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Abseract:

There is ungertainity in the estimacion of the size of the

parameters in the ‘Lop Pearson 111 distribution which

describes the occurance of the maximum anmuatl discharge,

TI-year flood due to the uncertaln escimation of the
Quantify-

ing this uncertainty by mearns of computing confidence intervals is discussed.

Flood control agencies generally select a fleod
protection standard, for example the 100-year fleed, to
be used in the design of local Flead eontrol Facilities,
To comply with this standard requires estimating the
T-year peak flow rate QT » in the specific example
Qlﬁo for T =100 .

There are numerous scources of uncertainty in this
estimation of QT which inelude:

a) The distribution chnosen for Q i the usual cholce
being the Log Pearson II7 distribution recommended
by the Water Resources Council Bulletins 174 and

178 [1].

b) The estimatien of parameters from regional data;
such as the skew of the Log Pearson III distribu-

tion.

Uncertainty in the dats due to data measurement or
changing catchment conditions,

d} The stetistical variatien in the estimation of
parameters from local data; such as the estimation
af the mean and standard deviation of the Log

Fearson TTI distritutien,

In spite of these sources of wncertainty, it is a
vammon practice for flood centrol agencies to adopt
a particular flpod control goal, e.g., 0100 design

flows, and then simply utilize a flood frequency curve
to estimate QIOO »  FEven supposing that everything is

exact except for the estimation of the unknewn para-
meters of the distribution, with the usual estimation
by expectations the true but unknown value of QIUG

may be just as likely (in the semnse of repeated
estimations) to be more than the estimate as it is to

be less than the estimate, Computfng only the estimared
value of 0100 does not indicate what confldence one

can have that the true value actually is less than the
estimated value and so leaves vague a cruecial aspect of
the protection provided.

In order to gquancify the level of protection that
the floed comtrol agency recelves, confidence intervals
for the computed estimate of Qg should be given,

There are too tiany sources of uncertainty to give
definitive eonfidence intervals, but it is possible,

as will be discussed below, to give confidence intervals
based on one major source of variability in the estlmate.
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Digscussion:

Two basic assumptions underlie the following analvsis:

a) The ©Q wvalues come from a Log Pearson ITI digrribu-~
tion.,
b} The skew paramerer for this distriburion is known.

{Since the skew Is estimated from regional daca,
following the guidelines of [1] , the estimate of
the skew is consequently based on much more data
than the other parameters in the distribucion, and
se it is not unreasonable to assume that, relative
te the other parameters, the skew is known.)

Thus only that variation in the estimare of Q.

which depends on the statistical variation jn the ilocal
data is cansidered, and it Is analyzed under the usual
assumptions of statistical sampling: That the data form
an independent sample from a population with a given
distribution whose parameters one wishes o estimate.

It has been known for a long time, and is noted in
bulletins 174 and 178 of the Water Resources Council
P13, that in the case of a flood disrribution whose
logarithn is normally distributed, confidence intervals
for the T-yvear floed, under the assumptions above, can
be obtained by the use of the non-central student's
t-distribution.

The more general case, following the guidelines of
bulleting 174 and 178, is when the logarithm of the
flood distribution has a Pearson TIT1 distributiom with
a non-zerc skew parameter, This case of non-zero skew
is more complicated than the case of a loghormally
distributed flood which is the case of zero skew. 1In
an important paper [ 2] Stedinger shows that the confi-
dence intervals, for guantiles, which are given in the
U.8. Warer Resources Council guidelines [1] are not
satisfactory. He uses a variance formula due to Kirte
T3] and derives an expression for confidence intervals
foer the quantiles which he shows is satisfactory 4n
severat simulations,

" A program described in [4) derives empirical comfi-
dence intervals for the T-year flood by means of a
simulation. This simulation iz similar to that done
by Stedinger in [ 2] and similar to the 2 simulation dowe
by Hardison [5], who used his results in order to assess
the accuracy of an approximate formula for confidence
limits for flood-frequency curves given in Bulletin 174,
{This is one of the formulas which Stedinger in [2] found
to be unsatisfactory.} The results given in [4] are
more accurate and cover a more extensive range of T,
sample sizes, skews, and levels of significance than
these other simulations,



Mathematical Discussion:
MatnEmar te- L tstussion

In the case of zere skew, R , the logarithm of the
maximum annual discharge, has a normal distribution with
m2at R and standard deviacion ¢ . For the T-vear
flood, take p=1-1/T , and let Yo be the p-th
quantile of X3 i.e., :

POE<y ) =p (L

ic is yp thar we wane to estimate. For the estimare

>

A ~
¥ = + 0 oz
P p

El

Wwhere zp is the p-th guancile for an N(O,!) disecri-

pution, f.c., a normal distributlion with mean O and
standard deviation 1 , and ﬁ and T are the usual
estimates for pu and v  based on w data points. 1t
can he shown that

G- A - Qutisai+n ) € fo) (2
has the same distribution as
(Uﬁ)[(Z+zﬁfrﬁ)w"ﬁ] . (5

where the random variable In brackers in (3} has a non-
central t-distributlon, with non—centrality parameter
§ =z ym; the special case 6=0 1is the student's

p\."

t=distribucion.

Since the distributlonm of (3) can be written in
rerms of the known nen-cencral t-distribution, confi-
dence intervals for ¥ can be given. Because of the

way In which the flood design value is used, the confi-
dence interval of greatest interest is a one-sided {a-
terval which gives an upper bound. The choice of the
value T , for the T-year flood, and the number m

of data points determine the non—centrality parameter

¢ . The other gquantity which must be speciffed is a
probability p' for the one-sided confidence inrerval.
IE tp' ts the p'-th quantile of the non—central

t-distribution, then

P, <R+ 8, VR)) - 0! ¢4

gives the one-sided 100p' percent confidence interval
for }l'p .

In the case of non-zerc skew, the logarithm X of
the yearly peak discharge is assumed to have a Peavsom
type I1I distribution with density function

fix) = (l!ia]r(b))[(x—c)fa]h_iexp—{(x—c)fa] (33

where, in the case of positive a , the density Is given
by (5} for x> ¢ and is zero for x < o , while in

the case of negative a the denslity is given by (5}

for x< e and is zero for x> ¢ . Computing the mean
w , standard deviation o , and skew v from (5) shows

that 5
02 =ab
z
% = 4/, (6}

= o« + ab

where a has the sane 8igm as y . As mentioned above,
the skew coeificlent vy is estimated e{ther from a map
of regional skews ur from a large pool of data from thac
region., Consequently the error in estimating v , which
is ignored in this analysis, is of an entirely different
kind than that which arises in estimating p and o
b¥ means of m data points for the specific area for
which the T-yeatr flnod is beilng estimated.

The form of the density (5) shows that the random
varlable

Z = {X-c)fa (7}

has the one parameter denslty

2(x) = (1/T (b)) La™™

8
for x> O and O for x< 0} i.e., Z has a ganma

distribution wich shape parameter b  and scale para-
meter 1 .

In [4] it is noted that if l:q is the 100g-th
al

percentile for the gamma distribution 2z , ﬁz and G

are the usual estimatots for the mean of Z and the
varlance of 2 wusing m sample points, then

(yp—ﬁ);‘e= (tp—ﬁz);’gz for a= 0 (9
(yp_‘l‘_‘,_)ﬁ = (ﬁz'tl-—p)’rsz for a< 0.

Confidence intervals for ¥, were obtained ta [4],

by simulating the distribution of
A
-1/, (1

for Z having the gamma distriburion (8).

Stedingetr derived an approximate expression for
these confidence intervals in [2] using a variance
formula due to Kite [3]. wWhen restated in terms of the
percentiles above Stedinger's formula 1s:

=K ¢ - 11
I p TR tpiz) (11

The index p 1s related to the T-vear flood bv
p=1~1/T , and the constant ZP is the p-th percentile

for a normal WN(0,1) distribution., The constant Kp

is given by

K = (vt -b)ifb for ax= 0, (12)
3 P
K = (b~ ‘b fer a< 0,
o ( Ll-—p);“f o
in which tp and tl—p are the 10Mp-rh and L00{l-p)-th

percentlles of a gamma distribution with scale parameter
1 and shape parameter b , and which can be obtained by
applying the Wilson-Hilferty transformarion [ 6] to
either zp ar Zl—p .« The factor & is a positive

number given by Kite's variance formula

J\2=[1WKP+(.5)(1+.?5\12)K: 3/ 1+.522 ] (13)
o



To use formuela (11} {E iz only necessary to find
gq(p) . where ;q(p)gm is5 the g-th percentile for

the non—central Efdistfibution with non-cencrality
parameter &=2z.m , This non-central t-distributicn
is well-known ahd ics n-th percentile can be found by
means of a double numerical integration. The computa-
tion of this approximation is discussed in [7].

Approximace Confidence Intervals:

In [8] it was shown, by means of comparison with

sinulations, that for skew v  in a normal range,

-.?5 4y < .75, Stedinger's approximate formuls is
satisfactory for computing mot only the higher percen-
tilew of ¢he distribuiion but also For computing all

of the percentiles 5Z{5%)95%. This approximation is
less accurate for larger values of skew, as will be seen
in Table I; nete that it was shown in [ 9] that the
value vy = 2 corresponds to the common assumption of

2 lineay relation Detrween log 0 and logF, T the return
period. Table T compares simulaticn values to
Stedinger’s approximate values for the percentiles of
the 100 year flood for skew in the range -2<y < Z .

Table 1

Values for w=10 data points, T=100 vear flood

Tabulated values are relative percent error

100{4-B}/48 for the indicated percentlies

& = values from simmlation
(20,000 sets of 10 point samples)
b = Sredinger-Kite approximation

2 ektwm -~ 20 215 .l -DL5 6.0 0,5 5]
T

; ( Ezd ‘_:;1.2 l PET I I T . A b ik ] -Ra0

* . .

M 5% K - 0 | =10 [ 4.5

TR -3 - - | -2 [ w2 -3 |20

N IM: 7.2 r_iz 2.5 -1 1 3 |- -1 |-k

More extensive simulation indicafes that peneraliy

thiz telati{ve ervor detreases as ™ Increases
(52 m< 30) and decreazes as T increases (10< T< 100)
Conclusions:

Confidence
values of the
simulation or,
natere, by the

intervals should be provided for design
T-year flood and they can be computed by
for the usual range of hydrologlc para-
Sredinger—¥ite spproximation,
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