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ABSTRACE

The Complex Variable Boundary [lement Method or CVBEM provides solutions to two-dimensional potential

problems.

Zepecially unique to this method is the approximate boundary which represents the ture

problem boundary transforded to the spatial configuration where the problem's boundary conditions

are satisfied.
which 1s easy to interpret and understand.

This deforming approximate boundary indicates a ture measure of numerical accuracy

applications of this technigue are demonstrated in studing slow moving subsurface flow probleams,

HIRGOUCTION
Potential flow theory may be used to depict
streamlines of the groundwater flow analyzing
the extent of subsurface flow movement. DLspe—
cially in the preliminary study, the potential
flow theory can be used to determine whether or
not a more sopitisticated study based on a long
pariod of observation and expensive data collec-

tion is required.

For two-dimensioal potential flow problems which
governs by the Laplace equation, the Complex
Variable Boungary Element Method or CVBEM may be
‘used as an approximate model of the prototype
system, Due to the limitation of readily avail-
able analytic functions, many flow field problems
are not easily solvable. The GVBIM, nowever,
provides an immediate extension.

CVBEM DEVELGPMENT

The ¢VBEM has been shown to be a powerful nume-
rical technique for the approximation of proper-
1y posed boundary-value problems involving the
Laplace equation (Hromadka [1]1). The keystone
of the numerical approach is the Cauchy integral

furmula

2ni {~z
where (& is a single-valued analytic function; I
iz a simple clesed contour enclosing a simply
connected domain @3 ¢ is the variable of
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integration with$el® ; z is a counterclockwise
{pasitive) sense (see Fig. 1),
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Figure 1, CVBEM Boundary Discretization

In CVEBIM approximation, the nodal equations are
approximated by taking the limit as the point
ze{) approaches a selected nodal point ZJE_F by
Gzy= Hn e | Gl df
i p=z.  2ni {-z
3 r
The limiting value is also known as the Cauchy

principal value, and the fumction G({) is a
zlobal trial function which is continucus on I'.

1

(2}

The linear global trial function

m -
Gl ) :J§ U Gy Byay @) (3)

where ﬁj =1 if {el}, and 4§y = 0O 1f§f% 3 the
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functions U, and Nj+j are the usual linesr hasis

functions: {see Fig._z); and 5% = é% + 1 wj'
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Figure 2., The Linear Basis Funciicn

The above relationship can be written as complex
function

é‘}czj) - ¢(z ) Mz )

¢(z ) ¢2,...,¢m Vsloseersty)
+.L€’(ZJ, ¢)1, ¢2,...,%,“’1,¢2,...,¢ b,
where ‘band 1,’1&1:-3 real valuad functions represent-
ing the real and imaginary componsnts of the
complex function 5{z)e  Should values of Eﬁ - ¢j
+ i¥. be known at each Z s i = 142seessm, then
£q.(4) defines a complex valued functlon which
ie analytic in @, and ¢\x,y) and ¢(x,y) both
satisfy the Laplace eguation in f}. If 32) =
wizyon Tty then Diz) = wlz) in Qand @{z) is the
exact splution to the boundary value problem.

(&)

The usual problem in eagineering applications is
that »nl; one of the spevified nodal value pailr
(¢ ¢ ) is known at each z;
part of the modellng task 1s tu evajudte the

and, consequently,
unknown nodal values. & method of developing
such an approximation funetion is to evaluate
$3.2) arbitrarily close to each nodal point lo-
cation onland, in turn, generate an Implicit
expression of unknown nodal variavie as a func-
tign of all the know variables. The result iz
m eguations for m unknown nodal values which can
be solved by the usual matrix techniques such as
Gauss~elimination method.

APPROXTMATE BOIMDARY

It is uSeful to delermine an “approximate bouwnd-
ary” I‘upon which &(z) satisfies the giwven
boundary ronditions for w{z) on I". That is,
given an approximator ai7), cantour cnrvef of

constant ¢ori on [[where w(z) = = ¢+ 1y and Hiz) =

- i$}are o) rpared Lo contour curves uf const-
ant qboryfl on [ ‘.':hcrel":L.J determined by setting

3 andy=§.

The resolting

the known ¢

boundaryl‘has the property that o
(z) gatifies the specified boundary conditions
on F, and b{z) satifies the governing Laplace
equation in the 1nter10r,ﬂ . Conseguently, &fz)
iz the exact solution to the boundary value pro-
Blem with the true boundary [Ttransformed inte
the approximate boundarjpﬁ. The approcximate
boundary provides a direct visual representation
of the sensitivity of the approximatiorxa{z) in

accommodating the given boundary ¢ondtlons.
APPLICATIONS

Groundwater flow in an unconfined aquifer, see-
page flow through an earth dam, and two sieady-
state, advective groundwater contaminant problems
are used to demonstrate the CVEEM technigue.
Application 1

A long and shallow unconfined aguifer {see Fig.3)
is sued to illustrate the CVBEM technigue. In

a preliminary study, the mean deviation between
the exacl and the approximate boundary is about
0W0o™ jor ihe water table and the
impervicus boundary, respectively. The equi-
potential lines shown on Figure 4 approximate
those shown on Figure 8(b) in Fring et al.'sl?)
Trne stream lines are not orthogonal te

andg O.20

PaPETr e
Lhe equipotential lines wecause of the different
scales in x- and %= directions.
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Boundary Conditions for Shallow

Figure 3.
Unconfined Aquifer
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Computed rlow NBet for Shallow

Figure 4.
‘ Unconfined Aquifer

ipplication 2

rFigure 5 shows streamlines and equipotential
lines for scil=water flow through a homogenecus
garth dam. The locations of the phreatic surface
and the szeepage face can be determined by the

approximate boundary technique.
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Computed Flow Ket for Soil-Nater
Flow Through a Homogeneous Earth
Dam

Figure 5.

Application 3

Figure & shows a completely penetrating ground-
water well (discharge 50 m>/hr) located at the
coordinates (300, 300) in a homogeneous isotropic
agquifer of taickness 10 m. Contaminated water
is being recharged (recharge 50 mB/hr) at a so-
cond well {injection well) lucated at the coor-
dinates (300, =300} with a distance of 848.5 m
from the supply well (discharge well). Zffective
porosity is 0.29, saturated hydraulic conductivi-
ty is 1 m/hr, and negligible backgrousd ground=

water flow is assumed,

bepicted in Fig. & are the limits of the ground-
water contamination correspending to model times
Additiorally, the CV3EM
model predicts a first arrival of contamination

of 0.5, 2, and 4 years.

of tiwme 4.33% years for injected water to reach
the pumping site which agrees well with the
Javendal et al. [3] estimate of 4.3 years.
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Figure f. rlowline and Front Positions

Between Injection Well and

Production Well
Furthermore, if two discharge wells are added at
tne coordinates (500, 500) and (=500, -500)}. It
takes 4.3%2 years for the contaminant water to
reach the middle discharge well, and about 5.58
years to reach the other two production wells
{sca Fige 7)e
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Flowine and Front Positionsg
Between Injecticn and Three
Production Wells

Flgure 7.

Application 3

Let's consider the steady flow pattern produced
by & single pumping well whose strength cquals
to S0 m°/hr at (0, O) near a landfill site witn
arn eguipotential boundary ¢ = 2 m along X =
~1060, and a liquid=-waste disposal pond with a
diameter of 100m fully penetrates the aquifer
which is centered at (500, 500) on the Cartesian



system shown on Figs 8. Liguid level in the
nond is such that the volume rate of leachale
leaving the pond is abogut 2C mB/hr. It takes
15.7 years and 7.3 years for the contaminant
liquid to reach the discharge well from the left
boundary and fros the aispesal pond, respsciive-

1.

Figure 8. Flowline and Front Poeitions for

Application 4

SUMMARY AND CONCLUSIONS

in this paper,y the CVEBEM technique is uged to
develoy a two-dimensional, steady-state, sub-
surface fliow model. Because with the CVBEM
approach the Laplace equation 1s solved exactly,
all modeling error gccurs in matching the pre-
seribad boundary conditiona.

Recalse the CVARLM approach ls based upon a boun-
dary integral sguaiion, domain mesh generators
or control-volume {finite element) discretiza-
tions are not required. ilodal points are requ-
ired only aleng the problem beundary rather than
in Lhe interior of the domain. Consequently,
the computer-coding regquirements are small and
can be accommodated by many personal computers
that support a FORTRAE compilers Although this
study focues upon subsurface flow prodlem, the
rumerical analog can be extended to other equi-
valent problems such as involved in heat and

mass transpert problems.
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