafa from the Dominguez Wash stBeam gage, only 5 storms were identified
which were considered similar enough to e Y(t} to have similar correlation distri-
butions. More data would be needed to have statistical significance; however, this
information is used for demonstration purposes.

The five correlation distributions, n'{s), are shown in mass-curve form in Fig. 11.
Fach n'(s) is assumed to have a probability of 0.20. The n'(s) of Fig. 11 were de-
rived by a least-squares fit between estimated effective rainfall from the rain
gage and the stream gage using the Q '(t) model structure.

For the prescEibed design effective rainfall storm condition (rainfail less losses)
given by a e ”(t) at thB rain gage, the hydrologic model estimate for runoff is given
by the distribution [Q,"(t)] of Eq. (19).

By routing each Qlo(t) model, (using a different n'(s) for each trial), through the
detention basin, a different demand on the basin volume is determined. Figures 12
and 13 show the resuiting distribution of QID(t) and the associated detention basin
volume requirements, respectively. Also shown in Fig. 13 are confidence estimates
from the modeling results.

CONCLUSIONS

A Tower bound for estimating the distribution of uncertainty in surface runoff
modeling output is advanced. The bound is based on a Tinear unit hydrograph
approach, which ytilizes an arbitrary number of catchment subdivisions into subareas,
a linear routing technique for channel flow effects, a variable effective rainfall
distribution over the catchment, and calibration parameter distributions developed
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in correlating rainfall-runoff data by the model. Because all hydrologic parameters
(e.g., subarea unit hydrographs, channel routing parameters, effective rainfall dis-
tribution factors) vary on a storm basis, the unit hydrograph methodology is a
reasonable approximation for assessing uncertainty in hydrologic modeling estimates.
The uncertainty bound developed reflects the dominating influence of the unknown
rainfall distribution over the catchment and is expressed as a distribution function
which can be reduced only by supplying additional rainfall-runoff data. It is
recommendad that this uncertainty distribution be included tn flood control design

studies in order to incorporate prescribed levels of confidence in flood protection
facitities.

Also developed in this paper is the conclusion that the single area UH modeling.
structure represents 2 highly complex link-node model where all parameters are
validated by data. The single area model UH integrates several effects occurring
during storm event i; namely, (1)} variation in the individual subarea UH across
storm events, (2) the distribution of the individual runoff hydrograph channel
routing effects, and (3) the variations in the effective rainfall magnitude, timing,
and pattern shape over the catchment. When correlating stream gage runoff {o
effective rainfall, the single area UH determined by calibration will include

the above described effects.

In contrast, using a highly discretized model during calibration will resuit in a
'rigid' UH which transfer the unknown variations in the above cited effects to the
model's effective rainfall distribution, resulting in a less reliable calibration of
the lass functions parameters.

The correlation of the effective rainfall to the runoff hydrograph from the catchment
R will result in a different UH {for the single area model) for each storm event.
However, the resulting collection of UH's reflect the dominating uncertainty in the
variation in the magnitude, timing, and shape of the effective rainfall distribution
over R. When the data base consists of only a single rain gage and stream gage these
three uncertainties cannot be reduced by including additional complexities into the
hydrologic model (e.q., subareas Tinked by hydraulic routing submodels, additional
soil-moisture accounting algorithms, etc.). Only additional measured rainfail-runoff
data within the catchment R will reduce the uncertainty. Without this additional data,
the uncertainty in the effective rainfall over R will remain and should be inciuded in
flood control design and planning studies by the development of confidence levels in
the modeling results.
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APPENDIX IT ~ NOTATION
The following notation is used in this paper:
@ = timing offsets for channel link #1 used in the linear routing technique
1
o = ¢  corresponding to storm class <€ >
Ky ky o
i
i
ejk

effective rainfall proportion factors for subarea Rj for storm i

effective rainfall timing offsets for subarea Rj for storm i
¢j1(s) = subarea unit hydrograph (UH)} for subarea Rj and storm i

<€y> = specific storm class

<E >

% arbitrary storm class

i

ni(s) correlation distribution between measured effective rainfall and

measured runoff, for storm i, using a Voltera integral model structure

T; = translation timing offset for channel link j and storm i
w, s, = 3rea weighting factors

a, = proportion factors for linear routing technique, used for channel
K Yink #1

A. = subarea R, area
D = design condition

egl(t) = effective rainfall measured at the rain gage site, for storm i

e °(t) = the effective rainfall corresponding to storm class <50>, measured at
the rain gage

ejT(t) = subarea Rj effective rainfall for storm i

i = storm event i

Jsk = indices

n

1{t) = inflow hydrograph for linear routing
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<k>

outflow hydrograph for linear routing

rainfall measured at the rain gage site, for storm i

runoff hydrograph, for storm i, measured at the stream gage
a Qgi(t) resulting from an element of storm class <gg5>
runoff hydrograph from subarea RJ, for storm i

m-subarea 1ink-node model output for storm i
total catchment

subarea in R

temporal & integration variables

unit hydrograph

distribution for random variable Z

[Z] for storm class <€,

estimate for Z

calibrated estimate for Z
mean value for Z

vector notation for subscript sequence, K
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