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A Hermite CVBEM model Of two-dimensional,
steady-state, soil-water phase change

T.VY. Hromadka 11

Williamson & Schmid, 15101 Redhill Drive, Tustin, California 92680, USA and Department of Applied Mathematics, California
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A linear trial function CVBEM model of a steady-state, two-dimensional freezing
front is extended to the Hermite cubic polynomial triat function. The utiiity of this
extension is demonstrated by the reduction in effort needed (over the linear trial
function model) to deveiop an approximate boundary for error analysis, due io the
derivative terms being included in the Hermite model. The modeling approach can
be used not only for simple field problems, but also for the calibration of more
sophisticated soil-water phase change models based on the more popular finite
clement and finite difference techniques.

I BOUNDARY INTEGRAL APPROXIMATION
EQUATION FORMULATION (CVBEM)

Because a therough literature review and mathematical
development of the CVBEM is contained in the book by
Hromadka,® only the key equations needed to formulate
each of the nodal point equations are provided in- this
paper. Additionally, discussions as to the usability of the
CVBEM in engineering analysis, and also the convenient
error analysis techniques provided by the CVBEM, are
also found in the above reference.

"Nodal point equations are developed in the following
for the Principal Vaiue of the Cauchy Integral for the
Hermite cubic polynomial trial function. Because of the
lengthy derivation, only the final equation forms {(which
would be used in a computer program) are presented.
Detailed derivations involved in the linear trial function
CVBEM model can be found in Hromadka,® and each of
the higher order trial function derivations follow similar
mathematical steps in their respective derivations of the
nodal point equations.

Consider a simpie connected-domain, £, with a simple
closed contour boundary, I, as shown in Fig. 1. The
boundary can be subdivided into m boundary elements,
T, such that

(1)

On each boundary element, define two nodal points
located at the element end points; for element j, the
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co-ordinates of the nodes are z,,,. A Hermite cubic
polynomial trial function, «{s), is assumed on each

element such that

o 5 @ N (3) + W/ Na(s) + w,, Nyis)

+ @l N 0 S 5 < @
where @, is the complex nodal values for node j, and
where @, = @, + #p;; and @] is the derivative of the
compiex variabie function of node /. In eqn (2), é'{, and o,
are state variable and stream function nodal values at
co-ordinate z;. The bar notation signifies a specified
nodal value.

The CVBEM utilizes an integral function é&{z) defined

by
i . (a(C)dC) 26Q), z¢l

where { is the complex variable of integration, x(() are
the continuous trial functions, and subscript j refers to
element contour I}, Because the «({) are continuous on
T}, the approximation function @(z) is analytic for all =
interior of T".

A boundary integral equation can be formuiated for
each nodal point by

2mia(z)) = lim i _[r'- (z(?di)

where the limit is evaluated as z approaches arbitrary
nodal co-ordinate z, from the interior of I'. Solving eqn

2nid(z)

(3)

4)

{4) results in the computation of the complex varniable
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Fig. 1. Problem domain, Q, with boundary, I.

components, f;, where

H = In (M) (5)
Equation (5} is solved by noting
_ daj + 1, 1) o s .
H = ln( 0T )-1-:6‘(;-!— 1, ) (6)
and
402, 1) .
H = In (d(m, ])) + (2, m)

In eqn (6), d(j + 1, 1) is the distance between nodal
co-ordinates z,., and z,, and 8 (j + 1, j) is the angle
between co-ordinates z;,, and z; (Fig. 2).

An examination of the approximation function defi-
nition of eqn (3) reveals that é(z,) is a funciion of the
boundary geometry and nodal values, {®,, &;}. Should
the assumed, trial functions «{{) be the solution of
the boundary value problem, then &(z) is the solution
of the boundary value problem and @(z;) = w(z),
Jj=1 2,..., m Generally, however, @(z) is not the
desired solution of w(z) = ¢ + i, and @(z;) # @(z;).

|

Ty Ez
Fig. 2. CVBEM linear trial function geometry.

CVBEM MODEL DEVELOPMENT

The CVBEM formulation results in a matrix system
which, of course depends on the trial function definition.
The nodal values, @,, are composed of two sets of com-
ponents &, = ¢, + iy, & =§ + i, where one of
either set of unknowns is specified at each z, by the given
boundary condition definitions. Consequently, each
nodal point has two assigned known boundary values
and two corresponding unknown boundary values.
Should all four boundary nodal values be known at each
z,, then the approximation function @&(z) is defined
throughout the interior of I'. Therefore, in order 1o
calculate &(z;) values, estimates of the unknown nodal
boundary condition values are required. In the following
discussion, it is assumed that @, and @; are specified at
each z;, and the §,\f; are unknown (except for a single
nodal point value where the constant of integration is
evaluated). The discussion is immediately extendabie to
the case of mixed boundary conditions. The following
notation is used for the three sets of nodal point values;

w; = wfz;) = ¢ + Yy exact solution of bound-
ary value probiem sol-
ution at node j

@ = ¢, + 8, boundary condition nodal values

@ = é;+ if;; approximation values at node j

Solution of eqn {4) for each nodal point results in 2m
linear equations which can be written in matrix form as

& = Cp(d. & 0, ¥) + iCUd, ¢, 8. %) (D
where €, and €, are 2m x 4m matrices of real
constants representing the real and imaginary parts of
the boundary integral equations, respectively.

Since the values of the analytic functions w(z), and its
derivatives w’(z) are utilized at the nodal points, and we
desire a cubic approximation, then define a continuous
trial function of T} by:

wl) = E. £ (8)

() = Z. PO <
=

Where a(0) is defined as

o) = g — bl + g + 40 (10)

And the derivative o'(}) is given by:

20} = b+ 20 + 34 (1)

Collocating at the nodal points, we have four equations
in four unknowns, which we solve to obtain the coef-
ficients. Upon rearranging the coefficients, we get new
expressions for a(z) and «'(z) at point z:
az) = GZyY (1 + 2Z,)) + @, (Z,) (1 + 2Zy)
-+ (DJ:ZUZZJ‘(ZJ' _ Z) L d);+|zUsz(zj ot Z)
(12
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a’(z) = (IJ}.ZUsz(ﬁl(Zj - zj+l))
_ W1 ZyZo (65010 — 7))
+ @ Z5{1 - 321),-)

+ @5 Z;(1 — 3Zy) (13)
Where Z;; and Z,, are defined as
I - z)
Z. = — 77
Y (zj+l - Zj)
I(3'+1 - Z)
Zy = L
N (z1 — 2)

Principal value calculations

Since we desire the value of the approximation functions
on the boundary I as well as the interior of Q, we must
consider the following egquations:

1 Z p ¥
Y= o L im g j—mhu % (4)
Iy B
"="§*§ IC*ZOC (15)
Simplifving the last integrals:
1 ] (1 — 20)
~ — lim ¥ P(z)IpnL2——2
o) = 50 Z @) In e
1 L i
+ 552 z (W, ~ @) lezzr
m
1 &, + @) _
Ll W T e, tza
T 2”53}; (z1 — 2} ()’ i1%)
1 1 & (w,, +a ) .
_— ;. + @) 3
+ 21i 3;; (ZJ'H ja— ) (Z z;+lz)
L1 & @ + @),
Y53 L, o2y OF 339 (16)
2mi 35 (zey — Z) ( 7
@'(z) = — lim Z P’(z) In (z iy — Zo)
2m soovz /=] (z, — "7
+ __I__3 (zp1 — 2 — 22) (@2, — @)
2ni o (Z,a+| - z,-) G — 2,)
_._]',3 “ (;+I - 2, - 22) (d}}!H)
2ni i=1 (ZJ+| - Zj) 2
1 " (2., — z, — 22) (@)
T AT G = an
2mi T o (o — 2) >

Which are valid for zeQ).
The terms involving logarithms in (16) and (l?) are
simplified as

lim ¥ P(z)In ——u-—(“' -
gy j=1 ( J

L

= Y Byl —("*‘ = )

J=lekk—1 (j - %)

- (i1 — 2)
+ Wy in m (18)
lim Z P(z)in i = o)
=3 {2 (z; — 2o)
- i P(z)in Gur = 20
Jg=lwkk—| (-:.f — %)
+ @; In Girr — 2z} (19)
(Zeot — )

Where z, is a nodal point of I and z, =

1 ==

- -
- =he

Matrix development
To implement the Hermite CVBEM, the equations from

the above development are simplified to obtain the
following:

@, = 51— Z @,,, cckjk — @, celjk)

l n
2— Z @}, cc2fk + @ cc2jk)

1 .

+ = ' D, ccbfk + @, coSjk
2?:]}“' ;k | ( S+ J ' 3 )
1 "
+ 5= 3 (@, cc8ik + @ eclik)
2“’;‘*1.#&..&—1
- (Zgs Z;)
+ o @y In 20
2mi 8 Tp_1 ".’c) ( )

Where ccljk, cc2jk. ccSjk, cebjk, ecTjk, and cc8jk are
functions of the geometry of the nodai points.

Let &, = ¢, + i, and define cl, 2, ¢3, and ¢4 as a
function of nodal orientation, i.e.:

If j # k,-k — 1, then:

clik = ecljk + ccbjik

2fk = celjk + ecSik

ik = eckik + ecBik

cdjk = cc2ik + ccTik (21)
Ifj=%korj=k — 1, then

chjk = ccljk

o2k = —celjk

e3jk = cc2ik

cdik = ecjk

If we now expand eqn (20) and separate real and
imaginary components we obtain;

1 n
Py I 2 Z i#.1 Im (k) + ¥, Re (cljk)]

n

+

2L z ,Im (c2jk) + ¥, Re (c2/k))
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2L ; .. Im (c3jk) + ¥, Re .(CBjk)}
+ 5_ !; [¢; Im (c4ik) + ¢] Re (cdik)]
+ 5‘; ¥ Re {m E—i—:-%‘*z—;) )
b= 5 z 6,01 Re (clk) = ¥, Im (cljk)]
- Z 6, Re (c2K) — 4, T (c27k)]
E]E ; [#7.1 Re (¢3k) = ¥, Im (c3jk)]
~ %}; [6] Re (c4jk) — ¥] Im (c4k)]

Where Re (¢) and Im (c) indicate the real and imaginary
components of a complex constant ¢. An exactly anal-
ogous procedure can be performed to obtain a similar
representation for ¢, and .

H MODELING APPROACH FOR TWO-
DIMENSIONAL, STEADY-STATE, SOIL-WATER
PHASE CHANGE MODEL

The use of the Compiex Vanabie Boundary Element
Method to model soil-water phase change effects is a new
numerical approach to this class of problems. In previous
work., Hromadka & Guymon' apphied the Complex
Variable Boundary Element Method (CVBEM) to the
problem of predicting freezing fronts in two-dimensional
soil systems. Hromadka er a/.” subsequently compare the
CVBEM solution 1o a domain solution method and
prototype data for the Deadhorse Airport runway at
Prudhoe Bay, Alaska. In another work, the model is
further extended to include an approximation of soil-
water flow.’ In contrast to the CVBEM approach, an
example in the use of real variable boundary element
methods in the approximation of such moving boundary
phase change problems and a review of the pertinent
literature is given in O’Neill."

Hromadka & Guymon* develop a relative error esti-
mation scheme which exactly evaluates the relative error
distribution on the problem boundary that results from
the CVBEM approximator maiching the known
houndary conditions. This relative error determination is
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used 10 add or delete boundary nodes to improve
accuracy. Thus, the CVBEM permits a direct ang
immediate determination of the approximation error
involved in solution of an assumed Lapiacian system.
The modeling accuracy is evaluated by the model-user in
the determination of an approximate boundary upon
which the CVBEM provides an exact solution. Although
inhomogeneity (and anisotropy) can be included in the
CVBEM model, the resulting fuliy-populated matrix
system quickly becomes large. Therefore in this work, the
domain is assumed homogeneous and isotropic except
for differences in frozen and thawed conduction par-
ameters for freezing and thawing problems, respectively.
Hromadka® developed a linear trial function model: in
this paper, the cited work is extended to the case of using
a Hermite cubic polynomial trial function. Because of the
direct analogy berween the Hermite CYBEM model and
the model in Hromadka,” the reader is referred 10 that
citation for model details.

A major benefit in the use of the CVBEM over other
numerical methods (including real variable boundary
glement methods and domain methods such as finite-
differences and finite-elements) is the accurate and easy-
to-use ‘approximation boundary’ error evaluation
technique. Often, the CVBEM approximation analysis is
terminated when the approximate boundary differs from

‘the true problem boundary to within the construction

tolerance of the project, resulting in an exact CVBEM
model of a probable constructed version of the engin-
gered plan drawings. Consequently, the CVBEM
approach can be used directly in engineering applications,
or used to provide a wide range of highly accurate approxi-
mations for two-dimensional phase change problems
(where the freezing front movement is slow) for checking
modeling results produced by other numerical methods.

HEAT FLOW MODEL

For a wide range of soil freezing (or thawing) problems,
the freezing front movement is sufliciently slow such that
the governing heat flow equation can be modeled using a
timestepped steady heat flow approximation. That ts for
small durations of time, the heat flux along the freezing
front can be computed assuming the temperature distri-
bution within the frozen {or thawed) regions are potential
funictions (i.e. the Laplace equation applies). Figure 3
illustrates a typical two-phase probiem definition where
the heat flow model sotves for heat flux along the freezing
front by solving the Laplace equation (by use of potential
functions) in both the frozen and thawed regions.

To develop mathematical models of the Laplace
equation in each region, a CVBEM approximator s

+ generated which maiches specified boundary conditions

of either temperature or flux at nodal point locations on
the problem boundary and freezing front. The CVBEM
approximator exactly satisfies the Laplace equation;



A Hermite CVBEM model | 13

//—,,T/\ ™\
/ R

' /

1
)
i 4

.‘\\ THAWED sSOIL /
xxm_#f‘_\’_/

Fig. 3. Typical two-phase problem definition.

consequently there is no modeling error in solving the
governing Laplace equation (heat flow model), there is
only error in matching the boundary conditions con-
tinuously. Figure 4 shows an example roadway problem
where the freezing front is initially located some known
distance below the surface. Boundary cenditions for the
example problem and a nodal point placement scheme
are shown in Fig. §.

PHASE CHANGE MODEL

For each timestep, a CVBEM approximation function is
developed for both the frozen and thawed portions of the
problem domain based on the probiem geometry and
boundary conditions. Heat flux is computed along the
freezing frout using the CVBEM approximation function
derivative values. The heat flux estimates are assumed to
directly equate to the rate of freezing {(or thawing) of a
volume of soil at the freezing front. For the example of
Fig. 5, freezmg results in a downward migration of the
freezing front such that the product of the timestep and
heat flux equals the Jatent heat evolved by the change in
freezing front coordinates.

Two freezing front displacement models are available:

{1} All displacement occurs in the vertical direction.
This stmplified model is generally appropriate for
many roadway problems, :

{2) Displacement computed based on an ouiward
normal vector. This model may be the most

TI

accurate, but requires additional computational
effort than the vertical displacement model. Figure 6
shows the nodal point displacement in a direction
which balances the angies to go between the
normal vector and boundary elements.

Class of problems modeled

The CVBEM model may be used 1o study soil-water
freezing (or thawing) in two-dimensional, homogeneous,
isotropic domains. The current version of the Hermite
CVBEM model accommodates only one region (ie.
either entirely frozen or entirely thawed) and the freezing
front forms part of the control volume's boundary. Thus.
the model may be used to study the freezing front ad-
vancement into a soil system where the soil system is
initially close to the freezing point depression tem-
perature, and negligible heat flow to the freezing front is
contributed from the underlying soil system. A schematic
of the problem domain and boundary conditions are
dlustrated in Fig. 7. Another characteristic of the current
Hermite CVBEM meodel is that the boundary conditions
of the problem are held constant for the entire simu-
lation. Additionally, the initial conditions of the problem
are assumed to be near steady-state with the freezing
front specified some distance below the top of the control
volume boundary (control surface). The modeling pro-
cedure used is shown schematicalily in Fig. 8 for the case
of a soil freezing problem.

JII MODELING ERROR ANALYSIS

A major benefit afforded by the CVBEM. is the available
error analysis. Because the approximation function, &(z),
15 an analytic funcuon, then its real and imaginary com-
ponents (¢(z) and () both exactly satisfy the Laplace
equation. However, the &(z) does not generally satisfy
the boundary conditions of the problem, _
However, an approximate boundary, [, can be devei-
oped where @xz) satisfies the boundary conditions, [ is
developed by locating where in space, d(z) equals the

-10%C
FROZEN SO~
— — g8

' \FREEZING FRONT%OZEN ‘soiL

{T=0°C)

{T= «0.1°C}

Fig. 4, Typical roadway embankment problem.
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Fig. 8. Nodal point plgcement and boundary conditions for the Fig. 4 problem.

DIRECTION

Fig. 6. Normal vector coordinate displacement model (note balanced angles for each normal vector).

boundary conditions (e.g. where ¢(z) = 0°C at the
freezing front).

For example, along the freezing front ¢(z) = 0°C.
However, $(z) # 0°C except at scattered locations along
the boundary elements. If ¢(z) = +0-1°C, at some
location, the 0°C isotherm is located by utilizing the
Cauchy-Rieman equations (see Hromadka,? and Fig. 9).
The Hermite polynomial directly computes the derivatives
é¢pjon and Oyfds. The component Syr/ds is used to
evaluate the displacement between ' and T at any point

gl

‘PROBLEM. DOMAIN:

TeTa

z on I' by dividing the difference (¢(z) — $(z)) by dyfos
{(see Hromadka®).

IV CONCLUSIONS

A linear trial function CVBEM model of a steady-state,
two-dimensional freezing front is extended to the
Hermite cubic polynomial trial function. The utility of

{0.9.,0°C)
Fig. 7. Program boundary condition characteristics.
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T=-10%C

GEVELOP A CVBEM APPROXIMATOR BASED
ON BOUNDARY COORDINATES AND BOUN-
DARY CONDITIONS

T=0°C

CALCULATE MEAT FLUX VALUES ALONG
THE FREEZING FRONT

DISPLACE NODAL COORDINATES ALONG
FREEZING FRONT BASED ON HEAT EVOLVED,

AND VOLUMETRIC LATENT HEAT OF FUSION
FOR SQIL-WATER MIXTURE

Fig. 8. Freezing front evolution modeling procedure.
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LA ’///;/f///
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@ node

CVBEM estimated
+0.05 temperature

-—-—— approximate
boundary

boundary
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Fig. 9. Locating the 0°C isotherm.
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this extension is demonsirated by the reduction in effort
needed (over the linear trial function mode) to develop an
approximate boundary for error amalysis, due to the
derivative terms being included in the Hermite model.
The modeling approach can be used ot only for simple
field problems, but also for the calibration of more
sophisticated soil-water phase change models based on
the more popular finite element and finite difference
technigues.

Future research needed is the inciusion of inhomeo-

geneity and variable boundary conditions. An unavoid-
able aspect of the CVBEM technique is the tnability to
extend to three-dimensions; however, many problems are
two-dimensional and the provided approach provides an
- advantage due to the unique error evaiuation.
Possibly, the greatest utility of this model is the gener-
. ation of quasi-analytic solutions to two-dimensional
steady-state soii-water phase change problems which can
be used to verify other numerical models.
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