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INCLUDING UNCERTAINTY IN THE DESIGN OF FLOOD CONTROL PEAK REDUCTION SYSTEMS

T. V. Hromadka 1I, M.ASCE!

ABSTRACT: The classic single area unit hydrograph (UH) approach is widely used to
model runoff response from a free draining catchment. Because the UH method cor-
relates the effective rainfall distribution to the runoff hydrograph distribution,
the resulting catchment UH should be considered a correlation distribution in a
probabilistic sense. Should the uncertainty in rainfall over the catchment be a
major concern in modeling reliability, then the UH output in the predictive setting
must be considered to be a random variable. A case study demonstrates the procedure
for including uncertainty in any peak flow reduction system.

INTRODUCTION

Many hydrologic models allow for the subdivision of the catchment into subareas,
each linked by channel routing submodels (i.e., a Tink-node model). The effect of
subdividing a catchment on modeling accuracy has not been fully investigated. The
calibration of a link-node model to available rainfall-runoff data is a related
issue, and the method of selecting the model parameters is important to the accuracy
of the Tink-node modeling approach. Also, the uncertainty in the modeling boundary
conditiions (i.e., the true precipitation distribution over the catchment? is pro-
pogated into the fitted parameters of the model itself, and the effect of insuffi-
cient knowledge of storm morphology affects model accuracy. These three factors
(i.e., watershed subdivision, parameter estimation, and storm morphology effects)
are important to the accuracy of hydrologic designs.

In this paper, the unit hydrograph method (UH) is used to develop estimates of
runoff modeling error in the frequently occurring cases where the uncertainty in the
rainfall distribution over the catchment dominates all other sources of modeling
uncertainty. Indeed, the uncertainty in the precipitation distribution appears to
be a 1imiting factor in the successful development, calibration, and application of
all surface runoff hydrologic models (e.g., Loague and Freeze, 1985; Beard and
Chang, 1979; Schilling and Fuchs, 1986; Garen and Burges, 1981; Nash and Sutcliffe,
1970; Troutman, 1982).

Schilling and Fuchs (1986) write "that the spatial resolution of rain data input is
of paramount importance to the accuracy of the simulated hydrograph" due to "the
high spatial variability of storms" and "the ampiification of rainfall sampling
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errors by the nonlinear transformation" of rainfall into runoff. They recommend
that a model should employ a simplified surface flow model if there are many sub-
basins; a simple runoff coefficient loss rate; and a diffusion (zero inertia) or
storage channel routing technique,

In their study, Schilling and Fuchs (1986) reduced the rainfall data set resolution
from a grid of 81 gages to a single catchment-centered gage in an 1,800 acre catch-
ment. They noted that variations in runoff volumes and peak flows "are well above
100 percent over the entire range of storms implying that the spatial resolution of
rainfall has a dominant influence on the reliability of computed runoff." It is
also noted that “"errors in the rainfall input are amplified by the rainfall-runoff
transformation so that "a rainfall depth error of 30 percent results in a volume
error of 60 percent and a peak flow error of 80 percent." They also write that "it
is inappropriate to use a sophisticated runoff model to achieve a desired level of
modeling accuracy if the spatial resolution of rain input is Jow" (in their study,
the raingage densities considered for the 1,800-acre catchment are 81, 9, and a
single centered gage). : :

Similarly, Beard and Chang (1979) write that in their study of 14 urban catchments,
compiex models such as continuous simulation typically have 20 to 40 parameters and
functions that must be derived from recorded rainfall-runoff data. "Inasmuch as
rainfall data are for scattered point locations and storm rainfall is highly variable
in time and space, available data are generally inadequate for reliably calibrating
the various interrelated functions of these complex models."

Garen and Burges (1981} noted the difficulties in rainfall measurement for use in
the Stanford Watershed Model, because the K1 parameter (rainfall adjustment factor)
and UZSN parameter (upper level storage) had the dominant impact on the model
sensitivity.

In the extensive study by Loague and Freeze, (1989}, three event-based rainfall-
runoff models (a regression model, a unit hydrograph model, and a kinematic wave
quasi-physically based model) were used on three data sets of 269 events from three
small upland catchments. In that paper, the term "quasi-physically based", or QPB,
is used for the kinematic wave model. The three catchments were 25 acres, 2.8
square miles, and 35 acres in size, and were extensively monitored with rain gage,
stream gage, neutron probe, and soil parameter site testing. For example, the 25
acre site contained 35 neutron probe access sites, 26 soil parameter sites (all
equally spaced), an on-site rain gage, and a stream gage. The QPB model utilized

22 overland flow planes and four channel segments. In comparative tests between

the three modeling approaches to measured rainfall-runoff data it was concluded that
all models performed poorly and that the QPB performance was only slightly improved
by calibration of its most sensitive parameter, hydraulic conductivity. They write
that the "conclusion one is forced to draw...is that the QPB model does not represent
reality very well; in other words, there is considerable model error present. We
suspect this is the case with most, if not all conceptual models currently in use."
Additionally, “the fact that simpler, less data intensive models provided as good

or better predictions than a QPB is food for thought."

Based on the literature, the main difficulty in the use, calibration, and develop-
ment, of complex models appears to be the lack of precise rainfall data and the high
model sensitivity to (and magnification of) rainfall measurements errors. Nash and
Sutcliffe (1970) write that "As there is Tittle point in applying exact Taws to
approximate boundary conditions, this, and the Timited ranges of the variables en-
countered, suggest the use of simplified empirical relations.”



Troutman {1982) also discusses the often cited difficulties with the error in preci-
pitation measurements "due to the spatial variability of precipitation." This source
of error can result in "serious errors in runoff prediction and large biases in
parameter estimates by calibration of the model."

While surface runoff hydrologic models continue to be developed in technical compo-
nent complexity, typically including additional algorithms for hydraulic routing
effects and continuous soil moisture accounting, the problem setting continues to be
poorly posed in a mathematical approximation sense in that the problem boundary con-
ditions (i.e., the storm rainfall over the catchment) remain unknown. Indeed, the
usual case in studying catchment runoff response is to have only a single rain gage
and stream gage available for data analysis purposes; and oftentimes, neither gage
is within the study catchment. As a result, the rainfall distribution over the catch-
ment remains unknown; hence, the problem's boundary conditions must be approximated
as part of the prob]em solution. The fact that the uncertainty in the rainfall dis-
tribution over the catchment has a major impact on the success of any hydrologic
model's performance and accuracy (e.g., Schilling and Fuchs, 1986, and Troutman,
1982) indicates that the underlying assumption used to specify the storm rainfall
over the catchment must recessarily be a major factor in the development, calibra-
tion, and application, of any hydrologic model.

CATCHMENT AND DATA DESCRIPTION

Let R be a free draining catchment with negligible detention effects. R is discre-
tized into m subareas, R:, each draining to a nodal point which is drained by a
channel system. The m-stbarea 1ink node model resulting by combining the subarea
runoffs for storm i, adding runoff hydrographs at nodal points, and routing through
the channel system, is denoted as Qu'(t). It is assumed that there is only a single
rain gage and stream gage ava11ab1e for data analysis. The rain gage site is moni-
tored for the 'true' effective rainfall d1str1but1on, 1(t). The motivation in
using a measured e 1(t) at the rain gage 51te is to avo?d the necessity of using a
mu]tiparameter subﬁode1 to approximate e (t), rather we assume that an accurate
value of e47(t) is available, even thougﬁ this data is measured at the rain gage
site which“may be located outside of the catchment. The stream gage data represents
the entire catchment, R, and is denoted by Qg1(t) for storm event i.

LINEAR EFFECTIVE RAINFALLS FOR SUBAREAS

The effective rainfall distribution (rainfall less losges) in Ry is given by eji(t)
for storm i where ejT(t) is assumed to be Tinear in eg‘(t) by:

e; (t) =) AJk e (t 8. k) J=1,2,%c05m (1)

where ka and eak are coefficients and t1m1ng offsets, respectively, for storm i
and subarea Rij.  In Eg. (1), the variations in the effect1ve ra1nfa11 distribution
over R due to magn1tude and timing are accounted for by the A and 6 L
respectively. As an alternative to Eq. (1), the eg'(t) may b@ def1ned as a set of
unit effective rainfalls, each unit associated w1tﬁ its own proportion factor;
however for simplicity, the use of the entire e,'(t) function will be carried for-
ward in the model development. Figure 1 111ustgates the Tinear effective rainfall
corresponding to arbitrary subarea, Rj.



SUBAREA RUNOFF

The storm 1 subarea runoff from Rj, qji(t), is given by the Tinear convolution
integral: t

Tren i i
e (t) = e (t - s) ¢ (s) ds (2)
s=0

where ¢ji(s) is the subarea unit hydrograph (UH)} for storm i such that Eq. (2)
applies. Combining Egs. (1) and (2) gives

: t
i - i i i i
qj (t) = J Z eg (t - ejk -'s) ljk ¢J (s) ds (3)
s=0

Rearranging variables,

t
qj1(t) = J egi(t -s)} lj& ¢j1(5 - ejk) ds (4)
s=0

where throughout this paper, the argument of the arbitrary frunction F(s - Z) is
notation that F(s - Z) = 0 for s < Z.

APPLICATION

To illustrate the linear effective rainfall concept, a simple model will be developed
for the severe storm of March 1, 1983 over the 25 square mile Compton catchment in
Los Angeles, California. This catchment is fully urbanized and is served by a well
designed storm drain system which would have only minor backwater effects for the
subject storm. The catchment has available a single rain gage and stream gage. The
U.S. Army Corps of Engineers (Los Angeles District Office? or COE previously
developed regionalized unit hydrographs for this area and, consequently, synthetic
unit hydrographs can be estimated from the catchment characteristics of slope and
other physical factors.

For demonstration purposes, the two-subarea model of Compton is used where the up-
stream subarea, R,, runoff is modeled to be routed by pure translation (without peak
flow attenuation) to the Compton stream gage where the second subarea, R, , runoff is
directly summed., For the above assumptions, the two-subarea model for sform event

i is given by Q,7(t) where

0, (1) = Mt - 1) +q T(t) (5)

where g Yt-1.7) is the q11(t) runoff from R, for storm i, offset.in time by 1 i
due to ranslation routing; and q,'(t) is the runoff from R . From Egs. (1) and (2),
Q,'(t) is rewritten as



t

0,'(1) = | Iaj e (t-op) 00 (s-x ) ds
5=0)
(6)
to
+ | T, e (t-01) 6 1(s) d
2k &g Ot ¢, IS} dS
s=0

The subarea UH's, ¢1(s) and ¢2(s) are estimated using_ the COE regionalized data.

The appropriate sum of subare§ runoffs, q,7(t) and Q,'(t), are then set equal to the
stream gage for the storm, Qg'(t), and the respective parameters Ajk and eik are
estimated by minimizing the ?east?squares error, E, where !

£ 10,0y (8) = a, (b= 1, DL+ o0y (8) -0, (0], ()

In Eq. (7), w, and w, are proportion factors defined by w, = A /(A -+A2) and

W, = AQ/(A1-FA2)’ whére A , A, are the areas of R, sz respec{iveiy. Additionally,
E is minimized with the constraint that all factors Aj) are nonnegative. The timing
offsets, ei&, used in Eq. (6) for this example are 15-minute offsets for the entire
24-hour storm duration. Thus, there are 96 transiates being used to minimize E, for

each subarea.

The resulting estimates for e;'(t) are shown in Figs. 2a,b for subargas R, and R,,
respectively. Shown in the f49ures are the approximations of the ej1(t) in compari-
son to the measured rain gage data, P,'(t). From the figures it is seen that the
estimated e;¥(t) are quite feasible al being the 'true' average effective rainfall
distributions over R1 and R, , Figure 3 shows the comparison between the modeled
Q,7(t) results {using the ej1(t) from Eq. (7}) and the stream gage data, Qg‘(t), for
tﬁe subject storm.

Obviously, a different set of UH's in Eq. (6} will result in different e;!(t) esti-
mates in Eq. (7). However, the main objective of this simple application is only to
demonstrate the feasibility and utility of the linear effective rainfall relation-
ship of Eq. (1).

Each subarea's effective rainfall distribution, ej1(t), can only be accurately deter-
mined by the use of runoff data from each subareg”used in the model. Should subarea
Rj have a stream gage to measure es1(t), then e;7(t) can be equated to the "available"
rain gage site measured effective rainfall, e 1ft), by means of Eq. (1). For example,
should subarea R; experience zero rainfall duging storm event i, the ii in Eq. (1)
would all be zerd. Equation (1) provides a means to correlate the subirea R; runoff
for storm i, g;1(t), to the available effective rainfall data measured at thé rain
gage site, eg1{t).
It is noted that in the application problem, the A were optimized in Eq. (7) such
that nonnegative values resulted. This constraint™1s used for the preference of
avoiding negative runoff hydrographs which would result in the UH convolution
process. Additionally, the use of the w, and w, factors. in Eq. (7) based on the
subarea arial proportions is used to facilitate the approximation effort.



LINEAR ROUTING

Let Il(t) be the inflow hydrograph to a channel flow routing 1ink (number 1), and
Ql(t) the outflow hydrograph. A linear routing model of the unsteady flow routing
process is given by

Ny
0,(t) = klzl ak1 I(t- akl) (8)

whefe the ay, are coefficients which sum to unity; and the oy are timing offsets.
Again, I (t-ay ) =0 for t <oy . Given stream gage data for'I,(t) and 0,(t), the
best fit values'for the ay, anlc([‘ozk1 can be determined.

Should the above outflow hydrograph, Ol(t), now be routed through another 1ink
(number 2), then I,(t) = 0,(t) and from the above

n
0o(t)= Y a I,(t-o )
2 k Z1 k, 2 K,
2
(9)
3 P oa, 1, )
= a a t-o, -o
k2=1 _kz k1=1 kl g kl k2

For L 1inks, each with their own respective stream gage routing data, the above
linear routing technique results in the outflow hydrograph for link number L, Q (t),
being given by

n -1 n, n,
0 (t) = 1oy Tooa e logy

k=1 L k =1 "L-1 k=1 "2 k=1

_ akl Il(t-ukl—ak mereeqy Oy )
L L-1 2

2 L-1 L

(10}
Using the vector notation, the above OL(t) is written as

0, (t) =<E> 3 Lilt-og,) (1)

For subarea Ri, the runoff hydrograph for storm i, q;1(t), flows through Lj 1inks
before arriving at the stream gage and contributing %o the total measured runoff
nydrograph, Q.1(t). A1l of the constants al . and al . are available on a storm
by storm basig. Consequently from the linearity of the royting technique, the
m-subarea 1ink node model is given by the sum of the m, qj‘(t) contributions,

iy = 53 at ai(t-al ) (12)
A TR e



where each vector <k>q is associated to a Rj, and all data is defined for storm i.
1

1t is noted that in all cases,
i
a = 1 13
<§>j <k>j (13)

APPLICATION

The Tinear routing technique of Eq. (8) is a variant of the stream flow routing con-
volution technique of Doyle et al (1983). For channel reach #1 (Tink #1), the Tinear
routing parameters of proportions, a, , and timing offets, oy , can only be accur-
ately determined by use of stream gagé data which precisely glve both the I,(t) and
Ol(t) used in Eq. (8).

Fortunately, the derived parameters from Eq. (8) provide good approximations for
channel routing effects (without significant backwater effects) for a range of flow
hydrographs. Hence for a class of hydrographs of similar magnitude, a single set of
routing parameters may be appropriate with the linear routing model. Similarly,
another class of hydrographs would have another associated set of calibrated routing
parameters (e.g., Doyle et al, 1983). Hence, the linear routing technique is actual
quasilinear in that the method is linear for specific ranges of runoff hydrographs.

To demonstreate the utility of the linear routing technique, a set of four hydro-
graphs are considered in a channel reach of 10,000-foot length. A1l four hydrographs
are routed through a prismatic channel using a fully-dynamic model solution as the
‘true' solution. Using one hydrograph (Fig. 4), the model of Eq. (8) is calibrated.
In this example, a least-squares error norm is used with the constraint that all
proportions, a; , are nonnegative. Only four timing offsets, ap., were used in this
application. Fﬁe resulting calibration approximation and the ‘ekact' solution is
shown in Fig. 4 for a fast flow (peak flow rate velocity of 24 feet/sec) and also a
slow flow channel condition (peak flow rate velocity of 12 feet/sec). Using both
sets of calibration parameters, four other hydrographs are tested and compared to
the '‘exact' solution in Fig. 5 for both the fast flow and slow flow conditions.

From Fig. 5 it is seen that the linear routing method provides a good approximation
of both translation and storage effects for a useful range of hydrograph magnitudes,
even though only four timing offsets were used in the approximation effort.

This application not only illustrate the utility of the linear routing technique but
also demonstrates that a calibrated Tinear routing model is alse a good model for a
range of hydrograph magnitudes. As noted in Doyle et al (1983), different sets of
calibration parameters would be needed for different classes of hydrographs (e.qg.,
Tow-flow hydrographs versus high-flows). However for specified range of classes of
hydrographs, a single set of routing parameters may be appropriate. Hence, on a
hydrograph class basis, the routing effects are essentially linear and are adequately
described by the model of Eq. (8).

The above conclusions (i.e., that the routing effects are approximately linear for
classes of hydrographs, and that a single set of calibrated routing parameters are
appropriate for a class of hydrographs) will be useful in the latter sections of
this paper when developing uncertainty estimates for hydrologic models.



LINK-NODE MODEL, Qmi(t)

For the above linear approximations for storm i, Eqs. (1), (4), and (12) can be com-
bined to give the final form for the m subarea 1link-node model, Qp'(t).

t
. m . . . . .
i _ 1 i 1 i 1 i
Q, (t) _jzl <E>.a <k>j I e (t-s) ] Ak 95 (s 'ejk -a <k>j) ds {(14)
J
s=0

Because the measured effective rainfall distribution, egi(t), is independent of the
several indices, Eq. {14) is rewritten in the form

t
01(t)=[ e (t-s) ¥ ] a' T As ds(s-00 -a'_, )ds 15)
m 0 g 51 <k> kg © IR Jk 7 <k>s (
S:

where all parameters are evaluated on a storm by storm basis, 1.

Equation (12) described a model which represents the total catchment runoff response
based on variable subarea UH's, ¢3;1(s); variable effective rainfa11 distributions

on a subarea-by-subarea basis with differences in magnitude {r;}), timing (e5k), and
pattern shape (linearly assumptign); and channel flow routing %rans]ation ané storage
effects (parameters al .. and alg . ). A1l parameters employed in Eq. (15) must be
evaluated by runoff data Jwhere strghm gages are supplied to measure runoff from

each subarea, R;, and stream gages are located upstream and downstream of each
channel reach (iink) used in the model.

MODEL REDUCTION

The m-subarea model of Eq. (15) is directly reudced to the simple single area UH
model (no discretization of R into subareas) given by Q,7(t) where

1

t
Q 1'(t) = l egi(t -s) ni(s) ds (16)

s=0

where n'(s) is the correlation distribution between the data pair {Qgi(t), egi(t)},
for storm event i.

From Eq. (16) it is seen that the classic single area UH model equates to the highly
complex Tink node modeiing structure of Eq. (15), where considerabie runoff gage
data is supplied interior to the catchment, R, so that all modeling parameters are
accurately calibrated on a storm-by-storm basis. For the case of having available
only a single rain gage site (where the effective rainfall is measured, e,'(t)) and
a stream gage for data correlation purposes, the n'(s) properly representg the
several effects used in the development leading to Eq. (15), integrated according to
the observed sampling from the severa] modeling parameters' respective probability
distributions. Because the simple Q,'(t) model structure actually includes most of
the effects which are important in fiood control hydrologic response, it can be used
to develop useful probabilistic distributions of hydrologic modeling output.



In comparing the two models of Egs. (15) and (16), it is noted that Qmi(t) = Q. 1(¢)
only when interior runoff data is supplied to accurately evaluate all the mode1ing
parameters used in Eq. {15). For example, should the catchment be discretized into
many small subareas. with small channel routing Tinks (e.g., such as used in highly
subdivided catchments with UH approximations, or as employed in kinematic wave (Kw)
type models such as MITCAT, or the KW version of HEC-1), then with a stream gage
Tocated at each subarea (or overland flowplane} and at each channel Tink, all model-
ing parameters could be accurately evaluated on a storm-by-storm basis, resulting

in the formulation of Eq. (15).

Indeed, only by means of subarea stream gage data can the subarea Tinear effective
rainfall distribution parameters of A\ and 6] be accurately determined for each
storm event i. But it is these ]1neaﬂ effect4ve rainfall distribution parameters
that reflect the important spatial and temporal variability of storm rainfall over
the catchment which in turn causes the major difficulties in the development, cali-
bration; and use, of hydrologic models (Schilling and Fuchs, 1986; Troutman, 19833
among others).

It is assumed in this paper that only a single rain gage (which is monitored to
accurately develop the effective rainfall at the rain gage site, e,7(t)) and stream
gage are available for data analysis. Consequently, any hydro]ogig model serves to
correlate the data pair'{eg1(t), QQT(t)} for each storm event i.

The current direction of advanced development for hydrologic models is a modeling
structure such as Eq. (15). With subarea and channel-Tlink stream gage data, the
Q' (t) parameters can be accurately determined, and

Q' (t) = Q' (t) (172)

But in the typical case of having only the single rain gage and stream gage, all the
parameters in Eq. (15) must be approximated, resulting in the estimator, ng(t),
wherein the subarea linear effective rainfall parameters of Eq. (1) are misrepre-
sented by setting 634 = 0 (i.e., zero timing offsets between the measured rainfall
at the gage and the subarea rainfalls), and also by assuming that the magnitudes

of rainfall intensities are invariant between subareas and the rain gage.

From the above discussion, the estimator model, ﬁmi(t), cannot achieve the accuracy
of Qg'(t), (and hence, Q,%(t)):

8 t) 70, (1) (17b)
and from Eq. (17),
6 (1) # 0,7 (t) (17c)

From Eqs. (17), the simple single area UH model, Qll(t), properly represents the
appropriate UH for each subarea (or overland flow plane) for storm i; the appropriate
linear routing parameters for each channel Tink, for storm 1; the appropriate timing
offsets and proportions of the measured effective rainfalls, for each subarea; and
the appropriate sympation of runoff hydrographs at each confluence. 1In contrast, the
model estimator, Qm1(t), uses estimates for all of the parameters, and subarea effec-
tive rainfall factors, and hence cannot achieve the accuracy of Q,7(t) without the



addition of interior rainfall-runoff data to accurately validate the parameter values.
STORM CLASSIFICATION SYSTEM

To proceed with the analysis, the full domain of effective rainfall distributions
measured at the rain gage site are categorized into storm classes, <gy>. Because
the storm classifications are based upon effective rainfalls, the meaSured precipi-
tations, Pg1(t), may vary considerably yet produce similar effective rainfall dis-
tributions. That is, any two elements of a class <&,> would result in nearly
identical effective rainfall distributions at the rain gage site, and hence one
would “expect" nearly identical runoff hydrographs recorded at the stream gage.
Typically, however, the resulting runoff hydrographs differ and, therefore, the
randomness of the effective rainfall distribution over the catchment, R, results in
variations in the modeling "best-fit" parameters (i.e., in Q,1(t), the n?(s) varia-
tions} in correlating the available rainfall-runoff data.

More precisely, any element of a specific storm class <Eg> has the effective rain-
fall distribution, e °(t). Howeve;, there are several runoffs associated to the
single eq9(t), and afe noted by Q@1(t). In correlating {Q27(t), eq0(t)}, a

different n1(s) results due to thé variations in the measuged 007(%) with respect to
the single known input at the rain gage site, ego(t). g
In the predictivg mode, where one is given an assumed (or design) effective rainfBTl
distribution, eg”(t), to apply at the rain gage site, the storm class of which eg (t)
is_an element of is jdentified, <€p> , and the predictive output for the input,
egD(t), must necessarily be the random variable or distribution,

t
[0,”(1)1 = J ey (t = s) [n(s)]p ds (18)
5=0

whege [n(S)]D is the distribution of n'(s) distributions associated to storm class
Epd-

Generally, however, there is insufficient rainfall-runoff data to derive a statis-
tically significant set of storm classes, <£,>, and hence additional assumptions
must be used. For example, one may lower the eligibility standards for each storm
class, <g,>, implicitly assuming that several distributions [n(s)]X are nearly
identical; or one may transfer?n(s)]x distributions from another rainfall-runoff
data set, implicitly assuming that the two catchment data set correlation distri-
bution are nearly identical. A common occurrence is the case of predicﬁing the
runoff response from a design storm effective rainfall distribution, eg (t), which
is not an element of any observed storm class. In this case, another 3torm class
distribution must be used, which implicitly assumes that the two sets of correlation
distributions are nearly identical. Consequently for a severe design storm condi-
tion, it would be preferable to develop correlation distributions using the severe
historic storms which have rainfall-runoff data available for the appropriate condi-
tion of the catchment.

EFFECTIVE RAINFALL UNCERTAINTY AND THE DISTRIBUTIONS, [Tl(s)]X

This paper's introduction includes brief statements from several reports which con-
clude that the variability in the rainfall {and hence the effective rainfall) over
the catchment is a dominant factor in the development, calibration, andlapplication,

of hydrologic models {(e.g., Schilling and Fuchs, 1986; among others).



Including this premise in hydrologic studies would indicate that hydrologic model
estimates must be functions of random variables, and hence the estimates are random
variables themselves.

From Eq. (15), the correlation distribution for storm event i, n'(s), includes all
the uncertainty in the effective rainfall distribution over R, as well as the uncer-
tainty in the runoff and flow routing processes. That is, n'(s) must be an element
of the random variable [n(s)], where

i i i i i
1 <E>. y <k>j ) Ajk ¢j (s."ajk - o <k>j) (19)
J

Ne~-13

n'(s) =
J

and Eq. (19) applies to storm event 1 for some storm class <f,>. For severe storms
of flood control interest, one would be dealing with only a subset of the set of all
storm classes. In a particular storm class, <g,>, should it be assumed that the sub-
area runoff parameters and channel flow routing uncertainties are minor in comparison
to the uncertainties in the effective rainfall distribution over R {e.g., Schilling
and Fuchs, 1986; among others), then Eq. (15) may be written as

23}

m
[n(s)]y = 2 2

Aol b, (s-08..1-0 ‘ 20
i b <k>j P! Jk] ¢J (s-{ Jk] a<k>j) (20)

where the overbars are notation for mean values of the parameters for storm class
<En>. But the mean values for the linear routing parameters are essentially the
ca?ibrated parameters corresponding to a class of hydrographs (see the application
following Eq. (13)) which accommodates a range of hydrograph magnitudes. And for a
highly discretized catchment model, the use of a mean value UH for each subarea,
¢-?s), has only a minor influence in the total model results (Schilling and Fuchs,
1@86). Although use of Eq. (16} in deriving the [n(s)]y distributions results in
the uncertainties of both the effective rainfalls and a?so the channel routing and
other processes being integrated, Eq. (20) is useful in motivating the use of the
probabilistic distribution concept in design and planning studies for all hydrologic
models, based on just the magnitude of the uncertainties in the effective rainfall
distribution over R. That is, although one may argue that a particular model is
“physically based" and represents the "true" hydraulic response distributed through-
out the catchment, the uncertainty in rainfall still remains and is not reduced by
increasing hydraulic routing modeling complexity. Rather, the uncertainty in rainfall
is reduced only the use of additional rainfall-runoff data. In Eq. (20), the use of
mean value parameters for the routing effects implicitly assumes that the variations
in storm parameters of [A;k] [e-k] are not so large such as to develop runoff hydro-
graphs which cannot be moée]ed By a single set of linear routing parameters on a
channel Tink-by-1ink basis.

DISCRETIZATION ERROR

In the general case, the practitioner generally assigns the recorded precipitation
from the single available rain gage, P,'(t), to occur simultaneously over each .
subarea, R;. That is from Eq. (1), thg 83! = 0 and the A5¥ are set to constants Aj
which refT%ct only the variations in loss rate nonhomogeneq y. Hence, the 'true’
Q,'(t) model of Eq. (15), (and aiso Eq. (16)), becomes the estimator Q' (t) where



t
g . 3 m . o e
Qm1(t) = eg1(t-s) ) 7 a <k>j ) Aj ¢j‘(s-a1

AR } ds (21)

<k>,
J

where hats are notation for estimates. These incorrect assumptions result in
'discretization error'. Indeed, an obvious example of discretization error is the
cage where a subarea R; actually receives no rainfall, and yet one assumes that

P,T(t) occurs over R: {n the discretized model. (It is easily shown that the Eq. (16)
mgde1 accommodates this example case.)

DISCRETIZATION CALIBRATION ERROR

A current trend among practitioners is to develop an m-subarea 1link-node model
estimator Q,1(t) such as Eq. (21), and then “calibrate" the model parameters using

the available (single) rain gage and stream gage data pair. Because subarea rainfall-
runoff data are unavailable, necessarily it is assumed that the random variables
associated to the subarea effective rainfalls are given by

[0, = 0 ,
(estimator, QmT(t), assumptions) (22)
}3

g

But these assumptions violate the previously stated premise that the uncertainty in

the effective rainfall distribution over R has a major effect in hydrologic modeling
accuracy. The impact in using Eq. (22) becomes apparent when calibrating the model

to only storms of a single storm class, <€ >

Again, for all storms in <g,>, the effective rainfall distributions are all nearly
identical and are given by the single input, e O(t). But due.to the variability in
rainfall across the R;, the associated runoff ﬁydrographs, Qg‘(t), differ even though
ego(t) is the single fhodel input.

It is recalled that in Eq. (21), the effective rainfall distribution is now the
estimator, e0'(t)}. That is, due to the several assumptions leading to Eq. (22) for
the discretiZed model estimator,Q,'{t), the variatjons due to [Ajk] and [6:,] are
transferred from the [n{s)] distribution to the(“g‘(t) function.” For storfh class <Eg>»
2

the estimator Q.0 (t) can be written from Egs. ) and (21) as
t

Pty - l e (t-s) )jl ‘2( 5<k>j Iy 64(s-ag,)ds (23)
5=0

where in Eq. (23), it is assumed that the variations in model output due to using
mean values (overbar notation) are minor in comparison to the variations in model
output due to [Ajk] and [8:,]. That is, even though the rainfall djstributions over
the catchment, R, are varigE1e with respect to the single input, e81(t), the resulting
subarea runoffs. still fall within a single linear routing parametef class for each
channel routing 1ink, respectively. But then Eq. (23) 1is but another single area UH

model:



t
©l(t) = J e2'(t - s) 1 _(s) ds (24)

where n (s) is an estimated distribution wh1§h is 'fixed' for all storms in a
spec1f1ed storm class <&,>. In calibrating Qm (t), therefore, the work effort is
focused towards finding the best fit effective rainfall d1str1but1on eg T(t), which
correlates the data pairs {Qg (tl, (s)} for each storm i. That is,”the 'true'
single e,2(t) is modified to“be e (%) in order to correlate the {Q81(¢t), n (s)1,
for each storm i. This contrastswith finding the best fit n'(s) wﬁ1ch corre1ates
the pa1rs, {Q8(t), e O(t)}, such as in Eq. (16). It is recalled that from Egs.
(21), afd (24 n (s) is a single distribution due to the assumptions of Eq.

22) and due to us1ng a single storm class, <ggu>, which develops runoffs that fall

within a single class of linear routing hydrographs.

The effective rainfall estimator, egT(t), used in Eqs. (23) and (24) is the_correla-
tion between the data pair {Q°1(t), ny(s}}. Consequently, similar to the n'(s) dis-
tributions, the 0l (t) must hive an infinite degrees of freedom in order to provide
the needed correTgt1on However, hydrologic models prescribe a given model structure
to the effective rainfall estimator which invoives only a finite number of degrees
of freedom, or parameters. This fixed model structure develops effective rainfalls,
noted as e,'(t), for storm event i. Convoluting &,7(t) w1th the n (s) estimated for
storm cTasg <Ep> develops the general hydrologic mgde t), for storm i. The
model Q,7(t) is the model that pract1ct1oners use. For s%orm class <gy>, the corre-
lation distribution is the fixed n » and the effective rainfall estimator is the
single calibrated distribution e O?t) Thus, for storm class <g5>, the 'true'
hydrologic model structure of Eq (15) becomes the point estimate:

t
5m°(t) = [ Eg°(t - 5) n,(s) ds (25)

s=0

Because the effective rainfall submodel used in Qm (t) has a prescribed structure,
it cannot match the best fit e21(t) for all storms and, consequent]y, modeling error
is introduced into the parametgrs of the Toss rate submode1 &g O(t), when calibrated
to storm class <g,>.

An error_which results due to use of Eq. (25) is .that the estimator mode11ng distri-
bution [Qy(t)] for storm class <g > w111 be imprecise due to the variation jn de-
rived 1oss rate parameters in e t not achieving the true variation in e 1(t)
needed to correlate {Q°1(t), no%s)} in Eq. (24).

HYDROLOGIC MODEL QUTPUT DISTRIBUTIONS
The previous development resulted in the identification of four modeling structures:

(i) Q 1(t) -- this is the m-subarea link node model with channel links connecting
the subareas, (Eq. (15)). Stream gage data is suppliied for each subarea (or
overland flowplane) and also along each channel Tink so that all modeling
parameters and subarea effective rainfall factors are accurately determined
for each storm event i. For storm class <g,>, (measured at the single



"available" rain gage site), Qmi(t) results in the distribution, [Qmo(t)].

(i1) Q,'(t) -- this is a_simple single area UH model. For only a single rain gage
and stream gage, Q,%(t) is equal to Q. '(t) in predicting runoff at the stream
gage (see Egs. (155 and (16)). For storm class <¢.>, Q,7(t) becomes the dis-
tribution [Q,0(t)] where [, %(t)] = [Q°(t)].

(i1i) Qu'(t) -- should all the parameters in Qm‘(t)Abe estimated for a storm class,
then Q,'(t) is approximated by the estimator Qp'(t). However on a storm
class gasis, Qp'(t) reduces to another single area UH model of Eq. (249 where
the correlatign distribution, ny(s), is fixed for storm clags <€g>. (t)
equates to QE1(t) when the effective rainfall estimator, eg‘(t), is given an

infinite number of degrees of freedom.

(iv) Qp'(t) == because the effective rainfall estimates in an m-subarea link node
model are of a prescribed structure, the estimates have a finite number of
degrees of freedom. For storm class <&,>, Q.1(t) reduces to another single
area UH model where the correlation distribution is identical to that used in
Qn'(t). But the effective rainfall distritubion in the single area UH repre-
sepntation is &,.'(t) where &.1{(t) is calibrated to best fit the distribution of
8q'(t) di;tribﬂtions which Sre needed to correlate the data pairs,

'{891(t), no(s}}, in storm class <gg>.

From the four modeling structures, the parameter calibration process can be inter-
pretted. For storm class <Egz, . distributions aye developed for [Q,°(t)] and
[Q,°(t)]. A distribution of Qg'(t), noted as [Qp°(t)], can be developed provided
the effective rainfall estimator is_given an infinite number of degrees of freedom.
However, the “calibrated" model of Qm1(t) develops only a single point estimate
Qn2(t) for storm class <gg>.

For storm class <Ey,>, the several modeling output distributions are as follows:

t

[0, (1)1 = ! eg (t-5) P a°<k>j I [ag] ¢j°(s-[ej°k1-a°<k>j) ds (26)
s=0
t

[e,°(t)] = J ey (t=s) [n(s)] ds (27)
$=0

[am‘}(t)] = [[égo(t-sn ny(s) ds . (28)

t
[0,°(6)] = §,°(¢) = , 'ég°(t-5) ny(s) ds (29)

5=0



Again, [Qmo(t)] = [Qlo(t)]. [amo(t)] = [Qmo(t)] only when EOi(t) is given an
infinite number of degrees of freedom such as to correlate Q T{t) to ngls) for
each storm 1. Finally, e O(t) is some weighted average of tﬁe distribu%ion of
[eg°(t)], usually, the expected value is used:

ég"(t) = E[ago(t)] (30)

APPLICATION: THE CALIBRATION PROCESS

In calibrating the model structure, Qli(t), for storm class <g,>, the data Qgi(t)
and ego(t) is used to determine the distribution of [n{s)],.

In calibrating the model strugiyre, ﬁmi(t), the data QOi(t) and the rigid ﬁo(s) is
used to determine a best fit eg (t) for each storm i iﬁ class <gg>.

In calibrating the model structure, §m1(t), the effective rainfall function, € (),
is calibrated to best fit the distribution of [ego(t)] such as by using a simple
average.

To demonstrate the above discussion, a 25-subarea 1ink-node model of an, idealized
catchment is used which satisfies the several assumptions leading to Qm1(t), (see

Fig. 6). The.single "available" rain gage is shown as a triangle in Fi1g. 6. Not
shown in Fjg. 6 are subarea-centered rain gages and link stream gages which are

used in Qp'(t), but are “unavailable" to the estimator, Qp'(t). The catchment, R,

is 1000 acres in size, with each Ri being 40 acres. A1l channel links are rectangular
channels with dimensions of depth ¥ 20-feet (so as to guarantee no overflow), width =

8-feet, slope = 0.01 ft/ft, and a Mannings friction factor of 0.015.

Each subarea has its own UH (standard SCS triangular unit hydrograph) which is assumed
to be a function of its time of concentration, Tc. Each subarea is assumed to have a
uniform loss rate function. The rain gage site is monitored to determine the ‘true’
effective rainfall, eg1(t), (Fig. 6).

To evaluate the calibration process, a series of identical effective rainfall distri-
butions (i.e., storms e,O(t) are defined at the rain gage site, which satigfy that
each storm is in the safie storm class, <fp>). For the model structure of G°(t),.
the subarea effective rainfalls are assumed related to the egC(t) by the factors Aj;
Tisted in Table 1. .Other parameter data is also listed in tﬁis table. The 'true'
distributions of e21(t) are random variables distributed according to Fig. 7a for
A3k, and Fig. 7b f3r timing offsets, 09}, where mean values are listed in Table 1.
The 'ture' runoff hydrographs are deveioped for each storm using Q,'(t) of Eq. (15),
and are shown in Fig. 8. The variations in runoff shown in Fig. 8 are of the order
of magnitude reported in Schilling and Fuchs (1986), and should provide a useful case
study in examining the model calibration process.

Because ego(t) is fixed, the Q O(t) model structure must have a fixed output.
Therefore; because fp(s) is fixed, a Teast-squares best fit for eQ*(t) can be
developed for each storm in <¢,>. Some of the resulting plots of effective rainfall
distributions are shown in Fig. 9. In the figure, it is seen that a different &37(t)

is derived for each storm i (in class <gg>) in corre1ating'{Q81(t), n(s)}. g

For Q?i(t), however, the variations,in eQi(t) are reflected in the noi(s) variations.
Some of the elements of the set {n01(s)} are shown in summation {mass) graph form in
Fig. 10.



TABLE 1. APPLICATION PROBLEM DATA

1 - 2 53 —54
Subarea R[ IE_ ii_ iih_ Eih_
1 30 1 1 0
2 30 1 1 0
3 45 1 l 0
4 45 1.1 1.1 3
5 30 1.1 1.1 3
6 30 .9 .9 3
7 45 .8 .8 3
8 30 .8 .8 3
g 30 ¥ .7 3
10 30 7 .7 3
11 45 .8 .8 6
12 45 1. I. 6
13 45 1. 1. 6
i4 45 1.3 1.3 6
15 30 1.3 1.3 6
16 30 1.2 1.2 6
17 45 1.2 1.2 6
18 30 1.1 1.1 &
19 30 1.1 1.1 6
20 45 1. 1. 6
21 30 1. 1. 6
22 30 1. 1. 6
23 30 .9 .9 6
24 45 .9 .9 6
25 45 .8 .8 6

Tc = time of concentration in minutes

ij = assumed ratio of effective rainfall at subarea to rain gage site
- i - ~

T . o = AL
EJk mean value for AJk .Not? that AJk j
ejk = mean value for ejL. in minutes



From Fig. 9, the set of e01(t) plots needed to correlate the Q27(t) to the single
no(s) cannot be dup]icateg by a fixed Toss rate model structurg because the storm
precipitation is identical for each event and, therefore, a 1oss in accuracy must
occur during parameter calibration. Additionally, the final calibrated parameters
Tose some of the physical meaning for what they were intended, in that_ they reflect
variations in effects other than the loss rate. The model structure, Qn'(t), uses a
"calibrated" effective rainfall distribution, e4%{t), which is usually an average of
the derived 82'(t); this is shown as the heavy Yine in Fig. 9. Whether € _9(t) can
;it the heavy”Tine in Fig. 9 depends on the prescribed model structure ofdthe Toss
unction.

In Fig. 10, however, the resulting noi(s) plots (summation graph form) are used to
populate a frequency distribution for [n{s)], to develop the uncertainty distribution
for [Q,%(t)] using the single measured ego(t? as the model input.

It is noted that in this application, the estimated A: are assumed “correctly” in
that the A; equal the mean value of Xil (see Table 1). Hence the actual applications,
the discregancies between eS‘(t) could be augmented.

DISCUSSION

The application demonstrates how the upknown effective rainfall distribution mani-
fests itself in the .single area UH, Q,7(t)}, model, and in a discretized 1ink node
model estimator, Qﬂ1(t)’ when using s%orms of a similar class to calibrate model
parameters. For the QIT(t)_mode1, the uncertainties_are incorporated into the UH
correlation distribution, ni(s). In the estimator, Q,'(t), however, the uncertainties
are transferred to the effective rainfall submodel parameters used in eg1(t).

Because the ni(s) are allowed to freely vary, the frequency distribution [n(s)], of
the n0i(s) reflect the several modeling uncertainties as well as the important un-
certainty in the effective rainfall distribution over R, for storm class <€,>.

With the estimator, Qu'(t}, however, the effective rainfall estimator, eq'(t), is a
fixed model structure which cannot fit the irregular effectjve rainfall gistributions
needed to correlate measured runoff data, Q97(t), to the Q,'(t) model single UH
correlation distribution, ﬁo(s), for storm g]ass~<g >, As a result, the calibration
of e,!'(t) must be imprecise and, therefore, the Qm1?t) must be a more uncertain model
in the predictive mode than the Q,'(t) model on a storm ciass basis.

THE VARIANCE OF HYDROLOGIC MODEL QUTPUT
Consider the Qii(t) model structure in correlating the single rain gage and stream
gage. For storm class <gy>, there is an associated distribution of correlation dis-

tributions, [n(s)],. Then in the predictive mode, the predicted hydrologic model
output is the distribution [Q,°(t)] where

t
[Qlo(t)] = { ego(t -s) [n(s)]0 ds (from Eq. 26)

s=0

For storm time z, the distribution of flow rate values is by [Qlo(z)], where



t
[0,(2)] = [ &g (z-5) [n(s)]; ds (31)

s=0

Let t, be the storm time where the peak flow rate, Q,, occurs for storm class <g,>.
Notin§ that tp is a function of [n(s)]o, then the diEtribution of [Qp]0 is given by

t

p
[, = eg°(tp - s) [n(s)], ds (32)

s=0

Let D be a single time duration. Of interest is the maximum volume of runoff during
duration, D, for storm class <g;>. Then the distribution of this estimate is given

by
t
[max [ Qlo(t)dt] = max J [ ego(t - s)[n(s)]D ds (33)
D s=0
Let A be an operator which represents a hydrologic process algorithm (e.g., detention
basin, etc.). Then the output of the operator for storm class <£,> is the
distribution

t

| | 34)
[Al, = A [ _J ego(t - s) In(s}3, ds ] (
s=0
The expected value of the hydrologic process A for storm class <g0> is
t
E[Al, = ) A[ J eg°(t - 5) n(s) dS] P(n(s)) (35)
[n(s)],

s=0

where P(n(s)) is the frequency of occurrance for distribution n{s) in [n(%)]o.
The variance of predictions of hydrologic process A for storm c!ass <Ey> is (for A
() being a mapping into the real number line; i.e., giving a single number result),

. t
varfA] =} {A( I eg°(t-5) n(s) dS)-E[AJO]z P(n(s)) (36)
S .
]

[n(
$=0



From the above standard statistical definitions, and Egs. (26)-(29), it is seen
that the var[A], is computed correctly when the single area UH model structure
distribution, [81°(t)], is used for storm class <£,>. The use of additional sub-
areas in the modeling structure (for the given assumptions) must be accompanied

by runoff data in order to properly evaluate the effective rainfall distribution

in each subarea with respect to the available single rain gage data site. Without
this additional data, the variance in modeling output will not equate to the true
variance provided by [Qlo(t)] for storm class <fy>. Because the model estimator

of Eq. (29) cannot produce design estimates more accurately than the single area UH
moge} of Eq. (27), the variance of Eq. (36) must be a lower bound for all hydrologic
models. '

APPLICATIONS

Dominguez Wash is a fully develop 35 square-mile catchment located in Los Angeles,
California. It has been essentially fully improved with a well-drained flood control
system for nearly 50-years. Of concern is the design of a flood control detention
basin at the stream gage site.

The design objective is to build a flow-through type detention basin which provides a
level of protection for a prescribed storm pattern and Toss rate. The available
rainfall data is a single rain gage located off-site of the catchment.

In reviewing the rainfall data, no storms were found which precisely matched the
design condition effective rainfall distribution, eq (t). Consequently, a storm
class <gp> could not be developed.

The assumption that similar storm classes, <€ >, have similar correlation distribu-
tions, [n(s)]., was then involved. By examining the available rainfall records and
the runoff data from the Dominguez Wash stBeam gage, only 5 storms were identified
which were considered similar enough to e Y(t) to have similar correlation distri-
butions. More data would be needed to hage statistical significance; however, this
information is used for demonstration purposes.

The fiye correlation distributions, n'(s), are shown in mass-curve form in Fig. 11.
Each n'(s) is assumed to have a probability of 0.20. The n'(s) of Fig. 11 were de-
rived by a least-squares fit between estimated effective rainfall from the rain
gage and the stream gage using the 011(t) model structure.

For the prescEibed design effective rainfall storm condition {rainfall less losses)
given by a e "”(t) at thB rain gage, the hydrologic model estimate for runoff is given
by the distribution [Q,”(t)] of Eq. (19).

By routing each QID(t) model, (using a different n'(s) for each trial), through the
detention basin, a different demand on the basin volume is determined. Figures 12
and 13 show the resulting distribution of QID(t) and the associated detention basin
volume reguirements, respectively. Also shown in Fig. 13 are confidence estimates
from the modeling results.

CONCLUSIONS

A lower bound for estimating the distribution of uncertainty in surface runoff
modeling output is advanced. The bound is based on a Tinear unit hydrograph
approach, which utilizes an arbitrary number of catchment subdivisions into subareas,
a linear routing technique for channel flow effects, a variable effective rainfall
distribution over the catchment, and calibration parameter distributions developed



in correlating rainfall-runoff data by the model. Because all hydrologic parameters
(e.g., subarea unit hydrographs, channel routing parameters, effective rainfall dis-
tribution factors) vary on a storm basis, the unit hydrograph methodology is a
reasonable approximation for assessing uncertainty in hydrologic modeling estimates.
The uncertainty bound developed reflects the dominating influence of the unknown
rainfall distribution over the catchment and is expressed as a distribution function
which can be reduced only by supplying additional rainfail-runoff data. It is
recommended that this uncertainty distribution be included in flood control design
ituqqes in order to incorporate prescribed levels of confidence in flood protection
acilities.

Also developed in this paper is the conclusion that the single area UH modeling
structure represents a highly complex Tink-node model where all parameters are
validated by data. The single area model UH integrates several effects occurring
during storm event i; namely, (1) variation in the individual subarea UH across
storm events, (2) the distribution of the individual runoff hydrograph channel
routing effects, and (3) the variations in the effective rainfall magnitude, timing,
and pattern shape over the catchment. When correlating stream gage runoff to
effective rainfall, the single area UH determined by calibration will include

the above described effects.

In contrast, using a highly discretized model during calibration will result in a
'rigid' UH which transfer the unknown variations in the above cited effects to the
model's effective rainfall distribution, resulting in a less reliable calibration of
the Toss functions parameters.

The correlation of the effective rainfall to the runoff hydrograph from the catchment
R will result in a different UH (for the single area model) for each storm event.
However, the resulting collection of UH's reflect the dominating uncertainty in the
variation in the magnitude, timing, and shape of the effective rainfall distribution
over R. When the data base consists of only a single rain gage and stream gage these
three uncertainties cannot be reduced by including additional complexities into the
hydrologic model (e.g., subareas 1inked by hydraulic routing submodels, additional
soil-moisture accounting algorithms, etc.). Only additional measured rainfall-runoff
data within the catchment R will reduce the uncertainty. Without this additional data,
the uncertainty in the effective rainfall over R will remain and should be included in
flood controi design and planning studies by the development of confidence levels in
the modeling results.
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APPENDIX II - NOTATION

The following notation is used in this paper:

4 = timing offsets for channel 1ink #1 used in the linear routing technique
1

aﬁ = oy corresponding to storm class <E >
1 1 ' 0

Ajk = effective rainfall proportion factors for subarea R‘j for storm i
ejk = effective rainfall timing offsets for subarea Rj for storm i
¢ji(s) = sybarea unit hydrograph (UH) for subarea Rj and storm i

<gy> = specific storm class

<g > = arbitrary storm class

n‘(s) = correlation distribution between measured effective rainfall and
measured runoff, for storm i, using a Voltera integral model structure

r.) = translation timing offset for channel link j and storm i
W, sy, = area weighting factors

a, = proportion factors for linear routing technique, used for channel
Ky Yink #1

A = subarea R1 area
D = design condition

eQT(t) = effective rainfall measured at the rain gage site, for storm i

e O(t) = the effective rainfall corresponding to storm class <g,>, measured at
9 the rain gage

ejT(t) = subarea Rj effective rainfall for storm i
i = storm event i
j,k = indices

1(t)

inflow hydrograph for linear routing
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1

<k>

1]

/L/L

outflow hydrograph for linear routing

rainfall measured at the rain gage site, for storm i

runoff hydrograph, for storm i, measured at the stream gage

= 3 Qg1(t) resulting from an element of storm class <g >

n

runoff hydrograph from subarea Rj, for storm i

m-subarea 1ink-node model output for storm i
total catchment

subarea in R

temporal & integration variables

unit hydrograph

distribution for random variable Z

[Z] for storm class <g >

estimate for Z

calibrated estimate for Z
mean value for Z

vector notation for subscript sequence, k
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Fig. 6. Application Problem Schematic
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Fig. 7a. Frequency Distribution for AOijk/'AOijk

(see table 1 for subarea AOijk)
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Fig. 7b. Frequency Distribution for 6°1jk

{see table 1 for subarea 601 3k)



‘1 a(qel pue (1) "b3 0}
BuiLpa0ddR Seasegns Ut S[lejuled BAL}D9449 YILM (g1} b3 j0 {opoui
apou-juLip (9 '614) es4eqns-g¢ fursn ﬁpvmmo ¢sydeaboupAy piouny "8 ‘Bl

(SHNOH) 3WIL

eee’l 29Il 0001 €e80 2990 0050 eee0 2910 o)
e — T ™. T T T I T 9]
TN T~ \\\ e A
- s . 1t

// 4 o / - ... /f ..\\ )

AN 100z
,/, .,/AWHW//. WMwm.
\ AN z
/, dooe @

4 00b

<1006

3NTIVA NV3IW=



=MEAN VALUE

o8

(&
“J

o
()

EFFECTIVE RAINFALL (INCHES), agi(i)
o O
H n

03

0.2

=g
\
- \
Ol - D“*ﬂv’rnﬂv
: \
\
\
\
;D B A o L D 0) : Chupeeese () = [
%0 0l67 0333 _ 0500 0667 0833

TIME (HOURS)

Fig. 9. Effective Rainfalls, égi(t), needed to develop Fig. 8 Runoff Hydrographs, Qg;(t), given the fixed Unit
Hydrograph, 'ﬁo(s), corresponding to the 25-subarea model of Fig. 6 and Uniform Rainfalls across the

Catchment (D‘jk] z )\j, [ejk] = 0).
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Fig. 10. E§amp1e Summation Graphs of Distributions,
ﬂ;(s) for Storms in Class <Eo>
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Fig. 11. Corre1at10n Distributions o (s) in Correlating

Q (t) and eg(t) for the App11cat10n Problem, Plotted
1n Summation (Distribution) Graph Form
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Fig. 12, The Hydrologic Model Distribution for a Predicted
Response, [QD(t)], from Input, eg(t). Heavy line
is the Expected Distribution, E[QD(t)].
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Fig. 13. Detention Basin Volume Requirements



