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ABSTRACT

Hromadka, T.V. and McCuen, R.H., 1989, An approximate analysis of surface runoff model uncer-
tainty. 4. Hydreol, 111: 321 360.

The recent work of Schilling and Fuchs (1988) is useful in evaluating the potential success of
asurface runoff mode! in reliably predicting the runoff response at 3 stream gage from w catchment,
piven rainfall data from a single rain gage. Besides demomstrating the relative influences of the
varicus components utilized in surface rvnoff models {i.e. routing, loss rates, subwatershed
responsy functions, ete.), the cited paper provides a useful indication as to the magnitude of the
uncertainty in surface runoff model predictions due to the unknown boundary conditions of the
problem.

In this paper, the uncertainty in runoff prediclions is approximated by coupling to the rainfall -
runoff model a stochastic model which representis the error petween measured runoif data and
model estimates of runoff.

The stochastic model is developed using a mulfilinear model of either the catchment runoff
itself, or a multilinear equivalent to some particular surface runoff modeling approach. From this
coupled modal, distributions of the predicted outcomes of criterion variables (e.g., peak flow rate,
detention bagin maxivaum volume, ete.) can be obtained, and confidence intervals can be subse.
quently estimated and used for flood control planning purposes.

{nce the distribution of the predicted outcomes of the criterion variable is developed, T-year
estimates of the criterion variable are evaluated.

Questions are considerad regarding the optimum use of available rainfall-runoff data, and the
optitnum selection of the effective rainfal! estimator (b.e., rainfall less losses, rainfall excess) used
to develop the base input to the surface runoff model, when estimating T-year values of a criterion
varisble.

The main goal of this paper is to provide a mathematical review of methods which would aflow
designers and researchers to investigate the effect of uncertainty in analysis and design. New
notation is introduced which provides a umification to the theory of uncertainty applied to
rainfall -runoifl models.

INTRODUCTION

In this paper, a multilinear rainfallrunoff mode} is used to develop uncer-
tainty distributions for runoff hvdrographs in the frequently occurring case
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where the uncertainty in the effective rainfall (rainfall less losses, rainfall
excess) over the catchment dominates all other sources of modeling uncer-
tainty. Indeed, just the uncertainty in the precipitation over the eatchment
appears to be a major obstacle in the successful development, calibration, and
application of all surface runoff hydrologic medels (e.g., Beard and Chang,
1979; Troutman, 1982; Loague and Freeze, 1985; Schilling and Fuchs, 1988). The
coupling of the uncertainty n both the rainfall and loss rates results in an
important source of uncertainty that should be included in runoff estimates.

Schilling and Fuchs (1986) write “that the spatial resolution of rain data is
of paramount importance to the accuracy of the simulated hydrograph’ due to
“the high spatial vartability of storms™ and “the amplification of rainfall
sampling errors by the nonlinear transformation” of rainfall into runoff. They
recommend that a model should employ a simplified surface flow algorithm if
there are many subbasins; a stmple runoff coefficient loss rate; and a diffusion
{zero inertia) or storage channel routing technique,

In their study, 3chilling and Fuchs (1986) reduced the rainfall data set
resolution from a grid of 81 gages to a single catchment-centered gage in an
1800 acre catchment. They noted that variations in runoff volumes and peak
flows "is well above 100 percent over the entire range of storms implying that
the epatial resolution of rainfall has a dominant influence on the reliability of
computed runoff.” It is also noted thai “errors in the rainfall input are
amplified by the ramntall-runoff transformation™ so that “a rainfall depth error
of 30 percent regults in a volume evror of 60 percent and peak flow error of 80
percent”’, They also write that™it is inappropriate to ise a sophisticated runoff
mode) to achieve a desired level of modeling accuracy if the spatial resolution
of rain input is low’ {in their study, the rain gage densities considered for the
1800 acre catchment are 81, 9, and a single centered gage). Similarly, Beard and
Chang (1979} write that in their study of fourteen urban catchments, complex
models such as continuous simulation typically have 20 to 40 parameters and
functions that must be derived from recorded rainfall-runoff data; and
“Inasmuch as rainfall data are for scattered point locations and storm rainfall
is highly variable in time and space, available data are generally inadequate...
for reliably calibrating the various interrelated functions of these complex
models”.

Garen and Burges (1981) noted the importance in the effective rainfall
estimated for use in the Stanford Watershed Model, because the K1 parameter
(rainfall adjustment factor) and UZSN parameter {upper level storage) had the
dominant impact on the model sensitivity.

In the extensive study by Loague and Freeze (1985), three event-based rain-
fall-runoff models {a regression model, a unit hydrograph model, and a
kinematic wave quasi-phyaically based (QPB) model} were used on three data
gets of 260 events from three small upland catchments. In that paper, the term
“quasi-physically based”, or QPB, is used for the kinematic wave model. The
three catchments were 25 acres, 2.8 mi* and 35 acres in size, and were exten-
sively monitored with rain gage, stream gage, neutron probe, and soil
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parameter site testing. For example, the 25 acre site contained 35 neutron probe
access sites, 26 soil parameter sites (all equally spaced), an on-site rain gage,
and a stream gage. The QPB model utilized 22 overland flow planes and four
channel segments. In comparative tests between the three modeling
approaches to measured rainfall- runoff data it was concluded that all models
performed poorly and that the QPB performance was only slightly improved by
calibration of its most sensitive parameter, hydraulic conductivity. They write
that the “conclusion one is forced to draw,.is that the QPB model does not
represent reality very well; in other words, there is considerable model error
present. We suspect this is the case with most, if not all conceptual models
currently in use”. Additionally, “the fact that simpler, less data intensive
models provided as good or better predictions than a QPB is food for thought”.

Troutman (1982) also discusses the often cited difficulties with the error in
precipitation measurements “due to the spatial variability of precipitation”.
This source of error can result in “serious errors in runoff prediction and large
biases 1Ih parameter estimated by calibration of the model”.

Based on the literature (see Hromadka et al., 1987), a major difficulty in the
use, calibration, and development, of surface runoff models appears to be the
lack of precise effective rainfall data and the high model sensitivity to (and
magnification of) rainfall distribution estimate errors. Nash and Sutcliff (1970)
write that “As there is little point in applying exact laws to approximate
boundary condition, this, and the limited ranges of the variables encountered,
suggest the use of simplified empirical relations™.

While surface runoff hydrologic models continue to be developed in
technical component complexity, typically including additional algorithms for
hydraulic routing effects and continuous soil moisture accounting, the
problem setting continues to be poorly posed in 2 mathematical approximation
sense in that the problem boundary conditions, (i.e., the effective rainfall over
the catchment) remain unknown. Indeed, the usual case in studying catchment
runoff response is to have only a single rain gage and stream gage available for
data analysis purposes; and oftentimes, neither gage is within the study
catchment. As a result, the rainfall distribution over the catchment remains
unknown; hence, the problem’s boundary conditions must be approximated as
part of the problem solution. The fact that the uncertainty in the effective
rainfall distribution over the catchment has a major impact on the success of
any hydrologic model’s performance and accuracy (e.g., Loague and Freeze,
1985; Schilling and Fuchs, 1986) indicates that the underlying assumption used
to specify effective rainfall over the catchment must necessarily be a major
factor in the development, calibration, and applieation, of any hydrologic
model.

Some measured magnitudes of the spatial distribution of rainfall rates
versus distance obtained from Illinois warm-season storms are given by Huff
(1970), see also Table 1.

By coupling to the precipitation variation the variation in loss rates due to
nonhomogeneity and other factors, the resulting variation in effective rainfall
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TABLE

Average variation of point rainfall rates with distance (from Huff, 1970)

Starting point Average difference (% for given distance mi)
rate {in b1

1 2 4 3 B 10
0.1 64 T4 81 87 90 93
0.2 61 B9 8 82 85 87
0.0 56 63 71 75 77 79
1 52 a8 85 it T2 4
2.0 44 Ad 6 64 67 68
80 AL 49 BS 58 60 82

rates versus distance over the catchment motivates the assumption that the
effective rainfall distribution over the catchment is a random variable with
respect to both space and time.

The Schilling and Fuchs (1986) study provides a good test case in the
investigation as to the major sources of surface runoff modeling uncertainty.
They write that “errors in simulation occur for a number of reasons, among
them: (1) the input data, congisting of rainfall and antecedent conditions vary
throughout the watershed and cannot be precisely measured; (2) the physical
laws of fluid motion are simplified: and (3} model parameter estimates may be
in error”. From their detailed sensitivity study of a state-of-the-art surface
runoff model, they concluded that for a distributed model with correct
parameters, modeling aceuracy is not sericusly affected by: (1) simplifying the
surface flow model if there are many subwatersheds; (2) simplifying the loss
rate model with a correct overall runoff coefficient; and (3) using a simplified
routing scheme such as the diffusion or storage routing approaches” (e.g.,
Muskingum routing),

This information is useful in developing a stachastic model to generate
uncertainty distributions to be coupled with surface runoff predictions.

In this paper, the uncertainty problem is addressed hy providing a methodol-
ogy which can be incorporated into almost all surface runoff models. The
methodology is based upon the standard theory of stochastic integral equations
which has been successfully applied to several problems in the life sciences and
chemical engineering {e.g., Tsokos and Padgett, 1974, provide a thorough
development). The stochastic integral formulation is used {o represent the total
error between a record of measured rainfall-runoff data and the model
estimates, and provides an answer to the question: “based upon the historic
rainfall-runoff data record and the model’s accuracy in estimating the
measured runoff, what is the distribution of probable values of the subject
criterion variable given a hypothetical rainfall event?”

Using the stochastic integral formulation, two important problems
involving rainfall-runoff modeling predictions are addressed; (1) the distri-
bution of eriterion variable probable values given a hypothetical rainfall
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event; and (2) the T-year return frequency distribution of a criterion variable
given a rainfall-runoff record, and the development of a T-year design storm
algorithm for the rainfall--runoff model.

STOCHASTIC FORMULATION OF RUNOFF ESTIMATES

Let M be a surface runoff model whieh transforms rainfall data for some
storm event, i, noted by P!(+), into runoff data, M*(+), by:

M:P(-) » M) 1)

The operator M may include loss rate and flow routing parameters, memory of
prior storm event effects, and other factors. It is assumed that M is a surface
runoff modetl of complexity comparable to that utilized in the surface runoff
model error analysis of Schilling and Fuchs (1986).

Consider the case of having only one rain gage and one stream gage for data
purposes, and let P'(-) be the rainfall measured for storm event i, and @:(*) be
the runoff measured at the stream gage. The problem being studied in this
paper 1s the prediction of runoff quantities at the stream gage site, using the
surface runoif model, M.

Various error (or uncertainty) terms are now defined such that for arbitrary
storm event i

@iy = M'() + EJC) + Ey() + E/(%) (2
where: EX{+) is the modeling error due to inaccurate approximations of the
physical processes (spatially and temporally); Ej(-) is the error in data
measurements of Pf(-Yand Q;(- } (which is assumed hereafter to be of negligible
gignificance in the analysis); E/(+) is the remaining “inexplicable” error, such
a& due to the unknown variation of effective rainfall (.e., rainfall less losses;
rainfall excess) over the catchment, among other factors. The case study
involving the highly detailed, fully dynamic, link-node model of Schilling and
Fuchs (1986) indicates that E(-) is the dominant souree of uncertainty in eqn.
(2). '
Let E*(-) be defined to equal the total error:

EH) = EX) + Ei() + EXN) (3)
where E‘(-) is closely related to E/(-) due to the given assumptions. Because

Ei(-) depends on the model M used in egn. (1), then eqns. (2) and (3) are
combined as:

Qs () = M'(:) + Ey(:) (4)
where E(-) is a conditional notation for E*(-), given model type M.

The term, Ei(-), is a realization of a stochastic process when M is used on
prediction, That is, for a future storm event D, the EJZ(+) is not known

precisely, but rather iz a realization of a stochastic process distributed as
[E5(*)] where:
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Qi) = MPC) + {EFCH (5}

In eqn. (5), [@&(-)] and [E(+}] are the stochastic processes of possible rumoff
and total modeling errov, respectively, asgociated with model M, for storm
event D. Hence in prediction, the model output of egn. (5) is not a single
outeome, but instead 18 & stochastic distribution of outcomes, distributed as
[@Z(*)]. Should .« be some functional operator on the possible outcome (e.g.,
detention basin velume; peak flow rate; median flow velocity, etc.) of storm
event D), then the possible outcome of o for storm event I} iz distributed as
[A 7] where:

[Ay] = 197 () (6

YTOCHASTIC INTEGRAL EQUATION METHOD (SIEM)

As with any hydrologic model, the need for rainfall-runoff data is of
paramount importance, and the data is seldom available in sufficient quantity.
The distribution, [EF(+}], must then be estimated by using the available set of
realizations of the individual stochastic process:

B} = Q) — M) i = 1,2, .4 (1)
where { E4(-)] is the set of EL(-) outcomes. Assuming elements in {¥;,(-)} to be
dependent wpon some measure of @, {-), one may partition { £;(-)} into classes
of storms such as {mild, major, flood}, or equivalent, should ample storm data
be available to deveiop significant distributions for the resulting subclasses.
For simplifying development purposes, [£57 (! will be based on the entire set
[EL(+) with the underlying assumption that all storms are of “equivalent”
error. That is, at this point of cur analysis it 18 assumed that the selected
rainfall-runoff model performs as well for major storms as it does for minor
storins (this assumpfion is not valid for all rainfall-runoff models).

The second assumption involved is to assume each E§(-) is closely related
to some function of precipitation, F'(+) = F{P'(-)], where F is an operator
which includes parameters, memory of antecedent vainfall, and other factors.
Agsuming that E4(f,) depends only on the values of F'(+} for time ¢ < f,, then
Ef(+) is expressed as a causal linear filter {for only mild conditions imposed on
Fi(-], given by the stochastic integral equation (see Tsokos and Padget, 1974),
the uncertainty is focused to F*(-) realizations by:

t

i) = [ F - 9 =i ds (®)
=1
where =i(+) is the transfer function between Ei{-} and F'(:). Other
convenient candidates to be used instead of Fi(+), are the rainfall, P(), and
the model itself, M(:).
Given a significant set of storm data, an underlying distribution [=4(-)] of

the {2%(-)} may be identified, or the {=}(-)} may be used directly as in the
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case of having a discrete distribution of equally-likely realizations. Using
i = »(-)} as notation for both cases of distributions stated above, the predicted
response from M for future storm event D is:

[RECH = MP() + [BF() @
Combining eqns, (8) and (9), the SYEM results in:

QU] = M2 + | FP¢ - o) [2y(o)] ds ao

o
=0

and for the functional operator .7, on the possible set of outcomes {e.g.,
detention basin volume, peak flow rate, pipe size, etc.) on storm event I, eqn.
(6) iz vrewritten as:

ARY = WL = ﬁ(M”(_xJ + JF”(: ~ )2 hi5)] ds) (11)
#=10 4

Confidence intervals for the 4] can now be directly obtained from the distri-
bution [A7]. It is noted that [A%] is necessarily a random variable distribution
which depends on the model structure, M. In arder to demonstrate the utility
of the SIEM, and also further develop the mathematical underpinnings of the
methodology as applied to rainfall-runoff modeling, a suite of three appli-
cations is presented. The applications not only illustrate the approach to
including modeling error in eriterion variable predictions, but also introduce
additional mathematical analysis which is used in subsequent SIEM simplifi-
cations.

Application 1

Surface runoff model description and duata forms

A link-node model of a 3 mi” catchment was developed analogous to the test
catchment used by Schilling and Fuchs (1986). The link-node model utilized 81
equally sized subareas, with parameters defined for both the loss rates and open
channel flow hydraulics. The diffusion (i.e., zero inertia) routing algorithm of
Akan and Yen (1981) was used for the unsteady flow routing (this procedure
was also noted as adequate in the subject Schilling and Puchs (1986) study). For
loss rates, a Horton model was used in each subarea, R;, for the previous area
fraction by

B0 = fos 6 o] 12)
i

where f; is an initial loss rate; £, is the wltimate loss rate; & is a timing

coefficient; and j refers to subarea B,. Values for f, varied between 0.8-1.2in h ',

f., varied between 0.4 and 0.91n h~'; and k was chosen such that £(#) is within

5% off,, at storm time of 30 min. For impervious areas, the infiltration rate was
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assumed to be zero. An initial abstraction, la, of 0.1 and 0.25 in was used for
impervious and pervious areas, respectively. The Ia returns to its maxtmum
value over a duration of 24 h of no rainfall. All subareas are assumed to be 60%
pervious.

For the channel links, impervious rectangular channels were assumed
throughout the link-node model with channel slopes varying between 0.0040
and 0.0080 (see Hromadka and Yen, 1986}, and Manning’s friction factors
between 0.015 and 0,022. The entire channel system drains to the single stream
gage, where critical depth is assumed as the hydraulic control.

Runoff from each subarea was developed by convoluting the resulting
effective rainfall for each subarea with the standard SCS unit hydrograph.
Subarea tire-to-peak values were specified between 30 and 45 min. (Again, the
Schilling and Fuchs study indicated that a surface runoff model of this level of
detail is relatively insensitive to the subarea runcff modeling technigue, and
the uncertainty in runoff model predictions due to these type of errors is small
in comparison to other factors.)

The “true” runoff hydrograph for storm event ¢ is defined to be given by the
above hink-node model where precipitation data ig supplied on a subarea-hy-
subarea basis, P/(-). That is, rainfall data are assumed available on a subarea
basis. The resulting runoff at the stream gage is defined to be the "true” runoff,
Q;(-). Thus, the generation of Qg"(-) data is analogous to the Schilling and
Fuchs (1986) study where rainfall data is supplied on a subarea-by-subarea
basis.

For the model M, the abave link-node model [used to develop the “true”
ranoff, ()] is again utilized, but with rainfall data, P*(-), supplied only at the
midpoint of the catchment; i.e., not on a subarea basis. That is, P*(*) is the
rainfall data “made available’ for use in model M to develop the Mi(+) for each
storm event, i. It is noted that a rain gage centered with a square-shaped, 3 mi®
catchment provides much better rainfall data resolution than available for
most studies.

For the development of @,{+), subarea rainfalls, P/(-), are all assumed to be
similar in shape to Pi(+), but with random fluctuations in uniform magnitude
and timing:

Pty = 2P~ € (18)

where }.j is a positive constant for subarea j and storm i; and & is a constant
which provides for a simple translation in time. Both A and & vary between
subareas, and algo vary for each storm i. For each subares, the )j and 8} are
assumed to be distributed as [4;] and [¢;] where:

4] = Ulo4d, 1.6d) (14)
18) = Ul-0.2d, + 0.2d) {15)

where eqns. (14} and (15), U is the uniform distribution; 4 1s distance in miles
from the catchment centroid: and in egn. (15}, +0.2 are in units of hmi~'.
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Choices for the constants used in eqn. (14) are motivated by the work of Huff
(1970, Rainfall data for P(+) were obtained by using 250 storm patierns
collected from three rain gage stations located in Los Angeles, California. (The
choice of the underlying probability density functions vsed in egns. (14) and
(15) are for convenience only. Other density functions may be selected at this
point of the analysis, and further research is needed as to the best choice used
in the model) _

In summary, the “true’” runoff, &.(-}, is developed by using the 81-subarea
yink-node model with subsrea rainfall defined by use of egns. {14) and (13}
coupled with P'(-). The rainfall-runoff model runoff, Mi(-), is developed by
using the 81-subarea Jink-node model, but with rainfall in each subarea defined
by just P'(+). For this ideal test case, the terms E/(+) and Ei(+) are negligible
in eqn. (3), and E;(-) = Ei(-)

Development of the distribution, {2 ,(+}

Each of the considered 250 storms were run in time sequence by simply
jeining the confinuous records from three rain gages located in Los Angeles,
California. For each storm event, i, a new set of parameters {8} was
generated forj = 1,2, .., B0 and the §F(-) generated using the link-node model,
Similarly, M*(*) is developed using the link-node model with P*(-) defined on
each subarea. To develop the £4,(-) realizations, the ervor, £,(-), was assumed
1o be correlated to the effective rainfall estimate, #'(-), (i.e., a base input),
where F'(*), is defined to be the arvea-averaged effective rainfall rate for the
total catchment. For this example, F'({) = P'(#} — ft), where f() is a mean loss
rate function defined by use of & Horton equation with f, = 1.0f. = 0.65, and
an initial abstraction of 0.19in.

The set {E;;(-}} was determined directly from eqn. (7), and the realization
x4(+) is determined from eqn. (8) by a least squares matrix solution. Thus for
the 250 storm events, 250 realizations of {xp(-), i = 1, 2, ..., 250} were
developed. This set of realizations forms but a small sample of the cutcomes
from the stochastic process and is therefore subject to the usual sampling ervor
difficulties. However, {z=§(*)} can still be used to make inferences regarding
the uncertainty in predictions using the model M.

Functional operator distributions

When predicting the runoff response from the catchment to a hypothetieal
or design storm event, I, use of the model M provides the single outcome,
M?(-}. When coupling the uncertainty information contained in {,(-)} the
predicted outcome 1s the stochastic process given by eqn. (5}. Because of our
limited data, | = ,,( -)} is assumed to be uniformly distributed over { j(-),i = 1,
2, ..., 250}, and therefore [@7 (- }] is approximately distributed (=) by the SIEM
model (again, the choice of the uniform distribution is made for convenience
only and due to limited data for the catchment under study):
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[Q(- )=y MP(-) + { _[FDU - s)=pdds, i = 1,2, 250} (16)
-0

When given the functional operator, o, then the distribution of outcomes,
[A4], is approximately distributed as the frequency distribution given by:

[Af) ~* {%’ (MP(t) + [ FPQ - sy =ids)dshi = 1,2 ., 250} amn

g=0

For example, a storm of key mterest in flood controt planning is the 100-yr
return frequency 24-h design storm described in HEC TD-15 of the U.S, Army
Corpe of Engineers (1982). Using this 24-h storm pattern and the function F to
define F7(), the distribution of runoff model outcomes is approximately
developed in egn. (16). For a particular operator, o, eqn. (17) ean be used to
develop the predicted outcome distribution for this design input, F?(«).

For the test 3mi’ watershed, the peak flow rate distribution is shown in Fig.
la. The frequency distribution of Fig, 1a is obtained hy use of eqn, (17) where
the operator o is simply the identification of the peak flow rate for each
element in {|@5(), i = 1, 2, ..., 260}. That is, a search for max @Z{-) for each
sampled realization estimated from eqn. {16},

Anocther frequently occurring problem iz the sizing of the detention basgin
capacity {(volume} with a fixed discharge-rating curve at the basin outlet. For
a detention basin with a pipe outlet, the operator & is now the maximum
volume demand on the basin for each element in {Q7(*), i = 1, 2, ..., 250}. A
typical frequency distribution of detention basin volumes needed for FP{+) is
shown in Fig. 1b.

From Figs. 1a and 1b, confidence interval estimates can be developed for
flood protection given the specified design storm.
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Fig. 1. ¥requency distribution of (a) peak flow rates and (b) detention basin maximum volumes for
Application 1. Dashed line is true digtribution, eqn. {18).
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Sensitivity of functional operator distributions to sampling error

The previous application problem utilized a set of 250 storm events with
random fluctuations of the i and # defined on a storm-by-storm basis.
Assuming that the distributions of [ ;] and [8;] are correct in equs. (14) and (15),
then the “true’” distribution of any functional operator, </, operating on
[Q2(+)] is obtained by generating [A%] directly from M”(+). That is, generate
the distribution of possible outcomes of #/[M? ()] according the set of distribu-
tions, {{4], 16;), j = 1, 2, ..., 80}. The “true” distribution [A”] is given by (for
the “true” catchment response given by the model structure, M):

[AP] = &[M@P"¢), (AL 011 = 1,2, .., 80})] (18)

It is noted that for mountainous regions, or areas where storm tracks and
patterns are known, the random variables used in eqn.(18) may not be uniform,
and may include a deterministic component that can be modeled by expected
values.

For A being the criterion variable of peak flow rate, or the maximum
detention basin volume associated with storm event P7(+), the corresponding
disteibutions are shown ag dashed lines on Figs. 1a and b. From the figures it
ie seen that for this example problem (which is similar to the test considered in
Schilling and Fuchs (1986)), use of eqn. (11) to generate [A4] is a reasonable
approximation of the true distribution, [A”]. obtained in eqn. (18).

Application 2

Example development of totgl error distributions

The previous concepts are now utilized to directly develop the total error
distributions, [ E,.(+)], for a set of three idealized catchment responses. Besides
providing a set of applications, additional notation and concepts are
introduced, leading to the introduction of storm classes. It is stressed that the
main objective in the following analysis is to develop the background
mathematics identifying the source of uncertainty in runoff predictions, and
how the uncertainty is propagated through the considered model structures.

Let Fbe a functional which operates on rainfall data from a single rain gage,
Pi(-), to produce a base input for storm i, F'(+), by:

FPi() » F() (19)

F may include parameters, memory, and other effects. For example, F may be
the operator utilized in a simple phi-index loss model, or F' may be the total
integration process utilized in the continuous simulation approach to soil
moisture accounting.

The catchment R is subdivided into m homogeneous subareas, & = UR,,
(see Fig. 2; in which m = 9), such that in each R;, the effective rainfali, ;(-),
is assumed given by:
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Fig. 2. Bxample problem watershed schomatic {9 subareag).

6D = 40+ X)) -

where J; is a simple propartion factor; and where X}is a random variahle which
is constant for storm event i (i.e., the unknown variability in the actual
effective rainfall over R is lumped into the single random variable, X). The
parameter A; is defined for suha}rea R; and represents the relative runoff
response of K; in comparison ta F(-), and is a constant for all storms, whereas
X; is a sample of the random variable distributed as [X:1, where the set XL
J = 12,.,m} may be mutually dependent. (Again, further partitioning of the
random variables may be necessary such ag due to different storm track
patterns.)

The subarea runoff is;

f H
gty = [ej—(t ~ 8) pisyds = [ A4+ X)) F't —~ 8) ¢i(s) ds (21)
=10 £=0
where ¢{(-) is analogous to the subarea unit hydrograph (TH) for storm ;.

At this stage of development, unsteady flow routing along channel links (see
Fig. 2) is assumed to be pure translation, (e.g. see Sarikelle et al., 1978). Thus
each channel link, L,, bas the constant translation time, 7. Hence from Fig.
2, the total runoff response at. the stream gage for storm event i, @.(-), is the
sum of subarea runoffs, each translated by the sum of associated link travel
times:
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QL = _Zqi(i - 1) (22)

where ¢i(t - 7;) 1s defined to be zero for negative arguments; and 7; 18 the sum
of link travel times (e.g., 7, = T, + T, + Ty; 1, = T+ 75 1q = 0.

Then for the above particular assumptions, the stochastic integral equation
is developed as:

g ¢
Qty = 3 j/zj{l + XD F - 8) s - 1) ds
i=l 2y
- [P Li;.j(l + XY Pits - *fd,-)]ds @23)

&0

In a final form, the runoff response for the given assumptions is:
: v ‘ g
Q@ = ( Fig — 8) Y ALi(s — 7,)ds + j Fi(t - 8y Y 4X}dis ~ 1) ds
22 S s=0 i=1

(24)

In the above equations, the {Xj} are unknown to the modeler for any storm
event {. However, the work of Schilling and Fuchs (1986) indicates that the
variability lumped into these X/ is significant and therefore should not be
ignored by arbitrarily setting all the Xf = 0. Thus, {Xj} are but samples of the
individual subarea distributions {[X],J = L,2,...,,m} where m is the total number
of subareas. In design practice, rainfall-runoff models are typically used in an
expected value sense which ignores the variahilities in the [X:]. Consequently,
the rainfall-runoff model estimate for storm event i is the single outcome,
M*(+), where:

:

M@ = j Fit - s) 2 A dils — 1,)ds (25)

a={

where each [X] = 0in egn. (24).

Then, @,(*) = Mi(-) + Ei(-) where:

W® = [ F@ - 9 2l ds (26)
s-0
where =3(s) follows directly from eqns. (24) and {25).

Should the variability in c;bj(-) be minor (with respect to i) such #(y = ()
for all i (see Schilling and Fuchs, 1986), then the above equations can be further
simplified as:

M@ = [ Fi(t - ) nls) ds 27

a=10



354

where y(s) = Z} ,4;¢;,(s — ;). Additionally, the distribution of the stochastic
process [~ (-} is readily determined for this simple example by:

4
[2u()] = ) [X)hé0s — 1) (28)
i=1

where [=,(°)] is directly correlated tu the nine random variables, X
i=12..9 It is again noted that the random wvariables, X;, may be all
mutually dependent,

In this example problem, the distribution of {2 ()} 1s directly evaluated due
to the particular simplifying assumptions and the knowledge of {IX]}. In
practice, the several distributions {{X;]} are unknown to the modeler, but the
summed net effect of the {[X ]} can be estimated by the development of [ 22 (+)]
from the several samples, E ().

For the important problem of prediction, the SIEM provides an estimate of
runoff as the distribution {§(-)] where {@%(°)] = MP(*) + [EX(")], and M
refers to the particular model type used.

For this example problem, the SIEM formulation is:

(@01 = [F¢ - 9 nie) ds + | FPG - =0 s (29)
s=0 =

where the error distribution, |E5(+)), is assumed to be correlated to the base
input, F?(-), as provided in egns. (26) and (28).

Multilinear routing and storm classes

The above example problem is now extended to include the additional
agsumption that the channel link travel times are strongly correlated to some
set of characteristic descriptions of the hydrograph being routed, such as some
weighted mean flow rate of the associated hydrograph. For example, the widely
used Convex Routing technigue (Mockus, 18972) often utilized the 85-petcentile
of all flows in excess of one-half of the peak flow rate as a statistic used to
estimate the routing parameters. But by the previous example problem
definition of ¢/(t), all ranoff hydrographs in the link-node channel system
would be highly correlated to an equivalent weighting of the base input, F* (-
Henee, storm classes, [£.], of “equivalent” F'{+) realizations could be defined
where all elements of | £, | have the same characteristic parameter set, ¥[F(+)]:
L] = {(FICWEF(¢)N = 2} (30
and for all #*(-} ¢[{.], each representive chanmnel link travel time, 7}, is
wentical, that is, 7, = 7, for all F/(-) ¢[£.]. In the above definition of storm
class, z is a characteristic parameter get in vector form.

This extension of the translation routing algorithin to a multilinear formu-

lation (involving a set of link trauslation times) modifies the previous runoff
equations to be:
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M) = | Pl - 9T hols ~ s = [ Fi@ — shn(o) dss F(HeE.]

s=D

(31)
where:
#.(1) = sz‘f)j(s - 17)
g
and:
) = [ 924000 dss FOXL (32

a=0
The structure of the new set of equations motivates an obvious extension of the
definition of the subarea UH, the subarea 4; proportion factor, and the subarea
random variable distribution [X/], to all be also defined on the storm class basis
of [£.]. Thus in final form:
i 3

M® = | Ft-9L566-Dds = [ Fe- o ds

-0 £=0

Fi(-)e&.] (33)
[=u, N = Y IXFIESG — 1) FICefE ] (34)

i

And in prediction, the SIEM model is:
[Qu] = M°®) + [EGOL FP()e&p] (35)
where;
(BRO1 = [ 7~ 9) [24,00) ds; FPCxel,) (36)

Multilinear hydrologic routing

The cited Schilling and Fuchs study concluded that in their model structure,
a fully dynamic unsteady flow routing algorithm employed for all the channel
links could be simplified to a hydrologic-type storage routing model without a
significant loss of accuracy in overall modeling accuracy (e.g., Muskingum).

The Muskingum and Convex hydrologic storage routing methods are both
widely used techniques. For each channel link, either hydrologic method can
be calibrated should flow data be available (e.g., Hromadka et al., 1987). It is
tacitly assumed in our analysis/development that the parameters used in either
of the considered storage routing methods can be locally calibrated for each
link used in the runoff model {(although only one stream gage and one rain gage
are available to the modeler in our example problem).
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Because 0 < C < 1, (1 — ()" decreases in significance as the exponent n
increases, and a finite number of terms may be adequate in eqn. (42} for all
runoff hydrographs with the equivalent routing parameter, C.

Thus for all runoff hydrographs with similar C values, eqn. (37) reduces to
a convolution method with a constant transfer function.

The Muskingum technique of eqn. (40) is seen to be similarly rewritten as:

Or_ar = (Ry) Iriar + (k) + koky) Ir + ky(k, + Roky) In_gr + Bk + koky)
Ip qar + RS(Ry + Roky) Ip gy 4 ... (43)

and, for all runoff hydrographs with similar routing parameters, the
Muskingham techhique is again a convolution method with a constant transfer
function. Additionally, the coefficients’ influence decreases with i Increasing
time gspan to time 7.

From the above, either of the considered hydrologic routing methods are
actually linear analogs when given constant routing parameters, In the use of
storm classes of the base input, F*(-), noted by [E£], all the links in M are
assigned the identical set of routing parameters (on a link bagis).

Once again, the eqns. (33)-(36) apply except that the previous multilinear
translation-routing model is now replaced by either of the above hydrologic
storage routing methods with constant routing parameters on a storm class
basis (i.e., a multilinear hydrologic flow routing model).

Example

An 18-subarea catchment model is developed with channel links, shown
schematically in Fig. 3. Also shown in the figure are subarea area, runoff
proportion, 4, and the time-to-peak 7T, (h) used with the standard SCS unit
hydrograph (all of this data is assumed to apply for a specific storm class}. The
SCS unit hydrograph and a runoff coefficient are specified for each subarea.
Convex channel routing is used with constant C-values listed in Fig. 3. Hence,
only one storm class is being defined for all base inputs.

To demonstrate the model's linearity, one rainfall event P'(+), and the
link-node model-produced O'(+) was used to determine the equivalent unit
hydrograph (Fig. 4) and overall runoff coefficient (0.75). Using this new UH
model data, the single UH model equates to the 18- subarea link—node model, for
all storms, Pi(+).

A multilinear surface runoff model

Application 2 demonstrated the direct development of the total error distri-
bution, [Ey(+)], for a set of three particular model structures. In this section,
the results of application 2 are generalized to include a wide range of possibili-
ties.

As before, let F'be a functional defined on the (single) rain gage data, F:Pi(- )
— F'(-). The catchment R is subdivided into m subareas, (R, j =12 ...,m}
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A simple hydrologic storage routing model in the Convex method which
results (in a hydrologic sense) in both translation and peak flow attenuation of
the runoff hydrograph due to channel storage effects. The governing relation-
ship used in this approach is (Hromadka et al., 1987)

Op_gr = (1 - Q0 + CIy 37

where: [; = hydrograph inflow at time T, G, = channel ontflow at time T;
Or., 4+ = channel outflow at time T + d7; and C = a routing coefficient (where
( 1z between 0 and 1). Rearranging eqn. (37) gives the explicit statement:

Opear = Op + CUp — Op) (38)
and golving for C yields:
C = (Opgr — Oy - Op) (39)

The Muskingum channel routing method is an alternative to the Convex
routing method. It is somewhat more flexible than the Convex method since the
value of Op, . depends on I, 47, I, and ., and not just fr and Op. As an
alternative to egn. (37), the Muskingum method uses the following equation for
routing;

Opar = Glpoar + Clz + GO (40}
where the coefficients are given by:

Cy, = — (Kx — 05dTYK — Kx + 0547) {41a)
C, = (Kx + 0.5dTy(K - Kx + 0.5dT) (41b)
G = (K- Kx - 0.6dT)/(K ~ Kx + 0.5d7T) (41c)

The sum of the three coefficients €, €, and C, equals 1.0. In eqns. (40) aad (41},
& and x are the routing parameters. While X and x can be estimated from
hydrographs measured at the upstream and downstream channel sections, the
value of K is taken to be equal to the reach travel time, Methods of assigning
a value of 1 are less respected. Some suggest that a value for x of 0.2 is
reasonahle, while others suggest 0.4; hence, another random variable is
involved. As the value of x decreases from the upper limit of 0.5, the peak of the
downstream hydrograph becomes more attenuated. To ensure non-negative
ordinates for Oy, ;7 the following limits should be respected:

x < dTf3K < (1 — x); x < 0.5 (41)

The hydrologic storage routing methods considered in the above can be
formulated inte a convelution technique, where the transfer functions ave
parameter dependent.

The Convex technique transfer funetions are derived from eqn.(37) as:

(}1-__5?- = CIT + (1 - C) CIT—dT + (1 - C)Z CIT—:&({T + .. (42)

where C is the roufing parameter.
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linked together by unsteady flow routing maodels. For simplicity, R is assumed
to be free-draining, without dams nor detention basins. The entire link -node
model drains freely to the single stream gage where the data, Q.(-), is
measured. The problem is to predict the runoff response at the stream gage for
a hypothetical storm event, P”(-), defined at the single available rain gage.
Baseflow considerations are assumed to be minov.

Each subarea’s effective rainfail (rainfall less losses), €/(*), is now defined to
be the sum of proportions of F*(-)-translates by:

e = ?-jk(l + XpF - 8 Fele] (44)

where Xj, and 0, are samples of the random variables distributed as [Xi] end
[0;:], respectively. In the above equation and all equations that follow. it is
assumed that a storm class system is defined, |£, ], such that for Fi{g]£.] all
parameters and probabilistic distributions are uniquely defined, and there is no
loss in understanding by omitting the additional notation needed to indicate
the storm class (see Application 2).

The subarea runoff is:

i
git) = I Yan 4+ Xp) Fi@ - 6, ~ 8) ils)ds;  Fr(-)e[E,] {45)
%
-0
or & simpler form:
t
gt = _[ Fi(t - s) ; Al + X)) di(s — B)ds;  FU)eE] (46)
s=0 i
It is assumed that the unsteady flow channel routing effects are related to
the magnitude of runoff in each channel link, which is additionally correlated
to the magnitude of the base input realization, Fi(-). On a storm class basis,

each channel link is assumed to respond linearly in that {e.g., Doyle et al,,
1983):

aimn = gaJ{(z — o) (47)

where (J{(t) and Ij(f) are the outflow and inflow hydrographs for link 1, and
storm event i; and {a;} and {«;} are constants which are defined on a storm class
basis which is also used for the bage input, F¥(-). Thus, the channel link flow
routing algorithm is multilinear with routing parameters defined according to
the storm class, [£,] (see Becker and Kundzewicz, 1987, for an analogy based
on multilinear approximation of nonlinear routing).

Should the above outflow hydrograph, O,(2), now be routed through another
link (number 2), then L(f) = O,(#) and from the above:

7z
M = Y L — 2)
=1
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input is used.) Consequently, the above multilinear surface runoff modet
structure represents a highly detailed and distributed parameter model of the
surface runoff process which not only can be used to represent the catchment
runoff regponse itself, but alsoc can be used to approximate the response of most
other hydrologic modeling approaches (e.g., Schilling and Fuchs, 1986). But of
major concern is the effect on the runoff prediction (at the stream gage) from
the model 34, due to the randomness exhibited by the mutually dependent set
of random variables, {X;, 8,}. Hence for any operator, «, on the predicted
runoff response of eqn. (52), the outcome for & for storm event PP(:) is the
distribution [A%], where for all model parameters defined:

[Ay] = QTN = (X, [6:1) (53)

The multilinear surface runoff model will be used in the following analysis of
uncertainty. (It is noted that although only the simple multilinear model of
eqn.(52) is earried forward, use of other rainfall-runoff models in the SIEM
formulation will result in analogous results in developing the necessary
stochastic distributions.)

Application 3

Application to rainfall-runoff daia
The multilinear surface runoff model provides a convenient approximation
of other surface runoff models responses. From eqn.(52), the STEM gives:

t

Q@) = | F'¢ - leds;  FCxle] (54)

s=10

where now [n(s)] is the distribution of the stochastic process representing the
random variations from the set of mutually dependent random variables, { X,
8,1}, defined on a storm class basis. The parameters utilized in the [#(-)] used in
eqn. (54) are P = [ag,, %, A & (-)}. If P is defined correctly (for the
associated storm class), the mean of the random variables are E[X,] = 0 and
E[8,] = 8, otherwise, errors in the estimates of P are transferred to the
expected value of the random variables X, and 0. Then in prediction:

EQ@)] = j F2(t — 9E[)ds;  FO()efep) (55)
z=0

which is a multilinear version of the classic unit hydrograph method.
Then the model M structure of eqn. {51) is given by:

M) = HQJ()] (56)
with the total ercor distribution given by:
[ECCH = [Q7C) — EIQ()] (87)

where all equations are defined on a storm class bagis. Given sufficient rain-
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T

= kzlakzkglak]Il(t - ‘xkl - ‘xks) (48)

For L links, each with theilr own respective stream gage routing data, the
above linear ronting technique results in the outflow hydrograph for link
number L, 0; (), being given by:

iy, A Py )
OL(I) = Z Gy, Z oy v - E T, Z U,
-1 Ry 1 =1 K1
Tt = Sy Gyt ) 49)

Using vector notation, the above Oy (f) is written as:

g = % G (B — @) 50y
<

For subarea R;, the runoff hydrograph for storm i, ¢i{+), flows through L,

links before arriving at the stream gage and contributing to the total modeled

runoff hydrograph, M!(+). All of the parameters a},, and u,, are constants on

a storm class basis. Consequently from the linearity of the routing techmigne,

the m-subarea link node model is given by the sum of the m, ¢i(+) contributions:

M@ = 3 Y daugi ~ aw,) {61)

TRt >N

In final form, the predicted runoff response for storm event D is the SIEM
formulation:

il

@) - | 6 o) ( 53 de, T4 + (%) 52)

=14

A
dils = 10l = ) JAs FPC)eEn]
Given F'(+)e[¢.], all subarea runoff parameters {4, ¢;(+)} and distributions
{1X,], 18,,)} are unmiquely defined for j = 1, 2, ., ., m; and all link routing
parameters {a,, «;} are also uniquely defined. Then the entire link-node model
is Hnear on a storm class basis and once more egns. (33)}-{36) apply without
modification,

This last result is significant because except for the few reported fully
dynamie routing surface runoff models, all hydrologic models in use today
ignore backwater effects in the channel routing algorithms and in most cases
can be adequately approximated by the multilinear routing algorithm
presented above (e.g., Becker and Kundzewicz, 1987), Additionally, all surface
runoff models utilize some average effective rainfall estimation algorithm, F,
which provides the base unit, F'(+), for storm event i, which can subsequently
be used to approximate the subarea effective rainfall on a storm class basis.
{When the catchment is highly nonhomogeneous, then more than one base
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of central Log Angeles, California, Table 2 summarizes the considered basin
characteristics. Table 3 lists the available rain gage sites and the storm dates
of events used in the analysis. All storms considered in Table 3 are assumed to
be elements of the same storm class considered important for flood control.

TABLE 3s

Precipitation gauges used in Los Angeles County flood reconstitutions

Streamgauge Storm LACFCD
location reconstitution raingauge No *
Alhambra Wash near Feb 78 191, 303, 1114R
Klingerman Street Mar 78 191, 303, 1114

Feb 80 191B, 235, 280C, 1014
Compton Creek near Feh 78 116, 291
Greenleaf Drive Mar 78 1186, 201

Feh 80 116, 291, 716
Limelkiln Creek above Feb 78 ATA, 146
Aliso Creek Feb 80 258, 446
San Jose Creck Channel Feb 78 92, 1078, 1088X
above Workman Mill Rd. Feb 80 96CE, 347K, 1088
Sepulveda Dam {inflow) Feb 78 T4, 202DE, 448, 735H

Mar 78 5TA, 435, 762

Feb 80 292, 446, 735
Verdugo Wash at Estelle Ave. Feb 78 280C, 373C, 498, 758
No.* Station name Lat. Long. Elev. Type
LO5TA Camp Hi Hill {OPIDS) 34-15-18 118-05-41 4240 SR
Lo0g2 Claremont-—Pomona College 34-05-48 117-42-833 1185 SR
LO0SECE Puddingstone Dam 34-05-31 117-48-24 1030 SR
Lol1g Inglewood Fire Station 33-47-53 118-21-22 158 SR
Lo191(B) Los Angeles Alcazar 34-03-46 118-11-54 400 SR
L0235 Henninger Flats 43-11-38 118-05-17 2550 SR
L0259 Chatsworth-Twin Lakes 34-16-43 118-35-41 1275 SR
1.0280C Sacred Heart Academy 34-10-54 118-11-08 1600 R
Liz2o1 Los Angeles-96th & Central 33-56-56 118-15-17 121 R
Lo292(DE) Encino Reservoir 34-08-56 118-30-57 1075 SR
1.0303 Pasadena—Cal Tech 34-08-14 118-07-25 300 SR
LO347E Baldwin Park-Exp. Slation 34-05-56 117-57-40 R4 SR
L0373C Briggs Terrace 34-14-17 115-13-27 2200 SR
L0435 Monte Nido 34-04-41 118-41-35 600 SE
L0446 Aliso Canyon—Oat Canyon 34-18-53 118-33-25 2367 SR
L0488 Angeles Crest Hwy-Drk Cny Tr 34-15-21 118-11-45 2800 R
L0716 Los Angeles-Ducommun Street 34-03-09 118-14-15 306 SR
Lo735(H) Bell Canyon 34-11-40) 115-39-23 895 R
Lo758 Griffith Park -Lower Spr Cyn 34-08-02 118-17.27 600 R
L7862 Upperstone Canyon 34.07.27 118-2%-16 943 R
L1014 Rio Hondo Spreading 35-59-57 118-06-04 170 SR
L1078 Covina-Griffith 34-04-10 117-50-47 975 SR
L1088(X) La Habra Hgts—Mut Water (o 33-56-55 117-57-51 445 SR
L1114(B} Whittier Narrows Dam 34-01-29 118-06-02 239 SR

8 - standard 8” raingauge (non recording); R = recording raingauge.
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fall-runoff data, the total error distribution can be approximately developed by
use of eqn. (57). Should another surface runoff model structure be used, then
E[QZ(-)] is replaced by the alternative model, and the set of vealizations of
[£2(-)] is obtained from eqn. (57}

In this application, the base input functional F:P(-) — F{+) is specified as:

F Py » 1 p9 (58)

where 4 is a simple ranoff coefficient (e.g., Scully and Bender, 1969; Schilling
and Fuchs, 1986). The stochastic integral equation is:
i
QG = | Pt - sHn'(s) ds (59)
#=0

For this loss function, storin classes of base input gre necessarily just storm
clagses of rainfall withont any subelassification due to prior vainfall and seil
wetnesg. In thig application, storm classes are defined according to the 85-
percentile of the rainfall intensity (2) in excess of one-half of the peak 5-min
mean intensity. Storm classes are then assembled according to the characteris-
tic z-value on 0.5-in increments. (Should another loss funetion be used, such as
a continucus soil-moisture accounting algorithm, then F would be defined as
the resulting effective rainfall.)

Because of the usual sparcity of rainfall-runoff data, several catchments are
considered in order to regionalize the statistical results. For the study location

TARLE 2

Basin characteristies of watersheds used in flood reconstitafions

Drainage L L. 5 Percent impervious
area (mi) (mi) ftmyy —————
{mi*) Total Effective
Las Angeles County watersheds
Alhambra Wash near 15.2 820  4.60 74 60 a2
Kingerman .
Compton Creek near 276 11.0 4.00 11.0 &b 45
Greenleaf Drive
Limelkiln Creek 0.3 7.4 3.6 29401 25 95
above Aliso Creek
San Jose Channal ahove 834 23.0 a.n 80.U 18 18
Workman Mill Road
Sepulveda Dam (inflow) 152.0 19.0 9.0 143.0 3 24
Verdugo Wash at 26.8 11.4 5.70 3100 25 20
Rstelle Ave,
Orange County watersheds
El Modena Irvine Channel 114 G.34 269 52 4D 4
at Myford Road
Santa Ana-Delhi Channel 17.6 871 4.7 16.0 ETH 40
at Irvine Ave.
Wostminster Channei 6.7 5656 L3 13 4D 44

at Beach Blvd.
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TABLE 3b

Precipitation ganges used in Orange County flood reconstitutions

Btreamgauge Storm OUCEMA
location reconstitution raingguge No*
¥l Meodena-Jrvine Channel at Myford Rd. Feb 69 61,121
Santa Ans-Delhi Channel at levine Ave, Mar 79 Jan 30 121, 165

Nov 78 Feb 80

Jan 79 Mar 80

Mar 78 Nov 82
Westminster Channel at Beach Bivd, Dec 74 162, 1854

Mar 78

Feb 80
Ne.*® Station name Lat. Long. Elev, Type
0C-81 Tustin-Irvine Ranch 33-43-46 117-46-58 118 4
0c-121 OCEMA-Santa Ana 33-45-94 117-52-11 180 R
0C-162 Wegtminster 33-45-08 117-58-17 29 SR
(HC-165 Cozta Mega A3-40-05 117-53-35 b6 SR

0C-184 Garden Grove City Hall 34-46.35 117-55-49 121 g

§ = standard 8" raingauge (non recording); R = recording raingauge.

For each storm event and catchment, the rainfall-runoff data are used to
directly develop the {#'(-)}. On a catchment hasis, the several #'(-) are
pointwise averaged together to determine an estimate for Eln(+)] for the
prescribed storm class, Note that for this simple loss functional, the probabilis-
tic effects of prior rainfall are transferred to the »{-) realizations.

Summation graphs of the {#'(*)} indicated that normalizing could be
performed by plotting mass along the y-axis from 0 to 100% of mass; and the
x-axis as time with respect to the parameter “lag” where 100% of lag eguals the
time at 50% of total mass. Plots of normalized #'(-) realizations for Alhambra
Wash for several storms are shown in Fig. 5, and plots of the estimates of E[n(+}
for the several catchments are shown in Fig, 6. (Such normalization techniques
are commonly used to relate unit hydrographs to catchment characteristics;
see Hromadka et al., 1987).

A comparison of Figs, 5 and 6 shows that the variation in E{x(-)] among the
several considered catchments is of a magnitude similar to the variation in the
# () for AThambra Wash alone. Therefore in order to regionalize the total error
distributions, the variations among all the catchment E[y(-)] are assembled
together as one regionalized distribution.

To further define the data, a sealing parameter ¥ is defined by plotting sach
#'(+) realization on Fig. 7 and averaging the upper and lower reading for Y. The
regionalized distribution for the parameter Y is shown in Fig. 8. That is, in the
rescaling of reconstituted unit hydrographs into S-graph form, the variations
between unit hydrographs are seen to be related to the variations in the scaling
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parameters of Y, lag, and mass, Consequently, the randomness in the unit
hydrographs can be represented by these mutually dependent random
variables, With the normalization process, the variations in total mass and the
lag parameter must be also accounted, and were assumed to be normally
distributed. Finally, the random variables of { Y, lag, mass} were assumed to be
independent for the considered storm class to develop [& 5 (-)l. It is noted that
the random variables { Y, lag, mass} are actually mutually dependent and that
in order to preserve this dependency, a large sample size of the = ,,(-) would be
needed.

Based upon the madel M defined by eqns. {56)-(59), a severe storm of March
1, 1983 (which was not used in the development of [x ,,{*)]) is analyzed for
Alhambra Wash and Compton Creek. The distributions [QF(-)] are plotted
along with the recorded stream gage in Figs. 9 and 10. From the figures, the
uncertainty in model predictions of [QP(-)] is significant and should be
inchided when analyzing an operator o on the runoff predictions,
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SURFACE RUNOFF MODEL OPERATOR FREQUENCY DISTRIBUTIONS

In this section, the distribution of the model estimates is considered in order
to evaluate the annual T year values.

From eqgn. (52), the correlation distribution for storm event i, #'(s), includes
all the uncertainty in the effective rainfall distribution over R, as well as the
uncertainty in the several flow routing processes, for the given assumptions
about the catchment’s runoff response. That is, #'(-) is a realization of the
stochastic process, |7{-)], where;

7'(s) = Z] <;> &y, Z Ag(l + X;i)(:ﬁ; (s - 9}& - “2k>j) 60)
I=1 i
for storm event i, which is an element of some storm class [£.], see eqn.(52).
Although use of the [5(*}] realizations combines the uncertainties of both the
effective rainfalls and also the channel routing and other processes, eqn.(60) is
useful in motivating the use of the probabilistic distribution concept in design
and planning studies for all hydrologic models, based on just the magnitude of
the uncertainties in the effective rainfall distribution over R. That is, although
one may argue that a particular model is “physically based” and represents the
“true” hydraulie response distributed throughout the catchment, the uncer-
tainty in model input still remains and is not reduced by increasing hydraulic
routing modeling complexity. Rather, the uncertainty in input is reduced only
by the use of additional rainfall-runoff data, (and input error is different from
mode]l error). In eqn.(60), the use of mean value parameters for the routing
effects implicitly assumes that the variances of the random variables distribut-
ed as [X,, ] and {#;] are such that a single set of linear routing parameters can
be used on a channel link-by-link basis, for a given storm class.

The distribution of the criterion variable

As before, let R be a free-draining urban catchment without significant
detention effects (e.g., dams), nor baseflow, with a single stream gage and rain
gage for data analysis purposes. The goal is to develop estimates of rare
occurrence values of a runoff criterion vanable {or operator), o, evaluated at
the stream gape site. Examples of ./ are the peak flow rate, or a detention basin
peak volume for a given outlet structure located at the stream gage. Thus, .of
is the peak demand value of a hydrologic variable from a given runoff
hydrograph, evaluated at the stream gage site.

For simplicity, let all the effects of one year’s precipitation be identified with
an annual storm event P,(-}; the underlying probability space is then the space
of all such annual storms. Event P,(-) may have a duration of a few hours aor
a few weeks in order to include ail the precipitation assumed to be of
importance in relating the event to the stream gage measured runoff, €,(-).
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Base input peak duration anglysis

Given the bhase input, F{+), let I; be the operation of locating the §-time
interval of peak area in F;(+). Then (see Fig. 11):

IgFi(r) — Fia(') 67
where Fo(1) = Qfor all t ¢ L; F{)) = Fityfor ¢ e 1,; and where 8 = 0. That
is, F7(-) ig the peak é-time portion of Fi(-), and F?(*) is zero outside of I;. It 18
noted that I; is also used as the notation for the peak interval 1tsel. (It is also
noted that hereafter I indicates the bage input information, and not
hydrograph inflow.) )
The contribution to () from F?(-} is determined by:

@w = | Fe-9nees (68)

a=0

Foet)

H

25
:I‘
I+
OD %—)- )

[(HOURS)
Fig. 11. Locating the peak I, interval of F (-}
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The criterion variable of interest is noted by A, for annual event i where
A; = A {61)

where #[@,(*)] is notation for finding the maximum vaiue of the eriterion
variable resulting from the hydrograph, @,(-), and where each A is evaluated
at the stream gage site; for example, peak discharge is max (@,{1): ¢ real] and
volume of discharge is {@,(£)dz.

The distribution [A] can be estimated from a finite sample A,, A;, A, and this
empirical distribution can be used to obtain the desired T-year return
frequency estimates, Ay, of the eriterion variable where by definition of
exceedence probability:

1
T’
It is noted that 4, is the maximum value of the criterion variable, A, for year
i; and A’ is the peak demand of A from arhitrary storm event :.

PA = A4 = for T = 1 (62)

Sequence of annual base Inputs

With only a single rain gage available, all rainfall-runoff models must
operate on the annual precipitation events P(-). The notation of “effective
rainfall” will be generated in the following.

Let ¥ he a function on the precipitation measured at the rain gage:

FE() = F() (63)

such that ¥.(-) is a nonnegative, bounded, piecewise continuous function of
time ¢. For example, two possible candidates ave:

FP® - PG, FP@ - | P ds. 69
=0
The rainfall-runoff model, M, is used to relate the synthetic “effective rainfall”
F.(-) to the measured runoff, @;(-). Note that F,(*} depends very strongly on the
mapping F chosen.
Thus for the multilinear surface runofl model, M, the base inpus, F;(+), and
the correlation distribution, #,(+), are used to eguate with ,(f) by:

Mo < By () > = @) | (€5

where F,(-} must not be strictly zero where @;(-) is not strictly zero. Eyuation
(65) shows that M operates upon Fi (-} and #,(*) realizations, for the annual
event, i, to produce the annual runoff hydrograph event, &,(-).

Letting {P:{*)%; i = 1, 2, ...} be the sequence of annual rainfall events
measured at the rain gage, then the functional F transforms the raintall data
into the sequence of annual base inputs:

FiBCri = L, 2. .0 - {FCki = L2, .. (66)

——
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Fig, 13. Frequency distributions of I for § = Swin, 30min, 1h, 3h.

From eqn.{72), T-year frequency values of I[F/(-)] are denoted by I}, where
{zee Fig. 13)
PUIIEC) > B} = 4 (75)
where I3 is the T-year veturn frequency value of the base input intensity, for
peak duration ¢ (this is analogous te depth-duration freguency data for
rainfall),

We are interested in the “average shape” of the base inputs which have, for
a given I;, the same total mass of input. To proceed, the entire collection of
realizations F7(+}is translated in time to begin at a reference time ¢ = 0. Thus
each F/{+} is zero except (possibly) for time 0 < # < 8. Given peak duration
time increment 3, the F{(-) are further categorized according to stmilar total
mass. Thus, although several F{(-) realization have similar total mass, they
differ in their time distributions of mass. We want the expected shape of the
AF?(-) in each grouping of similar mass and define:

By = EABOIEC) = IIF O (76)

where i is the considered event, and j is independent of i.

It is recalled that in eqn. (76), each AF(-) has been translated appropriately
in time (Fig. 14), and the expectation is taken with respect to time, ¢.

Define & (2) by:

g = AF!@ - EMQ) (T

where £{(?) is the variation in base input shape about the ex pected base input
shape of all base inputs with the same mass (approximately) as 77 (), (Fig.14).
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And the contribution to A; from F7{+) is:

Al = AN (69)
Criterion variable distribution analysis

From the above:

A = o [J Fiit — 8) (8 dsil (70)
5=0

and:

Af = ,gfl: “ ﬁ‘f(t - 8) rz‘i(_S} ds] (71)
5.0

where F7(-) — F.(*) as 61 (i.e., as § increases from zero). Then A} — A, as 57
where reasonable assumptiona of continnity of &/ are assumed. The fact that
A = A as FU(*) —» F,(*) will be used in the following to identify the properties
of the operator, F, which are involved in the estimates of T-year values of the
distribution of annual outcomes, [A).

The base input F¥(-) is written as the sum of components F?(-) and AF?(-)
where (Fig. 121

TIFN)) = % Jj‘ Fi(s)ds = % ‘F,-(s) dg 1)
HF (), for tel
(TEE () ) .

Fie = |

0, otherwise

Fi@y — Fi(p, tel
AFP(@) = { ' ! (74)
0, otherwise

L
N [—_: ]
|
o 1 P ¥z
{HOURS) {HOURS) (HOURS)
Fig. 12. Writing F7{#) of Fig. 11 as the sum F'(t} + AFZ().
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Fig. 15, Plots of 8i{z} for various § and 7 = 100 vr.

where in eqn. (81), return frequency, T, is allowed to vary as a real valued
positive (aonzero) random variable; and [5.(-)] is the distribution of realiza-
tions, #,(+), when the parent F,(*) & [£ ], [that is, there may be several n(-)
realizations associated to the single realization of F,(+)].

Combining eqns. (80) and (81}

Q) = [ 1SHe) + FA6N) 1,6 - 9] ds ®2
#=4

and, for operator «, egn. (82) s used to provide the frequency distribution:
(4°7 = A1QCH (83)

Figure 16 shows a flow-chart which implements the procedures leading to
eqn. {83). Because 4] — A, as 47, then necessarily {A%] - [A) as 1.

T-year estimate model simplifications

The earlier sections dealt with uncertainty in predictions of the operator +#,
which necessitated the inclusion of the distributions {,{}] in the final model
formulation.

Equation (82) can be considerably simplified if it is assumed that eqn. (55)
applies, and that:

[A%) =~ A [E(@ ()] (84)
in which case Ej¢5(*)] = 0 and E[n,()] = #,(), and eqns. (82) and (84) can be
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g
i\Fi {t

{HOURS)

Fig. 14. Several plots of AF?(f) for 8 = 1h, and JFf(-)) = 1. Dasked line is the expected value.
{Note that ail base inputs are translated in tims to initiate at time 4.)

Then in summary, with all components appropriately translated in time:
@O = [P + Ele) + d@) nte - 5 ds (78)
[i]

where F? (-) is the mean intensity of the base input, F¥(+}, over the time
interval 0 < ¢ € § [where F7(-) has been translated to begin at time ¢ = 0J;
E?(-) is the expected shape of all possible d-interval peak durations of base
inputs with the same total mass of F/(-); ¢/(-) is the variation of AF?(-) about
the expected shape, &/ (+); and #;(*} is the necessary multilinear model correla-
tion distribution for the parent annual event Fi(-), in some storm class {£,].

Estimation of T-year values of the criterion veriable

For each peak duration, I, the samples of F?(-}, see egns. (73) and {74), are
now analyzed to determine the underlying distribution of the annual outcomes
of the values, I[F?(+)]. From these distributions of mean intensity of I, base
inputs, T-year values, I7 of the I[F*(}] can be derived (Fig. 13) and the unique

Tyear Fi(+) defined by:

IFCN = It (79)
Given I3, F3(+) is defined, and consequently EL(-) and the distribution [s5({+)]
are known. The “T.year [; base input”, S&(-) is defined as:

Siy = Fi() + Ef() (®0)

Figure 15 shows a set of 87(+) for T = 100 years, and various 6, using the data
of application 3, and the model structure of egns. (58) and (59). The T-vear },
base input, 85(-), varies in both shape and mass as either T or & varies. The
distribution [@°(+)] of realizations of @ (*) iz now written from egns. (68), (78),
and (80) as:

Q) = [ (Fio) + Bl + 16O It - 9] ds (1)
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I_IJEFINE PEAK DURATEON SIZE, 4>p I
SAMPLE A T-YEAR VALUE

COMPUTE T-YEAR RETURN
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T4 (see Fig. 13)
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BASE PPUT, ES(.)  {see Fig, 14} ‘
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Fig. 16. Flow chart for estimation of 7

“year values of 4
random variables).

] (preserving mutual dependency of



combined as:

[4%] ~ .9;’[ J 8¢ ~ 8) n.(s) ds] (85)

where T'is the annual series random variable. If furthermore it is assumed that
the storm classes of base input, [£,], are highly correlated to T-year values of
base input mean intensity, then storm classes of T'year bage input can be
defined, [&,], [perhaps on a duration basig such as 1-h, 3-h, etc.; see Pierrehum.
bert, 1974, for the case of eqn. (568)], and eqn. (85) hecomes:

(4°) = cf[ [ 85 - 5 nae ds] (36)

where T'varies as an independent randorn variable. Finally, if it is assumed that
the T year value of [4%) monotonically increases ag T-increases in eqn. (86),
then the 7, return frequency value of 4 is:

o

¢ .
Ay ~ max &i[ 87.(t - ) Hy,(8) dsJ, as §7 (87)
6 0

5=

where f17,(*) 1s the expected realization of a multilinear surface runoff model
response [#(+)] corresponding to storm class [¢,]. Equation (87)1s a form of the
well-known design storm single area unit hydrograph procedure {e.g.,
Hromadka et al, 1987).

The choice of the base input estimator, F

response model based on storm classes of base input.

In the eqns.(84)+87), the most common practice in flood control hydrology
studies 1s to assume that (1) the variation of base input shape (in time) about
the expected base input mass and shape is negligible; and (2) the distribution
of the criterion variable [A] can be evaluated using the expected multilinear
surface runoff response model, Eln(+)], for storm class [£7]. At present, there
is insufficient rainfall-runoff data to conclude whether such simplifications are
invalid. However, a basic question needs to be addressed: {s there an optimum
choice of tunctional, ¥ which best develops the distribution for the criterion
variable [A], given that the multilinear model structure of eqn. {52) applies?

The distributions of {#,(+)] all depend on the choice of operator, F, Addition-
ally, the various distributions involved with S4(-) and £5(+) are completely
defined by the sequence of annual base inputs produced by a particular F
operating on the given sequence of annual rainfall, {P;(-)}.



Let
12 05y« 1
P((-) - T, -3 =

0, othersze

Where 714 the annyy,) Quteome Frandom variahle, Then gach Pyeqy base inpyt
event jgq Uniquely defined by

Py = 1. 1. 0%6%1,0{3&'1

7
Ry - Fo(-y; O%(SS\;LO&%L“\%I
E ) - g
() 0
From the above, 83} = 3 VT for g X d g 0 <y, (It ig noted

the depth—-duration Statistiog of Fory equate directly to the rainfaj] data:
T[F‘s(-)} = /ef[P"(-)}, and the temporg] distributions of hage input follow
directly from the rainfa]] daty (Pierrehumbert, 1974). Note that in this Case,
is the Simple runoff Coeflicient loss rate function (see Scully and Bender, 198g.
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Example
Let F be defined by:

P - ¢, when positive

0, otherwise

F:P}S(') — {

where ¢ is a positive constant. This operator also preserves the rainfall data
statistics (for durations of nonzero base inputs) and is widely used as the
phi-index approach.

Example

E:P.(+) > aP!{-), where 2 and f are the positive constants, preserves the
rainfall data statistics.

The constant fraction loss function and the phi-index loss function are both
operators on rainfall data which have been widely used, and continue to be
used by practitioners in flood control planning and design. There is a wide
range of other ¥ operators reported in the literature, oftentimes involving
considerable complexity, The lack of convineing evidence to use operators {(F)
more complex than the constant fraction or phi-index approach, and the
advantage afforded in using these simple and well-known operators due to the

CONCLUSIONS

A detailed mathematical analysis of approximate methods to include uncer-
tainty in rainfall-runoff model predictions is presented. New notation is
introduced in order to clarify and unify many of the concepts and techniques
commonly employed in rainfall-runoff models, and also in order to analyze the

considered, namely: (1) the prediction of runoff quantities given an assumed
rainfall event {and other conditions); and (2) the estimation of T-year return
frequency values of a prescribed criterion variable (e.g., peak flow rate,
detention basin volume).

Because rainfall-runoff models produce a single runoff hydrograph as the
estimate of runoff for a future event, and because there is generally consider-

values of the criterion variable in order to develop confidence interval
estimates. As rainfall-runoff data increase in quantity, the uncertainty in
runoff criterion variable estimates can be continually evaluated based on the
best available data and the rainfall-runoff model being used.
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