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Although the unceriainty in rainfall-runoff model predictions has been frequently demonstrated.
little attention has been paid towards including uncertainty in rainfall-runoff models, or providing
a methodology that not only accommodates the uncertainty, but can be readily integrated into
most rainfall-runoff modelling structures. In this paper, the uncertainty problem is approached by
providing a methodology which can be incorporated into almost all rainfall-runoff models. The
methodology is based upen the standard theory of stochastic integral eguations which has been
successfully applied to several problems in the life sciences and chemical engineering. The
stochastic integral formulation is used to represent the total variation between a record of
measured runoff data and model estimates.

Because of the simplicity of the technique, the stochastic integral equation method can be
integrated into most currently avaijable rainfall-runoff models. The method provides the
capability to develop probability distributions of aimost all criterion variable estimates as

produced from almest any rainfall-runoff medelling approach.

INTRODUCTION

The most recent literature regarding rainfall-runoff
hydrologic models has demonstrated the congiderable
magnitude of uncertainty in modelling predictions (e.g.,
Loague and Freeze'®; Schilling and Fuchs'®; among
other references). Hromadka et al.® and Hromadka and
McCuen® provide an extensive review of the rainfall-
runoff modelling literature which includes several papers
and reports which examine the large errors in modelling
predicnions.

Due to the nondeterministic nature of the ramfall-
runoff processes occurring over the catchment, the
mathematical descriptions of these processes result in
stochastic  equations. Additionally, the so-called
deterministic surface runoff models used 1o describe the
several physical processes contain parameters or
coefficients which have well-defined physically-based
meanings, but whose exact values are unknown. The
boundary conditions of the problem itself are unknown
{¢.g. the temporal and spatial distribution of rainfall over
the catchment for the storm event under study and also
for all prior storm events) and often exhibit considerable
variations with respect to the assumed boundary
conditions®'?. Thus the physically-based parameters and
coefficients, and also the problem boundary conditions,
are not given by the assumed values but are random
variables and stochastic processes whose variations about
the assumed values are governed by certain probability
distributions. Consequently, due to the significant errors
in rainfall-runoff modelling estimates reported in the
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literature, it is more realistic to formulaie a stochastic
modei of the rainfall-runoff modelling ervor rather than to
assume a totally deterministic model (of the rainfall-
runoff phenomena) which entireiy neglects the significant
random error contribution.

Although the uncertainty problem has been frequently
demeonstrated, little attention has been paid towards
including uncertainty in ramnfall-runoff models, or
providing a methodology to accommeodate the
uncertainty.

In this paper. the uncertainty problem is approached
by providing a methodology which can be incorporated
into almost all surface runoff models. The methodology is
based upon the standard theory of stochastic infegral
equations which has been successfully applied to several
problems in life sciences and chemical engineering (e.g.,
Tsokos and Padgett'®, provide a thorongh development).
The stochastic integral formulation is used to represent
the total variation between a record of measured runoff
data and the corresponding model estimates.

The methodology developed in this paper focuses only
upon the problem where a future estimate of a criterion
variable (e.g., peak flow rate, or volume of runoff, or
average flow velocity, or cost, ete.) correspending o a
hypothetical storm event is needed at a stream gauge,
assuming only the data (for the subject storm}) given at a
single rain gauge (i.c., the single rain gauge/siream gauge
problem). That is, the stochastic integral equation
method answers the question: ‘based upon the historic
rainfall-runoff daia record and the modei's accuracy in
estimating runoff, what is the distrihution of values of the
subject criterion variable given a hypothetical rainfall
event?. The generalization of the methodology 10
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accommodate problems where several rain gauges or
several stream gauges are available, or where either the
runoff data or rainfall data are unavailable, involves the
concept of regionalizing the stochastic integral equation
transfer function distribution of realizations, and is the
subject of a companion paper (although the topic of
regionalization is briefly alluded to in this paper).

STOCHASTIC INTEGRAL EQUATION METHOD
(SIEM) FOR RAINFALL-RUNOFF MODELS

Let o be an element of the probability space, £, with
probability Pr{w). In our problem setting, « is a storm
event occurrence which has associated precipitation,
runoff, and other effects. Let R be the study catchment
which freely drains to a single stream gauge (R is assumed
to be reasonably homogeneous in loss rates over the
catchment (such that a lumping of the loss rates into a
single loss rate parameter set is appropriate), and have a
free-draining coilector channel system which exhibits
negligible backwater effects, such as is assumed in almost
all rainfall-runoff models in common use today}). The key
hydrologic assumptions employed in this analysis focuses
upon three points as follows: (1} there are no detention
effects —i.e., the catchment does not contdin any storage
elemenis such as dams. basins, or significant channel
infiltration effects; (2} channel routing effects are such that
unsteady flow routing models in common use (e.g.,
kinematic wave, convex, Muskingum) can be employed;
and (3) the basin 15 homogeneous such that a basin-
averaged loss rate (i.e., 'lumped’ parameter) loss function
is appropriate. These assumptions, although restrictive,
occur frequently in practice. Additicnally, the error
analysis techniques discussed in the following can be
extended by subdividing the catchment into homo-
geneous regions, if needed, should data be availabie.
However in this paper, the above hydrologic assumptions
are utilized in order to make a clearer presentation of the
mathematical underpinnings employed. Should the
above hydrologic assumptions not be satisfied, the
presented  error analysis  procedures may  be
inappropriate. A single rain gauge is available for data
analysis. For a given w, the measured rainfall and runoff
are the realizations P(t;w) and Q(t;w), respectively,
where 1015 time.,

Let M be a surface runoff model which operates on the
rain gauge data to produce an estimate of runoff at the
stream gauge for event w by

M: Pit;w}— Mir; w}) (1}

Then for event w, the measured runoff, Q(r; w), and the
model estimate, M{t:w), are related by the stochastic
integral equation?®®

i

Olzw)=Mirw) +J kjr.siawhis kyls;w))ds  {2)
0

where &, {.m)yand k,{*; w) are functions of time for event
w, and h{;k,(-;w)) is a correlation between the k(-1 w)
and the total model error, Q(-;w}— M{(-:w}

From equation (2}, h(-;k,{-;w)) depends on k,(-;w)
In this study, the correlation distribution. (-, k, (- ;@) is
assumed to be highly dependent upon the model estimate,
M- ), for event w. Other possible choices for k;(-; w)
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extst, but only M(*;w) is considered in this paper: Thus
B ko (s @) =h{-; M(*; w)) (3)

Additionally, the integral of equation (2) is assumed to
depend only upon prior data in the kernel in that given
eqguation {39,

t

Ot w)= M, w) +J kylt—~s;w)his, M(s;wh ds (4)
o

Suttable choices of k;(*:w) are P(-:w), M(-:w), or even
the mean effective rainfall (rainfall iess losses. rainfall
excess) over the catchment., F(-;w). Selection of the
k,(*;w)is the subject of current research. but is similar to
the concept of regression analysis using  various
transformations of the independent variable.

For a reasonably homogeneous catchment, the mean
effective rainfall over R for event w is given by the
operator F where F: P(-;w)~» F(-:w). Using F{';w) in
equation (4),

O, w) = Mir; w}+j Fir—s;w)ils, M(s; w)) ds (5}
o

The choice of F(*:w) in equation {3} is made for the
current study due to convenience only.

Equation (5) provides for a method of including
uncertainty in runoff predictions. For m events. m sets of
realizations {P(*;w), Q(-;w)> are available. Given the
model structure M and the mean effective rainfall
estimator F used in M, then unique M(-:w}and F(-;w)
realizations are available for each event, . Consequently,
the h(*,M(*;w)) can be categorized into equivalence
¢lasses depending on some prescribed characteristics of
M ;w), (say CIM{;w))=7, where Z is a vector of
characteristic values of M(-;w); for example, peak flow
rate, peak 1-hour average flow rate, etc.). That is, for class
MZa

My ={M{";0) C(M{*;w))=Z] (6)

where C is the characteristic definition operator.

Each equivalence class, M., is composed of several
events such that C(M{-;w))=Z, and it is assumed that
the associated correlations, h(-, M(-;w}), are all equally
likely to occur for a future event, w,. such that
CiM(-;wp))=Z. In order to develop statistical
significance, the equivalence classes, M., may be required
to include a wide range of events so that a reasonable
number of realizations are elements of the class.

The realizations, h{*.M{-:w)). are all readily
determined analogous to standard convolution methods
{e.g., unit hydrograph techniques) by noting®

J Fr—s;wihis, M{s,w))ds=0Q(t; )~ Mir;w) (7}
0

In the following dévelopment, the correlation
hi-, M(-;w)) will be simply written as A{-,Z) where it 15
understood that Z indicates that C(M(-:w)}=2, and
h(-, Z}is a realization of the stochastic process associated
to equivalence class M. Thus equation (5) is written as
the stochastic integral equation, (again. see Tsokos and



Padgett'®, for details regarding uniqueness, existence,
and other analysis), :

Ot wy=Mir; m)+f F{t—s; wihis, Z) ds;

4]

CM(~;w)=Z 8)

From equation (8}, it is seen that the integral term
represents the total modelling error. The formulation
implies that the total modelling error is linear on an
equivalence ¢lass basis. And in prediction, where the
madel is used to predict the runoff at the siream gauge for
a future event, w,, then equation (8) develops a
distribution of outcomes (realizations) of runoff
distributed as [ G{-; w,)] where

(O, wo)] = M(t; o)+ J Fle—siwo)h(s. Zo)]ds (%)
o

where [h(+,Z,)] is the distribution of realizations of
correlations derived from all prior events, w, such that
CIM(-; o)) =Z,.

In practice, the runoff model is calibrated such that

.E[Q{r; wo)] = M(t; wg) {10}

where E is the usual expected value operation. Then the
variance of the total modelling error, (¢}, in prediction
for future event wy is estimated by

m ] 2
6%{3}2;-1-——1’ b3 (j Fit—5,wolhls, L), ds) , >0

—idi=1\Je

{11}

where m realizations are available in the equivalence class
Mz, and hi{s,Z,); is a sample realization from the
assoctated set of correlations. (If the variance oi(r) is
correlated to catchment characteristics, then a
regionalization of the variance can be prepared
{(analogous to umit hydrograph methods) in order to
transfer the information to other catchments). Obviously,
equations (10} and (11} are subject to the usual sampling
error considerations that are associated with all statistical
estimators.

From equations {9}-{11), ir 1s seen thar all predictions
depend strongly upon the selected model structure, M,
and the associated mean loss function, F. However,
should k;(~;w)=M{-;@) in equation (4), then
predictions depend only on the model estimator.

DEVELOPING DISTRIBUTIONS OF CRITERION

VARIABLE PREDICTHONS USING THE SIEM

Equation (9) can now be used to develop predictions of a
criterion variabie for a future storm event, wg. Let A bea
criterion variable of interest such as peak flow rate at the
stream gauge, or mean flow velocity for the peak I-hour
of runoff, etc. Then {or event w,

Alw)=A(Q(; w)) (12)

and in prediction for some event w,. Alw,) is a random
variable distributed as [ 4{w,}] where from equatioas (9},

the SIEM gives the estimate

[Alwo)]=A[Q(-; w,)] (13)

‘where in equation (13), A[Q{";w,)] is notation for

operating on each sampled runoff realization to derive a
sampling of the ¢riterion variable value, Afw)

For exampie, should A(w) be the peak flow rate from
event ¢, then

Alw)=max (Q(r; w)) (14)

~ And in prediction for future event w,, the peak flow rateis

a random variable distributed as

[Alwo)]) =max [Q(t; wy)] (15)

Given m realizations in equivalence class M, , then in
equation {15}, [ A{w,)] is the frequency-distributed of peak
flow rate values, max, Q(t:wg), for i=1,2,...,m, where

" from equations (9) and (11),

Ofr; wo}f=M{r;w0}+f Flt—s;wolils, Z,),ds {16)
9

Example problem

To demonstrate the use of the SIEM, a fully urbanized
watershed in Los Angeles, California is considered. The
subject watershed has three continuous recording rain
gauges available, and also a stream gauge located in a
large concrete flood controi channel. The 13 square-mile
catchment contains densely developed residential and
commercial lots over 98-percent of the land area, and is
served by a fully improved storm drain and collector
channel sysiem. Of interest are hydrolagic predictions of
storin runoff occurring at the stream gauge.

The rainfall-runoff model estimator used, M, is
composed of 93 subareas, each of near-equal size, and
linked to respective stoim drain or channel hydraulic
elements. Because of the relatively sicep gradients
involved, all unsteady flow routing processes are assumed
adequately modelled by the diffusions method (i.e., zero-
inertia) for fiow routing®.

Subarea runoffs are approximated by use of the
standard SCS unit hydrograph!’ where effective rainfall
(i.e., rainfall less losses, rainfall excess)is estimated in each
subarea R; by use of the loss function fit) where

fO= i+ Uni~fade™ (17}

where f,; and f_ ; are initial and ulumate loss rates,
respectively; and k; is a timing parameter chosen such
that f;(t) is within 5-percent of f_ ; within 30-minutes of
storm time. The values of f,; and f, ; are estimated
based upon the subarea percent impervious area, and
soil-water percolation tests conducted by the local flood
control agency. A uniform initial abstraction of 0.10
inches of rainfall is assumed for the entire catchment,
which is also assumed to be fully recovered after one day
of no rainfall. Subarea unit hydrograph timing estimates
of time-to-peak, Tp. are developed by summing normal
depth travel times for each appropriate channel Iink used
to estimate subarea time of concentration®’. Thiessen
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pelygons are used to partition the catchment into
subregtons wk zre rain gauge data are assumed to apply.
For storm event o, the model estimate of runoff at the
stream gauge is M(*;w), the measured runoff is Q(+; w),
and the modei error is E{-; w). '

In this example, the model error, E{-; ) is correlated
to an area-averaged effective rainfall, F(-; w), defined by
the sum of effective rainfalls

F{i;w]=z(Pj(f;w)",ﬂ{I;w]}A,-/ZAj (18)
where A; is the area of subarea R;; fi(*: w)is the subarea
loss rate for event w; and Pi{* ;) is the assigned subarea
rainfall for event w. F{+;w) also includes the recoverable
initial abstraction of 0.10 inches of rainfall. The transfer
function, h(-, M{r;®)), used in the correlation {E('; @),
F(-,w)> is developed from the stochastic integral (see
equation (5))

E{r;w)———j F{r—s,w)hi{s, Mis;w)) ds (19}

o)

Thirty seven storm events are considered in this
example problem, which represent the most productive
runoffs which have occurred over the last twenty years,
(the catchment has been 1m a relatively stable
development condition during this time period).
Consequently, these considered storms form a storm class
to be used in the SIEM where C(M(+;w))=Z,.

The rainfali-runoff model error for ourcome w, given in
equation (19) as E(*;w), follows directly from equation
i16). In equation (16). each realization of measured runoff
is compared to the modelled runoff, and a total modelling
error is obtained by subtraction. Assuming the total
model error realization, E( ; @), to be highiy correlated to
the basin-averaged effective rainfall (in this example
application} realization, F(-;e), implies that a unique
realization of the transfer function, k(- ; w), exists for each
event, . Because we are basing this exampie error
analysis upon effective rainfalls, the total space of effective
rainfall realizaiions is partitioned into storm classes of
effective rainfalls. The assumption that all of the

h{-,2,)

\

- considered 37 events are elements of the same storm class,

Z,, implies that each realization of the transfer function,
#i(; ), obtained by solving equation (19) for each event
w, is an element of the distribution of realizations,
hi- Z,), for storm class Z ;. As a result, 37 realizations are
defined to be elements of 4(+; Z,). In this application, each
element k(- ) was computed by solving equation (19) by
a least-sguares numerical solution.

The realizations of i~ ; Z) are approximately shown in
Fig. 1 in point density graph form. From the figure, it is
seen that the model estimate appears to generally
underestimate runoff quantities, By decreasing the
subarea loss rates uniformly by 20-percent, the associated
error realizations E(-;w) are found to be near equally
distributed about zero. The model. now with adjusted
subarea loss rates (and hence an adjusted F{-; w)), is to be
used for predicting runoff estimates at the stream gauge.

Of concern is the possible runoff at the siream gauge
should a hypothetical storm event, &,, occur over the
subject catchment. It is assumed that w, is an element of
the storm class used to develop the above h(-,Z,,). The
storm event w, considered is the 24-hour design storm
pattern described in HEC Training Document 157
From the SIEM, the runoff prediction at the stream gauge
is the distribution defined by equations (9) and (13).

For the criterion variable A4 of peak flow rate resuiting
from @, as measured at the siream gauge, the
distribution [ A] is shown in Fig.2.

Should the stream gauge be the site of a hypothetical
dam, with a prescribed outlet rating curve and storage
curve, the probability distribution of peak volume
demand on the dam for event ¢, ts shown in Fig. 3.

Other criterion variable distributions are developed by
means of the SIEM as applied in equations {13) and (16).

From the various distributions. confidence interval
estimates can be readily obtained for decision-making
purposes,

Discussion

The above example problem utilized a certain rainfall-
runoff model to develop estimates of runoff at the stream
gauge, and then the SIEM is used to couple to the model

TIME (HOURS)

- Fig. L. Point density plot of random wransfer function used in SIEM for example problem
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Fig. 2. Distribution of probable peak flow rate for a
specified design storm event, w,
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Fig. 3. Distribution of probable peak volume demand on a
hypothetical dam structure, for design storm event, W,

uncertainty in the model predictions. Cbviously, the
SIEM depends not only on the model used, but aiso the
sample space used in the storm class to be associated with
the design storm event, and the usual sampting errors
typically found in any statistical analysis.

Generally speaking, it is désirabie to minimize the
variance of the uncertainty as described by equation (11}
One method for reducing the variance 1s to calibrate the
model such as demonstrated in the above example
problem. Additionally, it may be possible to reduce the
variance by including additional hydrelogic components
into the model structure. Of course, the subject storm
class sampie size needs to be sufficiently large in order to
reduce the variance of equation (11) while maintaining
statistical significance.

The SIEM provides a convenient approach for
including uncertainty in rainfall-runoff modelling
predictions. which is easy to apply and can be coupled to
almost all rainfall-runoff models in use today. Future
research is needed in several areas inctuding (i) methods
for regionalizing uncertainty distributions for use at
unganged catchments; (i) evaluation of reduction in
uncertainty by increasing hydrologic model complexity:
(i) application of the SIEM to rainfall-runofl models
involving highly nonlinear responses: among other issues.

COMULUSIUNDY

The stochastic integral equation method (SIEM) is used
to include the uncertainty in rainfall-runoff modelling
estimates in the prediction of runoff criterion -variable
values. The technique is based upon the well established
theory of stochastic integral equations, and can be readily
integrated into most currently available rainfall-runoff
models. With the magnitude of surface runoff modelling
errors demonstrated in the literature, it is important to
attempt to include a measure of the uncertainty in the
modelling estimates; the SIEM provides a convenient
procedure for including modelling uncertainty in ruaoff
criterion variable predictions.
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