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The higher-order trial functions, such as the parabolic, cubic, and Hermite
cubic polynomial functions, for the complex boundary element method
are derived and their computer programs are developed. Using the con-
sidered higher-order trial function, models obtained compatible results to
the iinear trial function model.
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Introduction

The main purpose of this paper is to summarize the
results of recent research involving the implementation
of higher-order trial functions (used for interpolation
purposes} into the boundary integral equation formu-
lation known as the complex variable boundary ele-
ment method (CVBEM). The main thrust of this re-
search was to (1) develop the nodal point equations
based on the CVBEM technique for solving two-di-
mensional boundary value problems of the Poisson
equation (e.g., V°¢ = f(x,¥)), where parabolic, cubic,
and Hermite cubic polynomial trial functions are used,
and (2} develop computer programs based on each of
the new formulations, and examine whether a signifi-
cant improvement in computational efficiency is pro-
vided (over the standard linear trial function) by use
of any of the considered techniques. This paper focuses
upon the first objective, whereas the second objective
is summarized by the example problem results in-
cluded herein.

Because a thorough literature review and mathe-
matical development of the CVBEM is contained in
the book by Hromadka,'® only the key equations needed
to formulate each of the nodal point equations are pro-
vided in this paper. Discussions as to the usability of
the CVBEM in engineering analysis, and the conve-
nient error analysis techmiques provided by the CVBEM,
are found in Ref. 1.

Nodal point equations are developed for the prin-
cipal value of the Cauchy integral for the linear, pa-
rabola, cubic, and Hermite cubic polynomial trial func-
tions. Because of the iengthy derivations, only the final
equation forms (which would be used in a computer
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program) are presented. Detailed derivations involved
inr the linear trial function CYBEM maodel can be found
in Hromadka,' and each of the higher-order trial func-
tion derivations follow similar mathematical steps in
thetr respective derivations of the nodal point equa-
tions.

Boundary integral equation formulation—linear
trial function approximation

Consider a simply connected domain Q with a simple
closed contour boundary I', as shown in Figure [. The
boundary can be subdivided into m boundary elements
T'; such that

I=UJT, (1)
i=1

On each boundary element, define two nodal points
located at the element endpoints; for element j, the
coordinates of the nodes are z;and z;,.,. A simple linear
trial function als) is assumed on each element such
that

als) = @ + @y {1 ~ 5} =s=} 2}

where w; is the complex nodal value for node j, and
where ; = ¢; + iy In equation (2), ¢;and ¢, are state
variable and stream function nodal values at coordi-
nate z;.
The CVBEM utilizes an integral function é(z) de-
fined by
2miakz) = f (___a(g‘)d{) 1E0 €' (3)
. F=ITy {—z

i
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Figure 1 Problem domain ) with boundary T

where ¢ is the complex variable of integration, a({) are
the continuous trial functions, and the subscript j refers
to element contour I';, Because the a(Z) are continuous
on I’;, the approximation function w(z) is analytic for
all z in the interior of T

Equation (3) can be evaluated for any point z interior
of I by noting that

{7 — 7
“{5"15:@”[1 o z-3 )H]
T, {—z Li+i — &

-5 [I + (5:@) H,-] )
Livl T %

A boundary integral equation can be formulated for
each nodal point by

miikz) = lim S (M) (5)

fans AR | T § - Z
¥

where the limit is evaluated as z approaches arbitrary
nodal coordinate z; from the interior of I'. Substituting
equation (4) into equation (5}, we get®

m—1 —_
2miiz) = oH, + 3, [aﬁ. (—z‘ z’ )

=2 Ziv1 — &

— {41 — ZJ'+|\
—wl 22— H ®
wJ(er-I_Z;‘)] i ®

dij+ 1,13 e s
HJ,-‘—‘-‘ In (W) + fﬁ(j"f‘ l,f} (-?)

where

and

_ di2 N
H o =1n (d“(m,l}) + 602,01}

In equation (7), d(j + 1,1) is the distance between
nodal coordinates z,., and z;, and 6(j 4+ 1./} is the
angle between coordinates z;., and z; (Figure 2). Ad-
ditionally, 8(2,m) is the vertex exterior angle shown in
Figure 2.

An examination of the approximation function def-
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Figure 2 CVBEM linear trial function geometry

inition of equation {6) reveals that &{z,) is a function
of the boundary geometry and nodai values @;. Gen-
erally, é{z) is not the desired solution of w(z} = ¢ +
iy, and a(z) # o(z;).

CVBEM model development

The CVBEM formuiation results in a matrix system
which depends on the trial function definition. Because
of the direct analogy, the linear trial function formu-
lation is used in the following to describe the matrix
system development. The other trial functions con-
sidered here also result in similar matrix system me-
chanics.

The nodal values @; are composed of two compo-
nents @; = & + iy, where either ¢ or ¢ is known at
each z; by the given boundary condition definitions.
Consequently, each nodal point has an assigned known
boundary value and a corresponding unknown bound-
ary value. Should both boundary nodal values be known
at each z,, then the approximation function @(z) is de-
fined throughout the interior of I'. Therefore, in order
to calculate é{z;) values, we need estimates of the un-
known nodal boundary condition values. In the foi-
towing discussion, it is assumed that ¢, is specified at
each z; (¢, = ¢;) and that the o; are unknown {except
for a single nodal point value where the constant of
integration is evaluated). The discussion is immedi-
ately extendable to mixed boundary conditions. The
following notation is used for the three sets of nodal
point values:

exactsolution of
boundary value problem
solution at node f

Wy = w(z:!'} =¢ + iwf

boundary condition
nodal values

w; = 3; + ‘:Ib_)
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approximation vaiues
atnode f

w; = ‘}’.f"i_ ‘:‘1&'

Application of equation (6) for each nodal point re-
sults in m linear equations, which can be written in
matrix form as

& = Crld. i} + IC{{ ) (8)
where Cg and C; are m X 2m matrices of real constants
representing the real and imaginary parts of the bound-

ary integral equations, respectively. From (8), two ma-
trix systems require simultaneous solution.

¢ = Cu( @) &= C(d 9
where (¢, is the array of nodal point boundary vai-
ues.

One method of solving equation (9) is to set ¢ =

and solve

&= Cld. {10

using the known &, followed by the solution of qb
Cr(¢.¥), which results in values for . Note that the
calculation of ¢ can also be achieved by solving

& = Cpld ) (11)

One may use equation (11} due to the approximator
éz) matching the boundary condition values at each
nodal point, and then evaiuate the relative error of w —
é@ by analysis of W — trand ¢ — ¢ on [. However,
# — u is not known continucusly on I'. (Recall that,
for simplicity, a Dirichlet probiem is being considered
for development purposes. The case of a mixed bound-
ary value problem follows analogously.) Should the
model of equation (10) be used, evaluation of the rei-
ative error of or — tb is aided by ¢ = l,f: and ¢ — d)
is known continuously on T

CVBEM model: parabola trial function

The parabolic trial function 1s derived by using the
second-order Lagrange interpolating polynomials over
the boundary elements. A boundary element consists

22 me 2,01 P2

Legend: 2 - Hode number
.”1 - Boundary element numper

Figure 3 Nodes and boundary elements for parabola trial fung-
tion

of three colinear points z,. ;.. &, 5, where z;,, is not
necessarily equidistant between z; und z;,, {see Fig-
ure 3).

For point 7 on a boundary etement,

(z =02~ 7.2
(2 — 2z — Zea)
22 = 2z + G t G

= : - 12}
(g — 2o Mzy — Z42) (

Ny =

or, in polynomial form,
N2 = a2 + bz + ¢, {13)
where

1

(5 — - Kz — &+2)

a4y =

—{Zj + Z2)
(&= ez — z542)

L1z
(Z— 3 Mg — a2)

For N:{(z2).

NAZ) = a2 + bz + 2 (14)
where
|
s =
(Zj+1 - ZJ'J{ZJ'+I - Zf+2)

b = - {zj+—l + i 2)

TG NG T a2

zj+]z§}i+2

s
(Zj40 — Z;‘)(Z_;‘+1 - :’:_;'+2}

and for Ni(z).

Nuz) = a42° + bz + ¢4 (15
where
1
ax =
(Zrrz— gMgoa — Zi-0)
b — —Z+ .0
3
(2o — NG -2 — o)
. i
3
(T2 = 2NZ 2 — )

For boundary element I';, equation (3) (s now writlen
as

i

2 Nyl )y dg

[(322),- === 1

i, r;

where the following integration holds for ali three basic
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functions:

(@ + b+ o)d¢

T, {—
%d T béd :
S B
—rfg*‘zu i.fg‘zo i,_§_30

ks

For zy not a nodal point,

all)d{

I {—2p
T

i — n

= ;(2) ((ulzﬁ +bzp + Cl)(ln (M) + {27~ 6}) Hazo+ b Nz —z) + %(zﬁ,z - z}})

. + Zi+rz2 ™ A . )
+ B2,42) ( (ar28 + brzg + cZ}(ln (_-’z 2 ZZ") + (2 - e}) + (@120 + boN2yan ~ ) + %{z}tz - z}))
\ T Lo

+ w3 ;(z) ((ﬂsz(‘; + bizy + (-‘3)(111 (ZJ_”_:—ZO) + 2w - 6}) +aszp + ba)Zp0 — g) + %(Z}+ 12— Zf)
(i8)

i — X

Principal value calculations and matrix development

When principal value contributions for a nodal point z, are calculated, two categories of nodal points must be
taken into comsideration: (1} zo is an endpoint of the boundary element; or (2) z, is an interior point. Consider z,
as node 1, and denote it as z;, and z3 ,,, where, in general, z;; is the ith node of the jth boundary element. The

angle 6 is the angle between z; ; and the endpoints of boundary clement j. The nodal point convention used with
this trial function is shown in Figure 4.

The boundary integral approximation equation in this case is

27wa(Z|,|)

— N 3.0 T L1, .
=w) 4 ((GHZTJ R ARVARIE o R 4 I i /T S (lll (_23;—];) + 27 - Gi.m))
1

Zym — L1,
, 33— Z%.I 73— 21, o b .
+ 3 + 3 Hilzia bz — 2+ 20+ baadzi) — 2).m)
o Z%l"‘le\ . z%]—z%l ,
+ ZEE.I (05,12%.1 +b; 121+ Ca‘,l)(lﬂ(z—"'_z‘) + {27 - 9s,m))+ _2““—"" (Zi0+ bol@s — Zl,l)) {19
i=2 T = 4l

+

A

IR IS

o <1,

i — 7 A ZZ“_ZE‘\ i
D _ELIY H2m -8} )+ S Sy (210 + b, Mz3 5~ Zl.j})
1.~ 2 | 2

1.0 — 21,1 Zia = Uum
aJ".m {af.mz%.l + bf'.mZ],] + Ci.m)(ln(‘_“_.) + 3(277_ ei.m)) + == 2 =+ (ZI.I + bi,m}(Zl,! - ZI.m))
=1 1
3

Ef.;'((a:'.jz%,l + bt Ci.j)(ln(
2i=1

Now consider z5 = 2,1, which is an interior point of the boundary element, The following equations are used:

-y

IVF

+

4

K

Zmiakza )
_ 5 30 7 L2 . ) Z%.I - Z%,l
=Wy ({02,122.1 +byy220 + Cz_l)(ln(—""—') + 27 - al,m)) e 22+ bz - «-J,I})
! AN SN 2
} 234 — 224 23— i
+ D iy ((ai,]Z%,I t+ biiZan + Ce,ll(]n (_—‘—'Z;) + {2 - Bl,m)) + T +{zpq + bilzaa —210) | (20)
i=1 Zi0 7 42
i 37— 224 . ”%J-Z%,j
+> 2 af.j((ai.jzgj + bzt In 7) +i2m—48) ) + T (220 + b N2y, Z;,_;))
je2i=l T 20
CVBEM model: cubic trial function ary element I; be further discretized into three seg-
ments so that there are four interpolation points on
Analogous to the previous model developments, let each boundary element. (This compares to having three
I' be discretized into m boundary elements, I, interpolation points for the parabolic trial function, as
'=un, T,where[;NT;, | = z; € I'. Let each bound- shown in Figure 4.)
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Figure 4 Noda! point naming convention

The cubic basis function on each I'; determines a
continuous global trial function on T by

2 (@)= 3 (N@,1 + N, 02
i=1 i=1
+ Nisi; 3 + N;4w;.4)
= 2 E chw_:k (ZU
jelk=
where
4 —— .
o= een
Ny = 4o o 22)
0 (€T

The point z;; represents the jth interpolation point of
the ith boundary element. Also z;, and z;; are spaced
between z;; and z;4, where z;;, = z,and z;4 = 7.

The contribution from each boundary element I; can
be calculated by

i =

E fw; f{a,ﬂﬂ + a_ﬂlg + ajﬂg + a_}ﬂf }
i=1

"‘Z

a({)dg _
{—z

i ;{f)w; r{g)

—Zo

dg

4
> f l:a}f,tafﬁ‘bcz + oy lan + 2a0;)€
i=1 e

+ Ej.i{ajil + FLLTE] + Zzﬂ_ﬁgj'
+ o + ;5 + zzaﬁz + Z3ajj3:| dé

E—z
23
In sumration notation,
4
“;0‘1 Sa, 2 3 (e~ 2 (24)
- i=1

The 4, variables are obtained by multiplying out the
Lagrangian polynomial for the jth position: L;(z) =

ago + dpl + dipZ® + a7’ For example,
;

iy =
(z —ziMz - 7aMz — z3)
Gria = 4L T L
1z =
— 2Nz — Mz — z3) (25)
a _ ZiZz T 2233 + 217
1 =
(2~ 20z — 22(z — z3)
— ZiZ233
i =

{z — 2z — )z — Z3)

Principal value caiculations and matrix development
follow the previous linear and quadratic modet pre-
sentations.

CVBEM model: Hermite (cubic) trial functions

In the Hermite set of basis functions, the derivative
terms are utilized, so principal value calculations differ
from the previous developments.

Since the values of the analytic functions w(z) and
its derivatives w'(z) are utilized at the nodal points,
and we desire a cubic approximation, then define a
continuous trial function on I, by

g} =3 Pid) (26)
i=1
a'(§) = 2 P(g) @7
where a({) is defined as
all) =+ &L + ¢;f” + df? (28)
and the derivative a'({) is
a'({} = bJ: + 2CJ:§ + 36{;{2 {29)

Collocating at the nodal points, we have four equations
in four unknowns, which we solve to obtain the coef-
ficients. Upon rearranging the coefficients, we get new
expressions for a(z) and a'(z) at point z:

(X{Z) C!.J_;(sz)z(l + 22”} + '5":+ ](ZU)Z(I + ZZ')})
+ ij]ngj(Z_j+[ - Z) + mj+lzljz‘;j{z_f - Z) {30}
W =522 ( 6
— w. - .
xie JZU v Zj_Zj+|)
+ AT 6 )
w_;+l 1 f&a2f Z_H_] -z
w; (1 —3Zy)
+ w1 Z(1 — 323) (31
where Z,; and Z,; are defined as
17 d+1 72
Z g T e— Z =
Y e g Y e g
Appl. Math. Modelling, 1988, Val. 12, December 623



Extension of the CVBEM to higher-order trial functions: 7. V. Hromadka If and C. C. Yen

Principal value calculations

Stnce we desire the value of the approximation func-
tions on the boundary [" as well as the interior of {2,
we must consider the following equations:

VRN BN O 174 )
w(Z)_Zwiz,lﬂfg mdg“ (32)

() = 33
'z ;|n—*<'J’( nJ (33)

Simplifying the last integrals gives

w{z}__l- lim E P(7)l &._;+i  Zo
2

13*'7'f 1 f-.._,a AO

2,”_ ZJZ‘] (@41 — W)Ly,

1 ’ a', 1 + wlf o
+t 53 _i“—"'(\._f-u + %15
232 1 — 2

L -
_I-l wf” T m, (,2

37,2
27”3} |<u_:+| _&J_ i IK.}
[ i ,+wJ
— {372~ 3 34
+ 211-:3,.2__:] 2o = { 7%~ 3z2) (34)

1 Zie1— 2
@'(z) == lim ZP{z}lnM
27Tl’24}—-1| ¥ Zu
+L3é‘d'l_51_222‘_’j+l"a}j

M T e Ty L T g

L o Let T2~ 22w

271'! i Dj+1 — & 2
_“_32uj+l_2'_zzﬂ (35}

2 i=1 i+ T & 2
which are valid for z € ),

The terms involving logarithms in (34) and {(35) ace
simplified as

Fi 1 — Lo
lim S Pz In L2
Tk = &~ Lo
£t
L+l T Ik
= X Pilw) In+——
= lmkk—] LT W
— i+ ™ Lk
+ @y ln=—= (36)
h—1 L4y
i+l —
lim 2 Piiz)Int——
U =] of )
H
Zjwn 7™ Ig
= 3 Pt
FIN I O A T ALk
_— Th+1 7 Lk
+ @} In 222 (37)
o1 — D4

where z. is a nodal point of " and 2y = z,,, 2,21 = 1.
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Matrix development

To implement the Hermite CVBEM, we simpfify the
equations from the above development to obtain

i
Wy —‘EJEI (e, . \ccljk — meeljk)

_f Z (a;+1(.{2jk —+ Ej;£(.‘2jk]

l fl

+ (w; . cobfk + wieeSik)
2"'“}—!,%,1(-—! . !
l H
— w),co&fk + wiccTik
| Te 1 — 7k
+ @ In L s (38)
2 e 1 —

where coljk, ce2jk, ecSik, cobik, ccljk. and cc8jk are
functions of the geometry of the nodal points.

Let w, = &, + iy and define 1. ¢2, ¢3, and ¢4 as
functions of nodal orientation; ie., if j = &k, & — 1.
then

cljik = celjk + cetjk

c2jk = —ccljk + ec5jk

3k = cc2jk + co8jk

cdjk = ceZk + ccljk {39)
fj=4korj=4%k - 1, then

clik = ecljk

ek = — ccljk

3k = cc2fk

cdjk = co2jk

If we now expand equation (38) and separate real
and imaginary components, we obtain:

b= 2 L&, , (imaglelik} + ;. realicLik)]
,r t
+ 271" >, [¢yimag(c2jk) + yreal(c2ik)

i=1

—2

i, imagle3jk) + oy, realic3jk))

+ EE [¢; imag(cdik) +

i1

| . Ik - Zk\
+ = imag ]nL)
2 Z

o real(cdjk))

ko1 Ik
I T+ Lk
+ =y real [ In—"————= (40
217 Z;\- - Zk
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& .
l.{fi.- E'E'; 2 [(ﬁ;_;. 1 I‘eal((.' ]_ﬂ't} - l_flj+ i lmﬂg{(.' lﬂ{”
i=1

l )
— 52 [d;real(c2jk) - ibimaglc2ik))
=1

13 .
- _'erz [#; . real(c3jk) — ¢, | imag(c3jk))
2m 5

I "
— 5= (] real(ckdjk) — o] imag(cdjk))
=

271}..
! ST
——qskreal(lnz"—'—*)
27]' Th— — I
1 . vy — 4
+ 54y imag (!nu) (41)
2 Th—1 — g

where real{¢} and imag(c) indicate the real and ima-
ginary components of a complex constant c. An exactly
analogous procedure can be performed to obtain a sim-
ilar representation for ¢; and ;.

Discussion

Several ideal fluid flow problems have been solved by
the previously developed CVBEM models. Resuits show
similar model! efficiencies between the different trial
function techniques, and the error analysis which was
based on the approximate boundary technique? shows
refatively consistent resuits for all the CVBEM models
considered.

Model efficiency

Most of the simple ideal fluid flow problems can be
formulated by either a complex polynomial function or
a Laurent series representation. A CVBEM model based
upon a parabolic or cubic trial function obviously pro-
vides more accuracy than the linear trial function model
when the problem solution is a complex polynomial
{such as ideal fluid flow around a corner;i.e., w = 2.
Model efficiency of other ideal fluid flow problems with
nonpolynemial solutions (such as ideal flow over a
cylinder:i.e.. w = z + z ') can be modestly improved
by the higher-order trial function CVBEM models.

Overall, the CYVBEM model based on a linear trial
function shows comparable results to the other higher-
order trial function models. The advantage of using the
higher-order trial functions is that precise boundary
conditions (e.g.. the derivative terms of potential or
stream function} can be handled more precisely.

Error analvsis

The approximate boundary error analysis for the
CVBEM is developed by Hromadka.?

Approximation error occurs due to the approxi-
mation function e(z} not satistfving the boundary
conditions on the boundary I" exactly. However. an
approximate boundary I’ can be developed which
represents the location where 6)(z) equats the specified
boundary conditions such as level curves. Conse-

quently, the CVBEM approximation error can be in-
terpreted as a transformation of I' — I' where the ul-
timate objective is to have I" coincide with I'. As [
approaches I' geometrically, the analyst is assured by
the maximum modulus theorem that the maximum ap-
proximation error occurs on [ and that the governing
partial differential equation {Laplace} is solved exactly.
Consequently, the final product is the exact solution
for a problem geometry, which is the construction tol-
erance for the prototype construction.

Generally, the types of numerical approximation er-
rors in solving potential problems are of two forms:
errors due to not satisfying the (i) governing equation
over () and (i) boundary conditions continuously on
I'. For the CVBEM (and for other boundary integral
equation methods), the first type of approximation
error is eliminated due to both ¢ and ¢ being potential
functions. But &(z) does not usually satisfy the bound-
ary conditions continuously on I' (if it did, then &(z) =
(2)). The next step in the CVBEM analysis is to work
with @(z} in order that &{z) — w(z). The easiest form
of error to study is the development of an approximate
boundary I" which represents the location where d(z)
achieves the problem boundary conditions of w(z).

For all test problems, the approximate boundary
was developed for all the CVBEM models, and re-
sulted in comparable accuracy in matching the problem
geometry between each model. Figure 5 depicts the
streamlines and equipotential lines for ideal fluid flow
over a cylinder. The approximate boundary of the cyl-
inder is shown as the dashed line by the linear trial
function modei. Comparable accuracy of the approx-
imate boundary was also observed for the higher-order
trial function models considered.

Figure 5 Fiow field and approximate boundary for ideal fluid
flow over a cylinder by linear CVBEM model
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Conclusions

Nodal point equations are developed for the principal
value of the Cauchy integral for the CVBEM by using
the linear, parabolic. cubic, and Hermite cubic poly-
nomial trial functions for interpoiation. The nodal point
equations provide the information needed for devei-
oping computer programs for each of the trial function
interpolation techniques used with the CVBEM. Upon
comparing the computationai accuracy afforded by each
of the four considered trial function techniques, we
conclude that all four techmiques provide approxi-
mately the same relative level of accuracy for problems
which have potential solutions that are not finite-order
complex polynomials.
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