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Abzlvart

Funy important engincering problems fall into Lhe wlegury of
fling Jincar operators, with supporting Loundury cynditions, In
this puper, @ new inner-product and norw §s rdeveloped which enables
the numerical medeler Lo approximale such gngingering probicms by
diwrloping 8 generslized Fourter series. The reselting approximation
fu the “Lest" approximation in that & least-squares (L) error is min-
vred simyltansously for #itting both the preblema’s boundary conditions
and satisfying the 1incar opevator relutionship (the governing equations)
cver the problem's domain (Soth space and time), Becouse the numerical
technfque invelves a wirlT-defined fnner-product, error evaiuation is
readily avgilable using Bessel's ingquality. Minilmizatian of the appro-
tration eyror 15 subsequently achieved with respect to a weighting of
1he Tnher product compongrts, and the addition of basis functione used

n the approximation.



BEST APPROXIMATION OF A LINEAR OPERATOR EQUATION
T.‘V. Hromadka I1

Director of Water Resources Engineering, Williamson and Schmid,
17782 Sky Park Boulevard, Irvine, California 92714, U.S.A.

Abstract

Many important engineering problems fall into the category of
being linear operators, with supporting boundary conditions. In
this paper, a new inner-product and norm is developed which enables
the numerical modeler to approximate such engineering problems by
developing a generalized Fourier series. The resulting approximation
is the "best" approximation in that a least-squares (L2} error is min-
ized simuitaneously for fitting both the problem's boundary conditions
and satisfying the linear operator relationship (the governing equations)
over the problem's domain (both space and time). Because the numerical
technique involves a well-defined inner-product, error evaluation is
readiTy available using Bessel's inequality. Minimization of the appra-
ximation error is subsequently achieved with respect to a weighting of
the inner product components, and the addition of basis functions used

in the approximation.



INNER PRODUCTS FOR THE SOLUTION OF LINEAR GPERATOR EQUATIONS

The general setting for solving a linear operator equation with
boundary values by means of an inner product is as follows: Let Q
be a region in R® with boundary I' and denote the closure of & by
c1{5). Consider the Hilbert space L*{c1(Q), du), which has inner
product (f,g) = [fgd. (This is a real Hilbert space. For the complex
version, use the complex conjugate of the function g in the integral,)
The way to construct the necessary inner product for the development of
a generalized Fourier Series is to choose the measure u correctly; that
is Tet u be one measure u, on Q and another measure u, on T. One naturél
choice for a plane region would be for ¥, to be thé usual two dimensional
lebesque measure dV¥ on ¢ and for v, to be the usual arc length measure

ds on T. Then an inner product s given by {Birkhof and Lynch, 1984)

(f.q) = J fg dv + I fg ds. (1)
Q T

Consider a boundary value problem consisting of an operator L defined
on domain D(L} contained in L?(R) and mapping into L2(Q}, and 2 boundary
condition operator B defined on a domain D(Bj in L2{Q) and mapping it into
L?{r}. The domains of L and B have to be choosen so0 at least for f
in D(L), Lf is in L2(Q), and for f in D(B}, Bf is in L2(T'). For example
we could have LT =V®f, and Bf(s) equal the almost everywhere {a.e.) radial
1imit of f at the point s on T', with appropriate domains.

The next step is to construct an operator T mapping its domain
D(T) = D{L) }D(B) into L2(c1{Q)) by (for example, Davis and Rabinowitz,
1961)

Lf{x) for x in Q

TF{x)
(2)
Bf{s) for s on T,

TF(s)



Fram (2}, there exists a single operator T on the Hilbert space
L*(c1(R)) which incorporates both the operator L and the boundary

conditions B, and which is linear if both L and B are linear,
Consider the inhcmegeneous equation Lf =g, with the inhomogeneous
boundary conditions Bf =g, Then define a function g on c1(Q) by
g=g,0n0Q
9=g,0nT

Then if the solution exists for the operator equation

If=g
the solution f ;atisfies vif = g, on 2, and f = g, on T in the usual
sense of meaning that the radial 1imit of f is g, onT. One way to
attempt to solve the equation Tf = g is to ook at a subspace Dn of
dimension n, which is contained in D(T), and to try to minimize
[ITh - g]| over all the h in D, such as developed in Hromadka, et al.

{1986).

Purpose of Paher

In this paper, the mathematical development of the approximation
procedure s presented. Three simple but detailed example problems
are included to {1lustrate the subtle concept cimployed in the method,
and to demonstrate the progression of steps used in the development

of an associated computer program. Extension of the methods to a

computer program for the approximation of boundary value problems
of the two-dimensionai Laplace equation is contained in a companion
paper. Generalization of the computer program to other linear

operator problems is the focus of a final paper.



Definition of Inner-Product and Norm

Given a Tinear operator reldtionship
Li¢)=hong, 4= ¢ on T (3)

defined on the problem domain @ with auxilliary conditions of ¢ = éb
on the boundary t(see Fig. 1). Here Q may represent both time and space,
and ¢y, may be both initial and boundary conditions. It is assumed that
the working space is sufficiently restricted (see following} such that

¢ is a unique almost everywhere (ae) solution to (3).

Choose a set of m linearly independent functions <fj>m, and let s™
be the m-dimensional space spanned by the elements of <fj>m. Here, the
elements of <fj>m will be assumed to be functions of the dependent
variables appearing in (3).

An inner-product is defined for elements of S™ by {u,v)} where

for u,v eSm

{usv) = I uvdl® + J LuLvdQ ' (4)
T 2

It is seen that (u,v} is indeed an inner-product, because for elements
u,v,w in ST
(1) (uv) = (viu)
(1) (ku,v} = k{u,v), for L a linear operator
(111} (utv,w) = {u,w) + {v,w) for L a 1inear operator

(iv} (uu)-= [ (u)%dr + [ {Lu)dn 2 0
T it
v} (uu)=0=>u=0aeonT, and Lu = 0 ae over 0

The above restrict1ons.on the operator L imply that L 1s linear {see

(i1} and {ii1) in the above definition); if tu = DaeoverQandu =0
ae on I’y this must imply that the solution u = [0], where [0] is the
zero element over Q UT; and for the inner-product to exist, the integrals
must exist. For the inner-product of {4) to exist, the integrands must

be finite. Additionally, each element ucS™ must satisfy [ uldr <.
r



For the above restrictions of L and the space ™, the inner-product

is defined and a norm “|{ }|" immediately follows,

[l = (uv)® (5)

The generalized Fourier series approach can now be used to obtain the
"best" approximation m e$™ of the function ¢ using the newly defined
inner-product and corresponding norm presented in (4) and (5).

The next step in developing the generalized Fourier series is to
construct a new set of functions <gj>m which are the orthonormal re-

presentation of the <f3>m.

Orthonormalization Process

The functions <gj>m can be obtained by the well-known Gramm-
Schm%dt procedure (Kantorovich and Krylor, pg. 45, 1964) using the

newly defined norm of (4). That is,

g, = f,/{1f, 1]

: (6)

Qm = (fm - (fm'gi)glu“_(fm’gm-l)gm-ll/
I|fl11-(fm'gl}glﬂu'('fm'gm-l)g _1“

Hence, the elements of <gj>m satisfy the convenient properties that

0, if jfk
(9509, ) = L if jek (N

In a subsequent section, a simple one-dimensional problem illustrates
the orthonormalization procedure of (6).

The elements <gj>m also form a basis for S™ but, because of {7), can
be directly used in the development of a generalized Fourier series where
the computed coefficients do not change as the dimension m of <gj>m
increases. That is, as the number of orthonormalized elements increaseg

in the approximation effort, the previously computed coefficients do not

change. Fach element ¢hFSN can now be written as



E Y95 0 4ES (8)
e _ |

where Yj are unique real constants.

Generalized Fourier Series

The ultimate objective s to find the element ¢hFSF'such that
||¢m - ¢|] is a minimum. That is, we want ]]¢m - ¢|1* to be a minimum,

where
, m 2z m 2
|I¢m ‘¢II = .é T&gj '¢b dar + L_Z ngj - L¢} da (9)
J=1 J=1
v 0 .
Remembering that L is a linear cperator, and L¢ = f by the probIem de-

finition, of (3) we have that {9) can be rewritten as
z ? 2 m L 2
o ~¢l] = 1Y% | 9T jgle gy-f| da (10)
r a

Thus, minimizing |[¢m - ¢[|2 is equivalent to minimizing the error or
approximating the boundary conditions and the error of approximating
the governing operator relationship in a Teast-square {or L?) sense.
Because the <gj>m are orthonormalized and the inner-product { , ) is
well-defined, the coefficients A7 of (8) are immediately determined by

*
the generalized Fourier constants, Yy where
*
Tj = (gjl¢) s 3 * L2y e, (11)

Thus

- g
1

E *rjgj Z(gd.cb)gj (12)

is the "best” approximation of ¢, in the space s,



Example Problem #1 (Differential Eguation)

To illustrate the previous developments, a simple one-dimensional
torsion problem is studied. In this example, four polynomials {linearly

independent functions} are used as a basis,

<fj>" =<1, x, x%, x%

with the problem defined by, for 0O<x<i,
¢
——— = -2, ¢(x=0}) =1 and o{x=1) = 2.
ox?

2
Here L =-§%? . h= -2, and ¢b is given by the two point values at

x = 0,1. The inner-product of {4) is now given as

3t (u) 2%(v)

+ uvl + de;
x=0 x=1 3x? ax?
r 93 Q

(u,v) = J uvdlr + J Lulvd® = uv

(13)



The 4-dimension space §* is the set of al) functions {(polynomials) such

that ¢ (x) = C, +C, x+ €, x* +C x* where the C; are real constants.
The orthonormalization of the <fj>“ proceeds as follows:

For element 9,:

By ()

ax? ax?

dx = 2

oty =@ mm| J
x=0 x=1
x=0

and
g, = fl/]|fl|] = 1/7Z = /22

For element 9,:

la’(x) 3% (/272)
()22)|  + ez s | = Z9E
x=0 x=1 ax? ax?

(f,09,) = (x,/2/2)

= J2/2

9, = f, - (f,.0,)9, = x-(VZ2)(/2/2) = x - 172

1
" n 32 (x~1/2} a%({x-1/2)
(&.3,) = (-v2)(x-1/2)| 0+(x-uz>(x~-uz)]x T ~
x= = )

29,29, /118,11 = (x-1/2) / (V22) = (2x-1) / /2
Similarly for element 9,:

g, = {x* -x)/2



Element g, #s more involved and is derived in

(£,09,) =272 5 (f.g,) = YU2 5 (f .9,)

a.. = x“'(fg’g]}gl = (f-.’gz)gz T {f“’g“)g’ © xs

2 .
(éu,ah) = IX’ - %—xz + %] + [x’ - g-xz +
x=0

0+ 0+ | {6x-3)2dx=3

fo, 8 /Nedl s - v dn/ 8

Hence, the orthonormal vectors <gj>“ are

detail for illustration:

=3

LT

gyt = </2/2, (2x-1)/V2, (x* -x)}/2, (2x* -3x* +x)/2/% >

Now, any element ¢, e S is of the form
¢* = gvg
3= 99
*

The norm ||¢k - ¢|] 1s a minimum when 73 s 73

Fourier series coefficients determined from
*
Yj = (93"”'

That is,

*
Yy ® J gj¢bdr + J ng Lpdd = l gj¢bd? + J
T Y T R

where for simplicity, the ng are given by

<lgp* = <0, 0, 1, (6x-3)//3 >

*
where Y; are the generalized

ngfdﬂ



Remembering that h = -2 by the problem definition, we solve for the

Y; as follows:

e tsen) = [ 2] fo)]

o [T )l 05

2 = x‘l
e o 2x-1 2x- 1
Y, = (g, ,¢ =[.._][¢] +{ [} + 0= /772
2 2 Lz b x=0 vz x=1 ’
f1
T: = (9,,9) =0+ 0+ | Lg fdx = (l)f -2)dx = -2

o=~
]

1
L= {9,00) =0+ 0+ | Lg fdx J ( 2) dx =

Thus, the best approximation in $* is given by
. = J vig. =142
= Y:Q: x - x?
vk F
. * *
It is readily seen that L¢~ = -2 = h, and ¢, satisfies the problem

boundary conditions.

Discussion
From the example problem, a best approximation of a linear operator
relationship is obtained by a generalized Fourier series development which
minimizes, in a least-squares (L2?) sense, the error of approximation.
Because the generalized Fourier series approach is used, several
advantages over a matrix solution (for the generalized Fourier series

coefficients) are gbtained:

1. Elimination of the need for solving large, fully populated, matrices

such as occurs when solving the normal equations.

2. Elimination of the instability which typically arises in a matrix
solution for Fourier coefficients {i.e., higher powers of the

expansion basis functions assumed).



3. The generalized Fourier series coefficients do not change as
additional functions are added {i.e., as the dimension m of the
space §" is increased). |

4. Generaiized Fourier series theory applies; hence, error analysis
can be conducted using Bessel's inequality as discussed in the

next section.

Approximation Error Evaluation

Due to the generalized Fourier series approach and the definition
of the inner-product, Bessel's inequality applies. That is, for any

dimension m

m m 2
{9,0) 2 jgl (gj.qa)’ = £ vy (14)
where \
(¢,9) = J(q:)‘dr_ + J(w)’dn = J odr + J f2dQ (15)
Q T {

Equation (15} is readily evaluated and forms an upper bound to the

sum of (gj.¢)z as the dimen;ion m increases. Consequently, one may
interact with the approximation effort by carefully adding functions

to the <fj>m in order to best reduce the difference computed by Bessel's
inequality. In a following section, Bessel's inequality will be used

to define an objective function {noted by )() which will be subsequently

minimized by determining a weighting factor ¢ te be used in the inner

product of (4).

Example Problem #2 {Voltera Integral)

To further illustrate the approximation method, a Voltera integral
equation (such as occurs in developing unit hydrographs from watershed

rainfall-runoff data} is considered where
t
a(t) i §(t-s)o(s)ds, Ost<2



where for simplicity the effective rainfall intensity is given by the
constant valua

i{t-s}) =1

and the runoff hydrograph flowrate q{t} is given by
t?, O<t<l

q(t} =
-2t% + 7t-4, l<t<2

In this class of problem, neither boundary (nor initial) conditions are

involved, hence the inner product of (4) becomes

(u,v) = J Lubvdg

i | (16)
2 t

= Ui(t—s)u(s)ds i(t-s)v(S)dS] dt
t=0 0

By assumption i(t-s} = 1, and the inner product reduces to

2t t
{u,v) = [ l: u{s)ds V(S)ds] dt

t=0

Three elements are considered for basis functions <fj>’. namely the
polynomials <l,s,s?>. The orthonormalized elements <gj>3 are

determined in the following:



t
Lf, = l (1)ds = ¢

2

c(faf ) = J tidt = 8/3; [, 4] = 2'/%

0

and 9, = fl/”flll =/§

9,: t

t
tgl‘l/g“"/g
2. 2

“(f,.9,) = i Lf,lg,dt = i [L;']

Now g2 = fz - (fzggl)gl =5 = 3/4

t
. 2
Ly, ‘l(s‘ 34) ¢s = 5 - ¥

2
. “ - tz - g—.E 2 = 1
% (3,,9,) 1 [—2‘ 3 J A T

29, =9,/0g,l = [s -%] 70

[t

/g

-

o



Analogous to the above,

(ACRER W2

{f,.q,) = /10/5.625
- 53 - f; - (f3.9139; - (fatg;)gz

=52 +0.53 - 1.7s
where the overbar notation indicates repetitive digits. Finally,

9, = 3,/]19,} = 10.52345 - 18,708s + 5.6125

The generalized Fourier coefficients are determined as before by

*
Y, = (g,5%) = J Lg, Léd
Q
1 2
- 3 .
= /% J {£){t*)dt + /é J (t){-2t* + 7t-4)dt = 1.8575
0 1 :
-
Y, = (9,:9) = 0.21082
*
Y, = {9,,9) = -0.325

Thus the best approximation is developed (for the defined {nner

product of (16)) by

$, = ~3.425% + 6.7467s - 1.1865



For this example problem, the exact solution is determined by taking
the derivative of the q{t) function (rewritten in terms of the

vartable 5)

1 3s2, O<s¢l
¢(s) =

-45+7, 1<sg2
Figure 2 compares the exact solution ¢(s) to the appreximation function
$,(s) developed from using only 3 potynomial basis functions.

It is noted that although the example problems #1 and #2 are
different linear operator relationships (i.e., a PDE and a Voltera
integral), the approximation method and procedures are identical.

Additionally, Bessel's inequality (14) can be used to evaluate

the error of approximation for this problem as follows:
2 2 1. 2
{¢,0) = J {Lo)}2dt = J[q(t)]’dt a (t’)zdt + 1 (-2t% + 7t-4)%dt =~ 3.6095

t=0 t=0
In comparison,

m 2
I vy = (1.8575)2 + (0.21082) + (-0.325)% = 3.6003 5 (4,6)
J=t

That is, although the gereralized Fourier coefficients provide for
the best approximation from space Sm, the error of approximation X

given by
- Ty (17)
= ] = Y
X = (¢.¢ #1 j

is nonzero and, therefore, the addition of additional elements to <fj>m

(increasing the dimension of Sm) will necessarily add more positive values
2

to the sum the Y; » resulting in a decrease in X. Should X = 0, then

e - ¢ﬁ|' =0and ¢ - O ° fol, the zero element, and ¢ = ¢y €.




For instance, example probiem #1 results in

(¢,9) = J (¢)2dr +J (Lg) dn
r Q ,
1
= (op)° + (¢, + J (f)2dx
x=0 - x=l 1o

(1) + (4} + (4) = 9

In comparison,
F

L 4 . 3 : 1
yom Ly o[ 2] e[ L) e o e
321 N O B % 4 vZ |

Thus, X = 0, which indicates that the approximation ¢, equals the
exact solution ¢ ae (almost everywhere). Of course for this example,

¢ = ¢, identically over @, and the ae statement can be dropped.

The Hefghted Inner Product

In the inner product of (4}, equal weight is given to the various
requirements imposed on the best approximation function $n from the
space g™ spanned by the m linearly independent basis functions <fj>m.
Namely, the L? error in satisfying the linear operator relationship
over @ is considered by equal importance as the L? error in satisfying
the problem’'s boundary (and initial) conditions, (of course for the
Voltera integral example problem, only one term is used in the inner
product definition and the concerns as to weighting factors is no Tonger
needed).

Due to the limitations of computer power, only a'finite nunber of
basis functions can be used for approximation purposes, and so an
argument is made to weight the terms which compose the inner product

differently. For O<e<l, one weighting of (4) is simply

{U.v) = € J uvdl + (1) J Lubvds? (18)
T &



In (18), an e-value close to 1 would force the approximation function
¢, of ST to focus upon satisfying the probiéﬁ's boundary coenditions
rather than sétisfying the linear operator. Similarly, and £-value
close' to 0 would focus the m approximatiﬁn towards satisfying the
linear operator relationship and ignore the boundary conditions.

| It is noted that (18) is still an inner product for a given
choice of e, and will be used to develop the generalized Fourier
series using the previously presented procedures. And as the

dimension ™ increases, the Bessel's inequality still applies in that
X=X c» and

Xe= 0= jlog - oll =0 (19)

In {19}, e-notation has been added to clarify that all norms, inner
products, and even the orthonormalized basis functions are now
functions of ¢ for 0<e<l. However for ease of presentation in the
fo]lbwing text, the e-notation is omitted although it is implied that
all relationships are now dependent on the c-value used in the weight-
ing of the inner product componenfs.

The selection of the "optimum" e-value to be used in (18) depends
on the rule assigned for optimization. In this paper, € i5 chosen

which minimizes the Bessel's 1nequality relationship

m *2 :

X, = (6:0), - jél YEJ (20}
m

= (4,9}, - jélw.gaj); (21)

In (20} and {21} it is stressed that all terms depend on €. The inner

product weighting e-value is chosen which minimizes )Ce of (21).




Example #3 (Weighted Inner Product)

To 11lustrate the inner product weighting concept, example
problem #1 is restudied with only one basis function, f, = x*. It is
2
recalled that Lo = £2, h = -2, and ¢(x=0) = 1, ¢(x=1) = 2.

Proceeding as before, and dropping the ¢ subscript notation,

(f,»f,) =€ J (fl)zdr + (1-¢) J (Lf,)%dq

2 2
’E(Xz) +£(X2)

+ (1-¢) J {-2)%dx = 4 -3
x=0 x=1

b lif,ll = -3
and g, = f,/ |[f |} = X2/ /A%

*
The only Fourier coefficient Y, s computed as

Y, = (6:9,) = ¢ [/T% )(1) o ["4%5 I(Z) |x-1

' (6c-4)

+ tl-a) _[;ngg ](*Z)dx * i

Thusi ¢l = Ylgl
6c-4
=x2 | —— |3 for Ocexl
4-% '

The next step is to compute J(e: L

+ (1-e)}] f2dx
x=1
1

e{1)? + €{2)% + (1-¢) | (-2)%dx

(8:8) = elog)?| + ela)?

x=0

n

4+c; for O<eg<]

(36 - 48¢ + 16)/(4-3¢)

)
- %
"




Therefore

X,

(6:0) - ¥

(4+€) - (36e? - 48e + 16)/({4-3¢)

4 + 13e + 16/(3e-4)

€{3% - 40)/(3c-4)

Figure 3 displays the plot of :(lE against e for O<e<l. Because

only one basis function f, = x?

was chosen in this simple example, the
weighting s focused toward satisfying the P.D.E. or the boundary con-
ditions as shown in Table 1. For this simple problem, $, = kx® where
k = {6e-4)/(4-3c) from the above calculations. Table 1 summarizes the _

implications resulting from using various values of k in P,

TABLE 1.  INNER PRODUCT WEIGHTING IMPLICATIONS
FOR PROBLEM #3

£ k(for ¢ = kx*) Notes
0 -1.0 A1l weighting is focused toward
2
satisfying &2 = -2.
Here, ¢, = -x°
0.50 -0.40 An intermediate value for ¢,
1.0 +2.0 A1l weighting is focused towards

satisfying ¢{x=0) = 1 and
$(x=1) = 2. Here p, = 2x°,



From Fig. 3 it is seen that -}:e is minimum when € = 0. Obviously
from Table i, however, £ = 0 would not be the optimum choice of ¢ due
to the approximation only satisfying in a minimum least-squares (L?)}
sense the P.D.E, .and neglecting the b0uﬁdary cﬁnditions. For typical
applications, ¢ is chosen when maximizes X+ In this way, the "largest®
value of approximation error is being used to evaluate Bessel's inequality,
which is then used to evaluate the reduction in approximation error as

additional elements are added to the test collection of basis functions.

Conclusions

A new approximation method is presented which incorporates a
tlassical generalized Fourier series expansion to solving & linear
operator relationship. A new inner-product and norm is presented
which en@bTes the modeler to deveiop the “best™ approximation of the
boundary conditions and the linear operator rélationship in a Teast-
squares {L*) sense. Because the method is based on generaljzed Fourier
series theory, Bessel's inequality applies and allows for a readily
computed "error of approximation.” By weighting the components of the
inner product, & relationship based on the Bessel's inequality is
devefoped which can be used to determire an optimum inner product

weighting factor.
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Fig. 1: Definition of Problem Domain, ), and Boundary,
T {NOTE:¢@ can include the temporal term
boundary of the initial condition specification,)

“2

0 as l L5 2

Fig. 2: Best Approximation Unit Hydrograph (dashed)
and Exact Unit Hydrograph (solid line).
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