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Abstraci: The design storm approach, where the subject criterion variable is evaluared by using a
synthetic storm pattern composed of identical return frequencies of storm patiern input, is shown to
be an effective approximation to a considerably more complex probabilistic model. The single area
unit hydrograph technique is shown to be an accurate mathematical model of a highly discretized
catchment with linear routing for channel flow approximation, and effective rainfalls in subareas
which are linear with respect to effective rainfall output for a selected “loss* function. The use of a
simple “loss* function which directly equates to the distribution of rainfall depth-duration statistics
(sach as a constant fraction of rainfall, or 2 ¢-index model) is shown to aliow the pooling of data
and thereby provide a higher level of statistical significance (in estimating T-year outputs for a
hydrologic criterion variable) than use of an arbitrary “loss* function. The above design storm unit
hydrograph approach is shown to provide the T-year estimate of a criterion variable when using rain-
fall data to estimate runoff.
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Natations

The following notation is used in this paper:

Ay = peak value (demand) of A for storm event o

A8 = demand during I3 based on function £

G, = timing offsets for channel link #1 used in the linear routing technigue
af, =, corresponding to storm class O,

k;:n = effective rainfall proportion factors for subarea R, and storm {

B_;n = effective rainfall timing offsets for subarea R; and storm /

hils) — subarea unit hydrograph (UH}) for subarea R; and storm i

Q = probabilities space of all storms

P = probability measure on

Q. = gpecific storm class

(-} — transfer function berween measured effective rainfall and measured runoff, for storn 7,

nsing a Volterra integral model sirocture
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Tiwl'} = transfer function for annual storm ., using £

Na'() = the restriction of 1, 10 the probability space £},

Ml ) = Wl I, W & uait hydrograph

a, = proportion faciors for linear routing technique, ysed for channel link )

eé(f i = effective Tainfall measured a1 the rain gage site, for storm §

¢gol} = effective rainfall at the rain gage site for storm @

e} = subarea K effective rainfall for storm i

el) = synthetic storm patiern input, using F, for stonn o

ed(t) = e,(1) in Ig; 0, otherwise

é5(t) = fled()) for t in f5; 0, otherwise

&} = T.year veturn frequency vatue of F{et7)

ML) = gd(ry — EX(1) in Iy, O outside Iy

B = Baed() el

B0 = Aed) - EX)

F = gffective rainfall functjon

Feg()) = mean value of e in I

15 = peak storm patiern input time mierval of duration & also, the operation of locating the
peak duration § of storm pattern frput

It = inflow hydrograph for linear routing

M = rainfall-runoff model

VF)) = outflow hydrograph for linear routing

By = mean pPrecipitation for peak duration §

Py = T-year return frequency value of P

Pt} = rainfall measured at the rain gage site, for swrm w

Pilt) = year i annual storm precipitation

i = runolf hydrograph, for storm i, measured at the stream gage

24} = ygar § annual storm runoff

Q) = runoff hydrograph for siorm o
30 = runoff hydrograph resulting fram peak time interval dof en()

Qalt) = m-subares ink-node model outpot for siprm i

Qor = T-year return frequency peak flow rate

gl = runaff hydrogeaph feamw subarea R, for stacm ¢
R = tatal caichment

R, = sybarea in R

S = T-year design pattern jnpai

580) = T-year design storm for peak time interval &
5.0 = temporal & integration variables

% = annual storm event for year j

B &= = yector Sotation for subsonipl sequence, k
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1 Introduction

In this paper, the unit hydrograph method (IJH) is used to develop estimates of
runoff criterion variables in the frequently occurring cases where the uncertainty in
the rainfall distribution over the catchment dominates all other sources of modei-
ling uncertainty. Indeed, the uncertainty in the precipitation distribution appears
to be a limiting factor in the successful development, calibration, and application of
all surface runoff hydrologic models (e.g., Loague and Freeze 1985; Beard and
Chang 1979; Schilling and Fuchs 1986: Garen and Burges 1981; Nash and
Sutcliffe 1970; Troutman }982).

Schilling and Fuchs (1986) write “that the spatial resolution of rain data input
is of paramount importance to the accuracy of the simulated hydrograph* due to
“the high spatial variability of storms“ and “the amplification of rainfall sampling
errors by the nonlinear transformation® of rainfall into runoff. They recommend
that a model should employ a simplified surface flow model if there are many sub-
basins; a simptle runoff coefficient loss rate; and a diffusion (zero inertia) or storage
channei routing technigue.

In their study, Schilling and Fuchs {1986) reduced the rainfall data set resolu-
tion from a grid of 81 gages 10 9 gages and to a single catchment-centered gage in
a 1800 acre catchment. They noted that variations in runoff volumes and peak
flows “is well above 100 percent over the entire range of storms implying that the
spatial resclution of rainfall has a dominant influence on the reliability of com-
puted runoff.” It is also noted that “errors in the rainfall input are amplified by
the rainfail-runoff transformation®™ so that “a rainfall depth error of 30 percent
resuits in a volume error of 60 percent and peak flow error of 80 percent.” They
also write that “it is inappropriate to use z sophisticated runoff model to achieve a
desired level of moedeling accuracy if the spatial resolution of rain imput is low™.
Similarly, Beard and Chang {1979) write that in their study of 14 urban catch-
ments, complex models such as continuous simulation typically have 20 to 40
parameters and functions that must be derived from recorded rainfall-runoff data.
“Inasmuch as rainfall data are for scattered point locations and sterm rainfall is
highly variable in time and space, available data are generally inadequate... for
reliably calibrating the various interrelated functions of these complex models.”

In the extensive study by Loague and Freeze (1985), three event-based rainfall-
runoff models (a regression model, a unit hydrograph model, and a kinematic wave
quasi-physically based (QPB) model were used on three data sets of 269 events
from three small upland catchments. The three catchments were 25 acres, 2.8
square miles, and 35 acres in size, and were extensively moenitored with rain gage,
siream gage, neutron probe, and soil parameter site testing. For example, the 25
acre site contained 35 neutron probe access sites, 26 soil parameter sites (all
equally spaced), an on-site rain gage and a stream gage. The QPB model utilized
22 overland flow planes and four channel segments. In comparative tests between
the three modeling approaches to measured rainfall-runoff data it was concluded
that all models perfermed poorly and that the QPB performance was only slightly
improved by calibration of its moest sensitive parameter, hydraulic conductivity.
They write that the “conclusion one is forced to draw....is that the QPBE model does
not represent reality very weil; in other words, there is considerable model error
present. We suspect this is the case with moat, if not all conceprual models
currently in use.” Additionally, “the fact that simpler, less data intensive models
provided as good or better predictions than a QPB is food for thought.”

Troutman (1982) also discusses the often cited difficulties with the error in
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precipitation measurements “due to the spatial variability of precipitation.” This
source of error can result in “serious errors in runoff prediction and large biases in
parameter estimates by calibration of the model.”

Based on the literature, the main difficulty in the use, calibration, and develop-
ment, of complex models appears to be the lack of precise rainfall data and the
high model sensitivity to (and magnification of) measurement errors. Nash and
Sutcliffe (1970) write that “as there is little point in applying exact laws to approx-
imate boundary conditions, this and the limited ranges of the variables encoun-
tered, suggest the use of simplified empirical relations.”

By coupling to the precipitation variation the variation in loss rates due to
nonhomogeneity and other factors, the resulting variation in effective rainfall rates
versus distance over ihe catchment leads 1o the conclusion that the effective rain-
fall distribution over the catchment is a random process with respect to the avail-
able rain gage data.

In this paper, the rainfall-runoff modeling concepts are analyzed as a probabilis-
tic problem in order to address the statistical correlation of measured rainfall and
runoff, The problem setting is to develop T-year return frequency estimates of a
surface runoff hydrologic criterion variable (such as peak flow rate, peak water
depth behind a detention basin, etc.) at a stream gage site given the stream gage
data, and also given the precipitation data from a single rain gage. It is shown thai
a multi-linear single area unit hydrograph (UH)} method coupled with a design
storm composed of identical return frequency storm pattern inputs, properly pro-
vides the distribution of peak demand of the subject hydrologic criterion variable.
A focal point of this paper is to provide a detailed example preblem, which not
only demonstrates the generalizaiions developed herein, but also provides a quasi-
analytic solution.

2 Catchment and data description

Let R be a free draining catchment with negligible detention effects. R is discre-
tized into m subareas, R;, each draining to 2 nodal point which is drained by a

channe! system. The m-subarea link-node model resulting by combining the
subarea runoffs for storm i, adding runoff hydrographs at nodal points, and routing
through the channel system, is denoted as Qf(1) where 1 is storm time. It is

assumed that there is only a single rain gage and stream gage available for data
analysis. To simplify our analysis, it is assumed that the rain gage site is moni-
tored for a 'true’ effective rainfail distribution, eg(7). The motivation in using a

measured eé{t) at the rain gage site is to avoid the necessity of using a multiparam-
eter submode! to approximate eg(r); rather we assume that an accurate value of
e;(f} is available, even though this data is measured at the rain gage site which
may be located outside of the catchment, and these data only apply at the rain
gage site. In latter sections, the use of eé(t) will be generalized to the use of an
arbitrary effective rainfall pattern, ey{’). for storm ®. The stream gage data
represents the entire catchment, R, and is denoted by Q;(r) for storm event /.
Baseflow is assumed to be negligible (or a known function of time, !).

2.1 Linear effective rainfalls for subareas
The effective rainfall distribution (rainfall less losses} in R; is given by e}(r) for
storm [ where e}(r) is approximated by properticns of translates of e (t) by:
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Figure 1. Subarea effec_tive rainfall (precipitation less losses) as a linear combination of gage meas-
ured effective rainfall, eg()

elt) = Thhelt—0)),  j=12..m (1)

where l},, and Bjn are approximation coefficients and timing offsets, respectively,
for storm i and subarea R;. In Eq. (1), the l_;:,, and 9},, are samples of random

variables for storm event i. Figure 1 iliustrates the linear effective rainfall
corresponding to arbitrary subarea, R;.

2.2 Subarea runoff
The storm i subarea runoff from R}, qj:(r), is given by linear convelution:

gie) = j;:oej(z—s)qJ;-'(s) ds (2)

where q>}(s) is the subarea unit hydrograph (UH) for stortn i such that Eg. (2)
applies. Combining Egs. (1) and (2) gives

qj(1) = L;Gzeé(!—efn—s)kj,@;(s) ds. (3)

Rearranging variables,

gjr) = [ eft=)EAL0fis—0},) ds )

where throughout this paper, the functions f(¢} which appear, and are defined for
t = 0, are extended to be defined for all ¢ by f{z) = 0 forz < 0.

2.3 Linear routing

Let /,{¢) be the inflow hydrograph to a channel flow routing link (number 1), and
0,(¢) the outflow hydrograph. A linear routing model of the unsteady flow routing
process is given by (e.g., see Doyle et al. 1983),
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iy
O) = ¥ g lir—ay) (5)
k=1
where the a, are coefficients with sum to unity; the Gy, are timing offsets; and n,
and k, refer to the summation index for link number 1. Again, h{t~uy) = 0 for
I <C . Given gage data for 7,(¢) and 0,(¢), the best fit values for the ag, and q,,

can be cormputed by least squares optimization.
Should the above outflow hydrograph, 0,(¢), now be routed through another link

(number 2), then I,(z) = 0,(z) and from the notation used previcusly,

i iy il
02(1‘) = Z aszz{l - (Ikz) == z ak; Z aktll(t—ukl'—uhj. (6)
k3=1 k2=1 k]=1

For L link, each with their own respective gage data, the above linear routing
results in the outflow hydrograph, 0,(¢), being given by

Ay ftr—| 3 m

OL(I) = Z ah Z ay, - Z ak; E ak111(f‘ukf_ak;“--"U-k,__;"akL)- {7
: k=1 kpoa=1 ka=1 k=1

Using a different notation, the above 0,(z) is written as

0(1) = 3 ot it =) (8)
k=
where <Ck>> implies the repeated summations shown in Eq. (7).

For subarea R, the runoff hydrograph for storm i, q}(r), flow through L; links
before arriving at the stream gage and contributing to the total modeled runoff
hydrograph, @, (z). All of the constant a’., . and a’ . are available on a storm
by storm basis. Consequently from the linearity of the routing technique, the
m-subarea link-nede model is given by the sum of the m, q}(r) contributions,

. Ll . . s
Cu) = 3 ¥ alysgili—0lys) (9)
F=i<lks>;

where each vector <k>j is associated to a R,, and all data is defined for storm i,
It is noted that in all cases, continuity of volume is preserved by

z a_’gk}}_ = 1, (10)

<k=;

The linear ronting technigue of Eq. (5) is a variani of the siream flow routing
convolution technique of Doyle et al. (1983). As noted in Doyie et al. {1983), dif-
ferent sets of calibration parameters would be needed for different classes of hydro-
graphs (e.g., low-flow hydrographs versus high-flows). However for specified
ranges or classes of hydrographs, a single set of routing parameters may be
appropriate. Hence, on a hvdregraph class basis, the routing effects are essentially
linear and are adequately described by the model of Eq. (8).

The assumptions involved in the above derivations (i.e., that the routing effects
are approximately linear for classes of hydrographs, and that a single set of cali-
brated routing parameters are appropriate for a class of hydrographs) will be useful
in the latter sections of this paper when developing estimates of hydrelogic cri-
terion variables and their probabilistic distributions.
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2.4 Link-node model QL(t)

For the above linear approximations for storm f, Eqs. {1), (4), and {9) can be com-
bined 1o give the final form for the mr subarea link-node model, (1),

0 = ¥ T alus, [, et = ZM0)(s —8n 0k ) ds. (11)

Je=l<k>;

Because the measured effective rainfail distribution, e;(r), is independent of the
several indices, Eq. {11} is rewritien in the form

oL = [° -3 3 amj):l,mqs,,(s Ok ,) ds (12)

F=1<k>;

where all parameters are evaluated on a storm by storm basis, 7.
Equation (12) describes a model which represents the total catchment runoff
response based on variable subarea UH’s, q:;(s)- variable effective rainfall distribu-

tions on a subarea-by-subarea basis with differences in magnitude {A},); timing,
3] ,,), such as due to offsets in timing between the measured data and thc subarea

data, and pattern shape (linearity assumptlon) and channel flow routing translation
and storage effects (parameters al;» and u<k}) All parameters employed in

Eq. (12) must be evaluated by runoff data where stream gages are supplied to
measure runoff from each subarea, Rj, and stream gages are located upstream and

downstream of each channel reach (link) used in the model.

2.5 Mode! reduction

The m-subarea model of Eq. (12) is directly reduced to the simple single area UH
model {no discretization of R into subareas) given by Q](z) where

Qi) = L;Oe;(r—s)ni(s) ds (13)

where 1'(s) is a realization of a stochastic process for storm event .

From Eq. (13) it is seen that the classic single area UH model is equivalent 1o
to the highly complex link-node modeling structure of Eq. (12), where considerable
runoff gage data is supplied interior of the catchment, R, so that all modeling
parameters are accurately calibrated on a storm-by-storm basis. For the case of
having available only a single rain gage site {where the effective rainfall is meas-
ured, €,(z)) and a stream gage for data correlation purposes, the 1 (s) properly
represenis the several effects used in the development leading to Eq. (12). Because
the Q4(+) model structure actually includes most of the effects which are important

in flood contrel hydrologic response, it can be used to develop useful probabilistic
distributions of hydrologic modeling output. _

In comparing the two models, (12) and (13), it is noted that Qm{t) ol
enly when interior runoff data is supplied to accurately evaiuate all the modeling
parameters used in Eq. (12). Should the catchment be discretized inte many small
subareas with small channel routing links (e.g., such as used in highly subdivided
catchments with UH approximations, or as employed in kinematic wave (KW) type
moadels such as MITCAT, or the KW version of HEC-1 {see HEC TD #15 1982)),
then with a stream gage located at each subarea {or overland flowplane) and at
each channel link, all modeling parameters could be accurately evaluated on a
storm-by-storm basis, resulting in the formulation of Eq. (12).
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Indeed, only by means of subarea stream gage data can the subarea linear effec-
tive rainfall distribution parameters of A}, and 0}, be accurately determined for

each storm event /. But it is these linear effective rainfall distribution parameters
that reflect the important spatial and temporal variability of storm rainfall over the
catchment which in turn causes the major difficulties in the development, calibra-
tion, and use, of hydrologic models (Schilling and Fuchs 1986. Loague and Freeze
1985; among others).

It is assumed in this paper that only a singic rain gage (which is monitored to
accurately develop the effective rainfall at the rain gage site, eg‘,(t)) and stream

gage are available for data analysis. Consequently, any hydrologic model serves 1o
correlate the dasa pair {eg(t), Q,(1)} for each storm event i.

By approximating the parameters, the estimator model, Q,i,,(f). cannot achieve
the accuracy of Qi(t), and G (r) = Qi)

From the above, the simple single area UH model, Q{(I), properly represents

the appropriate UH for each subarea {or overland flow planeg) for storm /; the
appropriate linear routing parameters for each channel link, for storm i; the
appropriate timing offsets and proportions of the measured effective rainfails, for
cach subarea; and the appropriate summation of runoff hydrographs at each con-
fluence. In contrast, the model estimator, Q,’,,(r), uses estimates for all of the

parameters and subarea effective rainfall factors. and hence cannot achieve the
accuracy of @f(z} without the addition of interior runoff data to accurately vali-

date the parameter values.

3 Storm classification system

Consider a catchment which has one rain gage and one stream gage. The underly-
ing probability space €2 is the space of 21l rain storms @ occurring over the catch-
ment area. A storm is a very complex event. having a beginning time, duration
and variation in spatial extent and spatial intensity. Historical records do not give
detailed information about the storm w: those records which are avatlable usuaily
consist of (1) the record of precipitation Py() from the rain gage, whose value at

time ¢ is Py(¢), which is a realization of the stochastic process {P,(z}f real}, and
(2) the record of discharge (J,(-) at the stream gage, whose value at time 1 is,
again Q,(t), and which is a realization of the stochastic process [Q,(f): real}.
The stochastic processes Pu(-) and @,(') can generaily be considered to be nan-

negative piecewise continuous functions which vanish outside a finite interval of
time,
From P,(') the effective rainfall at the gage, egy{), is derived as will be dis-

cussed later. Applying the unit hydrograph model gives

Qult) = [ egult —$)Mals) ds. (14)
By a storm class -Qm., is meant the collection at all storms with same effective rain-
fall as storm (wy:

Qg = {onegy() = egy, ()} (15}
In practice one could consider those storms @ with, say |egy(r) — egmo(r)-l arbi-

trarily small for ali z. Given this storm class €2, . we may consider it as a proba-
bility space with the induced probabiiity measure Py(A4) = P(A ﬂQmo)fP(Qmo)
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(supposing P(£2, ) # 0}. Let n(ﬁ)"(-} denote the restriction of () to £2,,, with this
probability (i.e., the subset of events which are considered sufficiently similar to
Wp).

Since diffcrcnt_ storms can have nearly the same effective rainfall measured at
the gage but still have different discharge, the function nu';)”(-) can vary with o, ie.,

it generally is a non-constant random variable.
Consequently, in the predictive mode, where one is given an assumed or design
effective rajnfall distribution €gp, (Which is not measured) as input, the predicted

discharge is not a single runoff hydrograph, but the stochastic process
!
Qo) = [ ega,lt =5)ng"(s) ds. (16)
Generally there is not enough data to determine the distribution of ny(') with

respect to a given storm class (), i.e., io determine n;’"(-). Hence additienal

assumptions must be used. For example, one may lump more storms in a single
storm class consisting of those storms ® with “similar® egl') curves; or one may

transfer n;’“(-) distributions frem another rainfail runoff set, imptlicitly assuming
that the stochastic processes 1,{')} are nearly identical for the two catchments. A
common oceurrence is the case of predicting the runoff response from a hypotheti-
cal {or design) storm effective rainfall distribution, eg?(-}, which is not an element
of any observed storm class. In this case, another storm class distribution must be
used, which implicitly assumes that the two sets of conditional 1) distributions are
nearly identical. Consequently for a severe design storm condition, it would be
preferable to develop correlatien distributions using the severe historic storms
which have rainfall-runoff data available for the appropriate condition of the catch-
ment. The example problem demonstrates the above concepts,

4 Effective rainfall uncertainty and the distributions, T]u‘;"’ and the distribution of
criterion variables
From Eq. {13), the realization for storm event i, nf(s), includes all the uncertainty

in the effective rainfall distribution over R, as well as the uncertainty in the runoff
and flow routing processes. That is, 1'(s) is a realization of the stochastic process,

N Where

M) = 3 X akps TAL0Is 0% —aly. ) an

J=1<k>
-and Eq. (17) appties 1o storm event f, and is an element of some storm class Qq,

For severe storms of flood control interest, one would be dealing with only a subset
of the set of all storm classes. In a particular storm class, Qmﬂ, it is assumed that

the subarea runoff parameters and channel flow routing uncertainties are minor in
comparison to the uncertainties in the effective rainfail distribution over R (e.g.,
Schilling and Fuchs 1986; among others).

For a highly discretized catchment model, the use of a mean value UH for each
subarea, ¢;(s), has a minor influence in the total model results (Schilling and

Fuchs 1986). Although use of Eq. (13) in deriving the [n(s)], distributions com-

bines the uncertainties of both the effective rainfalls and alse the channel routing
and other processes, equation (17) is useful in motivating the use of the
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probabilistic distribution concept in design and pianning studies for ail hydrologic
madels, based on just the magnitude of the uncertainties in the effective rainfail
distribution over R. That is, although one may argue that a particular model is
“physically based” and represemis the “true® hydraulic response distributed
throughout the catchment, the uncertainty in rainfall still remains and is not
reduced by increasing hydraulic routing modeling complexity, Rather, the uncer-
tainty in rainfall is reduced only by the use of additional rainfail-runoff data. In
Eq. (17), the use of mean value parameters for the routing effects implicitly
assumes that the variations in storm parameters of [A;] and [6,] are not so large
such as to develop runoff hydrographs which cannot be modeled by a single set of
linear routing parameters on a channel link-by-link basis.

If the rainfall-runoff model is to be used for storms which are considered 1o
have different linear routing parameters and subarea UH’s, then it is appropriate to
define routing storm classes, {2z, , composed of all storm classes {, measured at

the rain gage, which have associated restricted distributions, composed of identical
linear routing parameters (on a link basis), for each storm in Qg . Such a classifi-

cation may be based upon effective rainfalls measured at the rain gage which are
considered “severe,* “heavy,” “mild,” and *minor.* Furthermore, storm events
may be subdivided inte the sum of storms where different n(-)'s for different rout-
ing classes apply (Dovie et al. 1983).

The goal is to develop estimates of rare occurrence values of a runofl criterion
variable {or operator), A, evaluated at the siream page site. Examples of A are the
peak flow rate, or a detention basin peak volume for a given outlet siructure
located at the stream gage.

For simplicity, let all the effects of one year’s precipitation be identified with an
annual storm event ®; the underlying probability space is then the space of all such
annual storms. Event ®» may have a duration of a few hours or a few weeks in
order to inciude all the precipitation, P(), assumed te be of importance in corre-

lating the event @ to the stream gage measured runoff, O, (¢). Hence in the fol-

lowing development, the operation A is assumed responsive to storm events of rela-
tively short duration (i.e., storms of duration of a few weeks or less). The vast
majority of criterion variables of interest in Mood control design and planning of
small urban catchments are responsive 10 such short duration storm events.

The criterion variable of interest is noted by A4, for event @ where

Ay = AQu( ) {18)
For example, peak discharge is 4, = max {0,(¢):¢ real} and volume of discharge
is Ay = [Qu(1) dr.

The distribution of 4, can be estimated from a finite sample A, , Ay, A, and
this empirical distribution can be used 10 obtain the desired 7-year rcturn fre-
quency estimates, Ay, of the criterion variable where by definition

PlAy, = A7) = 14T, for T = 1. {1%)

& The rainfall-runoff model

With only a single rain gage available, all rainfall-runoff models must operate on
the annual precipitation events £,(*}. The notaticn of “effective rainfall” will be
generated in the following.

Let F be a function on the precipitation measured at the rain gage:
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Figure 2. The sequence of annual precipitation events

FiPy() = () (20)

such that e,(-) is a nonnegative, bounded, piecewise continuous function of time 1.
For example,

FiPo(t) = PRUY FiPylt) — [ Puls) ds. 1)

Figures 2-4 illustrate the use of various formulations for F.

YEAR §
Fip-INDEX _ | “
4 YEAR N K
{DAYS)
. F: Pi{t) = kPi{D) _ YEAR L
|
+(f)
| K4 2 <4 it
DAYS s {t}
FAPilt —Pilt)-(fo+{foo-Tore X foarg)
T YEAR | YEAR i YEAR i
&) Al u;it}
, o 4] e S R L e )
{DAYS) | hour  {pavys) {Days}

Figure 3. Example loss functions
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Fipure 4. Sequence of annual effective rainfalls generated from the sequence of annual precipila-
tion

The rainfall-runoff model, M is used to correlate the synthetic “effective rain-
fall“ e,() to the measured runoff, Q). Note that ey(') depends very strongly on

the mapping £ chosen.
In the singie area UH model formulation of Eq. (13}, and with eqnl) in place of

the term eg,('), the realization T(s) now depends on both the function £ and the

storm event .
Thus for the model, M, the storm pattern input, eq(), and the realization, Nel).

are used to equate with Q,(¢) by

M <ey(), Nl)> — Qul) (22}
where e,() must not be strictly zero for any ® where Qg() is not strictly zero.
The theorem of Titchmarch provides that if f oe“’(f $IN(sy ds = Q(t), then
such an m,() is unique assuming that eu() initiates at storm time 1 = 0 (see

Mikusinski 1983). From this it can be shown that given Q(') and e,('), there is an
Ne() for which Eq. (22) helds to within an arbitrarily given degree of accuracy.

3.1 Critical duration analysis
Consider a storm pattern input, ¢g{'), and let I be the operation of locating the
5-time interval of peak area in e,(-). Then (see Fig. 5)

L5 €6l ) — ed() (23)

where ew{t) =0 for all 1 € Ig; em(r) = ¢,(t) for 1 € I5; and where §>> 0. It 1s
noted that I3 is also used as the notation for the peak interval.
Other notation follows immediately when using em() to produce runoff (Fig. 6)

I
05 = J_ et —5)Mols) ds (24)
A = AQSLY. (25)
Because Am is the peak demand from Qw( ), Aw is a functicn of & for a gwen storm

event, ©, and also depends on the choice of F. (It is easily shown that A(,J is not

necessarily a nondecreasing function of 8.}
The critical duration, D(4), is that vaiue of 8such that
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Dy(A) = inf{8:A2 = A,}. (26)

That is, for storm event @, the critical duration is the minitmum peak time duration
{of size &) such that the model estimate of the runoff criterion variable is max-
imum.

3.2 Criterion variable distribution analysis
From the above
4
Ay = A _ el =5)My(s) ds) (27)

and
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a8 = AU edt=sinuls) ds) (28)

where eg(-) — e,l") as 8] (i.e., as O increases from zero). Then A(E — A as 87
where reasonable assumptions of continuity on A are assumed.
The QS(‘) hydrograph for peak duration Iy and function F is given by

03wy = [ edr—smyfs) ds (29)

where 1,(") is that 1 which correlates the total model input e,() with the
discharge -Q,('). Note there may be several runoff hydrographs to be correlated to
a single storm pattern input, e,('), and hence even if ey('} = eu{) Ny() may not
be equal 10 NyA ).

It is useful to rewrite N,(-) into the standard unit hydrograph fermulation,

Nol) = Wa¥al) . (30)

where () is the unit hydrograph (UH) associated to a particular storm pattern

input which depends on F; and W, is the ratio of total storm runoff to total storm

pattern input mass, namely, W, = _];:}Qm(s) dsfj;ionem(s) ds. Thus for the dis-

tributions 1,(-). distribution W, and y,(‘) are associated by means of Eq. (30).
Define components ES(-) and Ae(g(') by (see Figs. 7 and 8),

- foe] 1
leden = 57 edisy ds = < [ eus) ds (31)
5 (ed()), fori €14
2ult) = {0, otherwise (32)
ed(ty — &dw), 1€y
Aetﬁ(f) - {0, otherwise (33)

From Eq. {31), the random variable I_{e(E(-)} T-year return frequency values are
denoted by &2, where P(i(ed()) = &%) = 1/T (see Fig. 8). From Egs. (29) to
(33), the distribution of runoff hydrographs associated with peak interval I is given
by

08y = [ (123(s) + Aedls1Wowolt —s) ds (34)

where, given £, a peak duration I3, and an average input intensity f(eg{-)}, Aeg(-)
is the distribution of input storm patterns about E(E(-)‘

For a given function F, the random variable W, and stochastic process (")

include the important random variations in effective rainfali distributions and mag-
nitudes over R, with respect to the storm pattern input, é,('). But these com-

ponents are seen to be a constant fraction loss function and the standard unit
hydrograph which are both well-known, frequently used concepts.

We are interested in the “average shape“ of those storms which have, for a
given f;, the same average effective rainfall intensity. To proceed, let

ng = {u):f(e&a,(‘)) = f(egﬂ(-))} (In practice one would look at storms which have
“nearly equal® intensities.) Then, if P(an) # 0, the “average shape“ involved is
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determined by considering (see exampie problem for demonstration)
|
P(Q3)

f%Aeuﬁ(:)P(dm) (35)

with P(dw) being the probability measure on (L
Note that [5 varies with @. so before integrating in Eq. (35). translate all the

Aetg(-) curves tp [0,8]: this intermediate step only translates the associated ng(-)
curves. The more general way to proceed, which applies even when P(an) =0,1is
to use the conditional expectation:
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Eael) | 1(ed,(-)) (36)

which, for each ¢, agrees with Eq. {(35) when P(qu) # 0. As an abbreviation,
introduce the notation

ES (1) = E(Aed(e) | F(ed, (). 37
Define s3(1) by

Ael(n) = ES(1) + 3. (38)

Then

031 = [@3s) + EJ) + el(mgli—s) ds. (39)

3.3 The choice of mapping F
With limited data, the choice of the mapping F has a significant impact on ch(-]
and A, 5 We want A“5 — A, as 87, and an arbitrary choice of F can result in a
poorer corrclallan between rainfali- runoff data then anolher choice for F.

In developing the distributions for ew() and Aem(] it is often useful to supple-

ment the available data by including additional sources of data such as obtained
from other nearly identical watersheds where the rainfall-runoff model. A, has
aiready been applied. For a general function F, however, such additional data is
generally unavailable.

However, if cne uses an F function definition which results in a one-to-one map-

ping between the 53(-) distributions and the corresponding depth-duration distribu-
tions for precipitation, Ff,(‘), then usually a considerable advantage is afforded as
the rainfall data has often been locally regionalized (see Fig. 9).
EXAMPLE: Let £: P,(t) — kP,(1), k a constant > 0
Let Pm( ) be a 8-duration rainfall distribution. Then ¢, { )= kﬁst) foralld>> 0.
Let F: Py(1) — Pu(r) — ¢, when positive; 0, otherwise.
Then for durations § where e2(-) is nonzero almost everywhere, 20(-) = Po() — ¢.
From the above examples, the well- known constant fraction "loss“ function and
the phi-index “loss™ function both develop em() which can be immediately equated
o regional Pm() information. Note that use of a more “physically based” F func-
tion such as, for example, the Horton gquation results in the Ef,(-) being dependent
upon when in the storm pattern time the peak precipitation bursts occur; hence, in
this case Eg(-) could not be directly equated to the F(E[').
Once f(eﬁ(»)) are known, the 7T-year exceedance values, é’?, are given by

PUSH = 8D = /T

5.4 The “design storm" input concept

In this section, the well-known design storm approach to estimating T-year values
of a criterion variable (in rainfall-runoff models) is developed. Because all
rainfall-runoff modeling components are included in the following probabilistic
ana]y51s, the resulting equations are generalized. Let a mappmg F be given. Then
Qm{r) is given by Eq. {39) and the criterion variable A A(Qm( ) — A as 8.
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In the integrand in Eq. (39), the sum

=5

Zal) + EE0) (40)
is the mean intensity of the storm ., over [, plus the “expected shape” among
those storms having this intensity. 'Given a return frequency T, not necessarily an
integer, assume there is some storm w so that for this

- -3

HeG()y = &7

E% being the T-year value for the mean intensity f(e(ﬁ{-)) (see following Eq. (36)).

For any storm o with f(e‘g(-)) = Ema.

[
A3 = AL (@E3(s) + EJ(s) + ed(sImyle —s) ds)
and the T-vear design storm, for &, is defined by

S8y = &2ty + E¥0) (41)

for this w, or any other w with /| (eaa,(-)} = E?. “The* T-year design storm Sy{) is

thereby considered 10 be a collection of storms § ]5—(-), one for each 8 > 0.
From Eq. (41), the “design storm* concept is embodied in the formulation

a8 = Alf (s§s) + sdismmefe—s) ds] . (42)

where A(g — A, as 8], and T varies independently of 8. The following simplifica-
tions of Eq. (42) illustrate the concepts embodied in the design storm approach.

6 Design storm model simplifications
Let Ri(w) be the routing class to which @ belongs. The range of Ry can be

regarded as a finite sequence of outcomes and so a subset of E” for some fixed
value of n#. It is useful to consider the probabiiistic average 1 for each routing
class, i.e., the conditional expectation E£(ng(-) | Ry).

A basic assumption is that the effects of this averaging together of 1y,(") with
the variation in 33{-), combine so as to enable the simplification of the distribution

of A(E (approximately) by
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AZ =] jo‘s;,é(s)_smmu—s)|Rk) ds). (43)

And as 8], this will converge in distribution 10 Ay, {i.e., A, varies as a function of
the random variable, T),

D
Ay = max(A [SHEmglr—5) | Ry) ds) (44)

(i.e., it is assumed that both sides of Eq. {44} have the same probability distribu-
tion; and §and T are independent variables).

If furthermore, the peak demand monotonically increases with respect to
increasing T used in the argument S{E(‘) in Eq. (44), then the A, point estimates
for the distribution of A,, are obtained by using S7,(') in Eq. (44).

In Egs. (41)-(44), the distribution of A, is determined by evaluating the distri-
butions of 45 for successively larger 8 (as 81). As 8 increases, a differeat S2() is
determined such as shown in Figs. 102 and 10b, Thus Eq. {(44) represents an algo-
rithmic procedure where successively larger 5 values are used to determine A[E

until A4, is determined.

Equation (44) is the basis of the widely used design storm approach for estimat-
ing T-vear return frequency values of the random variable 4, (e.g., Hromadka and

McCuen 1986; Beard and Chang 1979; US. Army Corps. of Engineers, HEC
TD#15 1982; among others).
Now consider the formulation of Eq. (44) and approximaie E(my,() | Ry) by

EMy() | Ry = E(Wr)EWol) R (45)

where E(Wg ) and E(yq() | R) follow from Eq. (30). 1f F is defined on a storm
class basis by the constant fraction relationship, F:Py(t) — hg Pult), Ag, con-
stants > 0, then Egs. (44) and (45) are combined as

A3 = A(JCo PRSIEQ—9) | Ry) ds) (46)

where Cg, = Ag E(Wg,): P(-) is the “T-year” design storm rajnfali pattern such
that for each I, the average intensity of P?{') equals the T-year return frequency

rainfall for peak duration &, }3»?, and the shape of P?(-) matches the expected shape

of rainfall patterns corresponding to the T-year depth for a given & (see Figs. 10a
and 10b).

Should the catchment hydraulics respond similarly over the range of storms con-
sidered significant for the criterion variable (hence partially eliminating the need
for routing classes), and also the variation of effective rainfall over R be similar
(i.e., Wg,) over the subject range of storms, then Eq. {46) is simplified to

A = AC[ ;upr?(s)q;(: —5) ds) (47)

which converges in distribution to 4, as 87; where C is a positive constant and y(*)
is a unit hydrograph. Finaliy, should the time patterns of Pia»(-) be similar over the

range of storms considered (i.¢., on a return frequency basis, 7), and also ihe criti-
cal durations associated to the criterion variable be sufficiently small such that
expected time patterns of P2(-) are similar (for the critical durations of interest},

then the criterion variable of peak flow rate, QPT, is given by a form of the well-
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known rational equation.

7 Limited data analysis and the *T-year* design storm

Without the entire universe of samples available for each distribution, a limited
data analysis is needed in order to approximate the various distributions used to
develop 4. '

For (), it is assumed that routing classes, Ry, apply where R, is determined
by &, ECE('). and Aeg(-). The distributions are then developed by determining sam-
Pies, N, given the function £ applied to precipitation measured at the rain gage,

and runoff measured at the siream gage.
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The Aeg(-) is evaluated using information from local studies on the storm pat-
tern inputs such as prepared for precipitation by Huff (1967} The e‘g{-) is
evaluated from depth-duration-frequency analysis of I (eg(‘)) analogous to the
depth-duration-frequency analysis of precipitation, Pg‘ (It is recalled that Ae(f;’(-)
reflects the characteristics of F: P4} — e,{) applied at the rain gage.) Informa-
tion regarding E(E{-) can oftentimes be inferred from the expected precipitation
time patterns such as given in studies by Pierrehumbert (1974). Tt is noted that in
both of the above references, the distributions (or the expected value) of rainfali
time patterns are shown to be dependent upon the duration 8.

Should F be chosen which relates directly to the precipitation statistical charac-

teristics (e.g., constant fraction model, F: Py(t) — kPy{f), k > 0), ther the above

studies on precipitation time patterns can be used directly to determine Aeg(-}.

Additional, 5(2(') can also be derived directly from the precipitation data.

Hereafier, such a function F is said to be “conservative® with respect to rainfall,
HEC Training Document #1535 (1982) provides a precipitation design storm pat-
tern composed of identical return frequencies of rainfall nested about hour 12 of a
24-hour rainfall time pattern. Also used are depth-area adjustments on the rainfall
which result in the highly peaked rainfall time pattern becoming less “peaked” as
drainage area increases. This procedure can alse be interpreted as a technique to
develop the T-year design storm pattern, input, S4{t), when using a functipn F
which is comservative. The depth-area adjustments modify the time pattern of
Sr(1) based on catchment area. whereas in the development leading to Eq. {42},

Sr(1) is dependent of area (for our single rain gage problem) and is a function of
input peak duration, /5, and magnitude, f(eg(-)). However, larger catchment areas
typically have associated larger critical durations, and hence the depth-area adjust-
ments provide an approximation of the effects of both E{E -} and EDS,(-) used to

define S3() in Eq. (42). _
Usc of a conservative function F affords the advantage that both 33(-) and
A"o?{‘) are directly related to precipitation data. Rainfall data is typically locally

regionalized and oftentimes represents considerable station-year data. Use of a
nonconservative funciion F results in the pecessity of applying the model to the
total data set used in regionalizing the rainfall data in order to achieve similar lev-
els of statistical significance. (This is of special concern when the peak demand of
the criterion variable is most sensitive to the peak durations of input (i.e., eritical
durations) which have limited data available.)

In the formuiation of Eq. (44), it is commonplace In currently available design
methods 10 substitute a single design storm pattern of nested “T-year” inpuis
{based upon T-year rainfalls, when the function F is conservative) in place of the
atgorithm of A5 — Ay as 87 (e.g., Beard and Chang 1979). However, the use of

depth-area curves {or equivalent) such as applied in the HEC TD-15 may be neces-

sary in order to approximate the variation in S?a{'] {due to E(E(‘) variations) as &7,

8 Computational problem: the design storm approach

An example problem will be considered which represents, in a broad way, real
hydrologic phenomena yet is simple enough to allow exact calculations of many of
the hydrological and statistical parameters introduced above, 1t is emphasized that
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this example problem was developed 1o provide a plausible hydrologic rainfall-
runoff correlation problem with a known solution, yet attempis to be realistic as o
generally known (or assumed) data trends.

Suppose that the function F, as discussed above, operates on any given precipi-
iation event, defined for 1 = 0, by developing an effective rainfall of the form

ety =cle ™® — e bp>a>0 c>0 (48)

(Equation (48) can be considered as the result of least squares fitting to some
effective rainfall.) The dependence of &, & and ¢ on the storm o will be under.
stood without the more explicit notation a,, 5, ¢,.

For the storm @, @,(-) is related to e,(-) by convelution with n,(-):

Qult) = [ ealt —5)Mufs) ds. (49)
Differentiating Eq. (49) twice and using Eq. (48) shows that
d*Q, 40
c(b—am,(r) = Py {¢t) + (a+b)7(t) + abQ, (1) (50)
with
d
Ou(0) = —%3(0) = 0. 5

In order i simplify the following calculations the assumnption will be made that
0, (") has a simple form, which is defined for # = 0 and satisfies Eq. (51):

Oult) = Bt?e™® a>0, B>0. (52)

This relationship can be considered as a fitted curve 1o measured discharge. As
before, the parameters o and B are random variables which depend upon the storm
®. Substituting Eq. (52} into Eq. (50) gives

c(b—ayn,(t) = Pe “[{a—ala—b)? + 2a+b) — 2a} + 2] (53)
1t is noted that if o =< g, then n,(¢) > 0, (for t = 0); otherwise n,(f) is negative

for some ¢. It is also noted that the stochastic process m,(-) depends on the ran-

dom variables a, b, ¢, @, and B.
Given 8 > 0, let Iy = [z, z+8] denote the d-time interval of peak area in eq(").

Maximizing the area integral

[ Pema — ety ar, (54)

gives z as a function of &:

_ 1 ] — b0
z = b—abg{] — e_“ﬁ]“ (55)

In the last equation, z decreases from log(b/a)/(b—a) to 0 as 8 increases from 0
to co. Then ed(f) = e,{t) for ¢ in fzand is zero otherwise, and

3y = fo ‘e(s)mlt —5) ds fz z+5c(e_“ — e ¥ (1—s) ds. (56)

This integral can be evaluated exactly, but it suffices to consider that since
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.
Qult) ~ Q31 = [leols) = eg(s)Mulr —5) ds, (57)
as O increases to infinity, the area of e,{s) — eua,(s) goes Lo zero, and Qua,(t} con-
verges untformiy to Qy{r).
The §-approximation 43 to the criterion variable 4, is given by
o @ ez +d _ )
A = AQE) = [T0Nwydt = [T ete™ — 7 inge —s) dsdr. (58)

This integral can be evaluated, but as 8 increases to infinity the inside integral con-
vetges uniformly to

i
J eafsMalt =s) ds = @u(0).
The average intensity during peak effective rainfall duration of length 8,
- +8 _
Redon = =7 cte™ — et dr,

can be evaluated and simplified using Eq. (55) to obtain

eb—a) [L — e Oa/b—a)]
Sab [—e 8[p/(b—a)}

ftede) = (59)
The T-year return frequency value E? is the T-year return frequency value of the
random variable given on the right hand side of Eq. (59). The difference Ae(E(-) is
given by Eq. (33).

Two storms @, and ®, with parameters 4,, b,, c, and a, b, ¢ respectively, have

the same average synthetic effective rainfall intensity for a given § if the right
hand side of Eq. (59} has the same value for a4, b, and ¢ as it does for a,, b,, and

¢,; and so the set ng is the set of all storms o for which this is true. The struc-
ture of this set, and therefore the structure of the conditional expectation

EE (1) = Elaedn)| Ied (), (60)

depends on the distribution of a, b, and ¢. Therefore the exact computation of the
design storm S;‘r3 as given following Eq. (41), also depends on a, &, ¢, «, and .

At this point the description of this model depends on the joint distribution of
five random variables. In order to reduce the model complexity so that the
behavior of the model can be analyzed it is necessary to make further assumptions
concerning the relations between these random varnables.

The first simplifying assumption is that

a=pb, DOD<p=<l (61}
This further restricts the shape of the effective rainfalls, but in exchange for this
restriction Eq. {59) is considerably simplified to:
c(1=p) [L— e ®)[1/{i—p)]
e . (62)
bab {1 — ¢7*%{p/(1—p)]
The time to peak is (1/5)log(1/p}/(1—p), the volume is c/(b{1-—-p)), and the
peak value of e,(") is a constant times ¢. If a later peak implies, on average, a

larger volume and a bigger peak. this gives a clue about the possible general rela-
tion between b and ¢. With these facts in mind, one suitable choice, which wili
also simplify some other equations, is

Hedon =
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Table 1. Regression equation coefficients for Orange County, California, rainfail depth duration
relationships

return frequency

in years log4T normal BT

Z -610 -.610 426

5 -.239 -.230 438

10 -024 -043 427

25 167 163 434

50 285 298 434

100 397 413 427

b= 1/ke, k >0, ' (63)

with the constant k& to be determined later. The effective rainfall pattern chosen
this way, with these restrictions put upon it, can be regarded as a possible average
among many storms or as a model which only broadly resembles any real effective
rainfall curve.

For small §, the log of the maximum depth of effective rainfall over a time
interval of length & is approximately

log{8l{e,())) = log(1—p) + (p/(1—p}logp + logd. (64)

Hydrological data shows that log depth versus log duration curves, for a given
return frequency, agree in a general way with this equation; the agreement is that
they do plot as straight lines, the disagreement is that the slope of these lines is not
necessarily one, as it is in Eq. (64). For example, consider the regression equations
for depth D{(3) versus logd,

logD(3) = logAT + BTlogd,

AT and BT regression coefficients for a given rewurn period 7, as determined in
Orange County, Califoernia (adjusted for time in hours rather than minutes) are
shown in Table 1. The values of log4T are compared with that of a normal distri-
bution with mean - .610 and standard deviation .442.

This iable shows that it is plausible to assume that log4 T has a normal N(u,cf")
distribution, and in the numerical calculations we will make this assumption and
take u = —.610 and ¢ = .442. Equation {64) indicates that we may take

log(c) + log(1—p) + (p/(1—p)logp = logd T (65)

Here we are supposing that the result that BT is approximately constant at .43
corresponds to our model result where the slope has the constant value of 1.0, and
that the spacing between the log depth curves with return frequency has the same
distribution.

Writing ‘@ and b in terms of ¢ shows that for a fixed value of 1, et} is an
increasing function of ¢. Thus for a fixed value of ¢, e,(¢) is a random variable

whose T-year value is obtained by substituting the T-year value for ¢ in the for-
mula for e,ft).

Also it can be shown that f{em(-}) is an increasing function of ¢ and so the
T-year value of this average intensity is obtained by substituting the T-year value
of ¢ into the formula for f(e (). Thus in this example problem, there is only one
storm, the one corresponding to this value of ¢, with a given intensity and so the
T-year design storm consists, in this case, of exactly one storm. And, as noted

above, this storm has the property that for each fixed value of z, its value is the
T-year value of the random variable e,(2).
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Figure 11. Example problem design storms (effective rainfall} for T = 2,100 years

Figure 12. Example problem precipitation depth versus duration

Using the above distributions for ¢, and the relations given between ¢, a, and &,
the T-year design storm can be computed as soon as the values for p and k are
chosen. The parameter p of Eq. (61) is chosen to be 1/2. The constant & is
chosen to be 1 so as to have plausible times 1o peak effective precipitation (2 year,
3.0 hours; 100 year, 8.3 hours) {(see Fig. 11).

With the same parameter choices, log 8J{e (-)) versus logd curves are given in
Fig. 12.

Consider for a given 6 the volume of discharge over an interval [z, z, 18]

Ve — z,+8 4

Vs = J; Q) 4,

which is maximized by the choice
z, = 8/(&"2 — 1), (66)
This maximum volume can be written

Vs _ 28e % [B(1+82) + (27, +az)))

8 o? 8+ z,)°

(67)

Write B = y/a, where a and v are assumed to be independent random variables
with E(y) = ¥,. In order to relate a to ¢ we suppose that if we average over those
discharges which come from the same storm then the discharge volume is-a fixed
multiple p, of the effective precipitation volume

(2Y,)/e* = p kc? (68)

In connection with this averaging, recall that the discharge ¢ has random variation
which is not entirely specified by describing the effective precipitation, so that even
exact knowledge of «, &, and ¢, does not specify « and f§ and therefore Qu()

exactly. Consider, for example, the criterion variable which is the total volume of
discharge
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AQol) = [ Qols) ds = 2p/a’ (69)

As this simple equation points out, the criterion variable is itself a random variable,
whose distribution depends on the joint distribution of @ and p. Consequently, for
design purposes it is generaily not adequate to merely specify one value of the cri-
terion variable but instead a confidence interval for the design value is more
appropriate.

We have from Eq. (68)

loga = .25log(2y,/p,k) — .3logc, (70}

and so loga is itself normal since loge is normal.
The peak value of @ occurs at 2/ and is

Qpear = 4B/e%a? = ay/e’d.

If these peak values are averaged over all storms with the same effective precipita-
tion the average Qpyqy is mek dy,/e 24>, This implies that Qpeak has a log nor-

mal distribution; this property of the model is in good agreement with the usual
assumption as to the underlying stream gauge data distribution function.
We choose p, = 1/2. The choice v, = 0.04 gives reasonable values for time to

peak Q (2 year 4.7 hours, 100 year 7.8 hours) for the distribution of alpha deter-
mined by Eq. (70). The resulting discharge curves are shown in Fig. 13,

Figure 14 displays the log of the maximum average discharge over an interval
of length &, as given by Eq. {67), versus return period 7, under two different
parameter choices. The first choice is in taking P to have the value v,/¢ obtained

by averaging over all storms with a given return period 7. This can be calculated
directly from Eq. (67), which is a decreasing function of @, and the distribution of
o. The second choice is in taking f to have the value ".-'/ o, where v is uniformly
distributed on the interval [.9y,, 1.1v,]; this variation in y, independent of the
effective precipitation, raises the 7-year values in the way shown below.

Once the distribution of the parameters a, b, ¢, @, and [ have been described,
the realization ny() associated with the T-year storm is also completely specified
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Figure 15. Expected value of the example unit hydrograph for T = 2,100 years

by Eq. (53). The plot in Fig. 15 is of ny() for a from the T-year storm and for
vy = v,. This is the realization which would be obtained by averaging over all such
realizations for a given return period T (i.e., using the expected value). The convo-
lution of this average realizatien with the 7-year effective rainfall, is the design
storm approach. As Egs. (49) and (52) show, the true value of Q, is Y(®W)/Y, times

this estimate, and the error made in this estimation is small only if y(w) does not
differ much from its expected value ,.

9 Conclusions

The well-known design storm approach is developed from a rigorous mathematical
analysis of rainfall-runoff data. The mathematical underpinnings of the comcept
are shown to be well-based in standard probabilistic theory, as applied to the corre-
lation of rainfall-runoff data. For a single rain gage and stream gage data pair,
where the peak demand of a criterion varable is of interest at the stream gage site,
the standard single area unit hydrograph method with a design storm pattern input
of identical return frequencies for all durations is shown to provide the probabilistic
distribution of peak demand.
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Evaluation of flow probabilities in run-off detention
ponds
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Y. K. Tung, Wyoming Water Research Center and Department of Statistics, University
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1 [Introduction

Stormwater from urban areas may flood inte sewers and storm drains at greater
vojumes than treatment facilities can process, threatening to overwhelm them and
cause the release of untreated, contaminated water into local streams. To avoid
this, detention basins are built 1o hold the water until it can be treated. The prob-
lem is to build the basins large enough to hold all of the excess water. Only exces-
sively large basins in conjunction with very high treatment capacities would insure
that overflow never cccurs. However, the cost could be prehibitive, What is
needed is a methed of determining the probability of overflow for a given basin
size and treatment rate. Such information would be useful in evaluating the trade-
off of overflow risk and treaument-storage cost.

Design of detentien basins and treatment facilities for urban stormwater runoff
requires an estimation of the volume, duration and interarrival time of runoff
evenis, as well as the frequency of their occurrence within a given time peried.
Each of these characteristics may be modeled as a random process. Loganathan et
al. {1985) developed an analytical model for cemputing the probability of overflow
of an urban runoff detention basin by considering the randomness of volume, dura-
tion, and interarrival time of runoff events. Their model enables the estimation of
overflow probability on an event by event basis.



