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Analyzing Numerical Errors in
Domain Heat Transport Models
Using the CVBEM

Besides providing an exact solution for steady-state heat conduction processes
(Laplace-Poisson equations), the CVBEM (complex variable boundary element
method) can be used for the numerical error analysis of domain model solutions.
For problems where soil-water phase change latent heat effects dominate the thermal
regime, heat transport can be approximately modeled as a time-stepped steady-
state condition in the thawed and frozen regions, respectively. The CVBEM provides
an exact solution of the two-dimensional steady-state heat transport problem, and
also provides the error in matching the prescribed boundary conditions by the
development of a modeling error distribution or an approximate boundary genera-
tion. Conseguently, this error evaluation can be used to develop highly accurate
CVBEM models of the heat transport process, and the resulting modei can be used
as a test case for evaluating the precision of domain models based on finite elements
or finite differences. :

Introduction

In previous papers, Hromadka and Guymon [1] applied
the complex variable boundary element method (CYBEM) to
the problem of predicting freezing fronts in two-dimensional
soil systems. It is noted that although the CYBEM moving
boundary phase change model of Hromadka and Guymon
{1] will determine the steady-state location of the freezing
front, the modeling process must evolve through a time
history of the freezing front movement from a prescribed
initial location. Hromadka et al. [2] subsequently compare
the CVYBEM solution to a domain solution method and
prototype data for the Deadhorse Airport runway at Prudhoe
Bay, Alaska. An example in using domain methods to model
a moving interface in heat transfer problems is given in Yoo
and Rubinsky [3]. In another work, the model is further
extended to include an approximation of soil water flow
(Hromadka and Guymon [4]). .

An example in the use of real variable boundary element
methods (Brebbia [5]) for moving boundary phase change
problems and a review of the literature is given in O'Neill [6].

Hromadka and Guymon {7] develop a relative error esti-
mation scheme which exactly evaluates the relative error
distribution on the problem boundary that results from the
CVBEM approximation matching the known boundary con-
ditions. This relative error determination is used to add or
delete boundary nodes to improve accuracy. Thus, the
CVBEM permits a direct and immediate determination of
the approximation error involved in solution of an assumed
Laplactan system. The modeling accuracy is evaluated by the
model-user in the determination of an approximative bound-
ary upon which -the CVBEM provides an exact solution.
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Although inhomogeneity (and anisotropy) can be included in
the CVBEM model, the resulting fully populated matrix
systemn quickly becomes large. Therefore in this paper, the do-
main is assumed homogeneous and isotropic except for dif-
ferences in frozen and thawed conduction parameters on
either side of the freezing front.

JIn this paper, the main effort is to present a procedure for
evaluating the accuracy of the domain modeis of soil-water
phase change. The two types of error evaluated are equation
(1) errors in heat flux estimation due to domain model
discretization, and equation (2) phase change moving bound-
ary approximative error. The CVBEM (see Appendix A) is
used to provide the quasi-analytic solution to the boundary
problem for comparison with the domain model. Use of the
“approximative boundary” technique for evaluating the
CVBEM error, and hence developing highly accurate CVBEM
models, is presented in Appendix B, After the analyst is
satisfied that the domain model is adequate, inhomogeneity
can be introduced or long-term simulations initiated.

Domain Model Discretization Evaluation

A popular method for approximating heat flow effects is by
means of numerical modeling. Generally domain methods
are used, such as finite elements and finite difference, although
collocation methods and boundary integral equations meth-
ods have also been employed. In the domain methods the
problem domain is discretized by nodal points into control
volumes or finite elements, The choice as to nodal point
placement is usually based on the judgment and experience
of the analyst. Generally, the nodal point density is increased
in regions where the state variable (e.g., temperature) is antic-
ipated to vary rapidly with respect to either space or time.
Additional placement of nodal points is governed by the
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interface between dissimilar materials or boundary condition
specifications.

In this section, the main objective is 10 present a technique
for identifyving regions within the problem domain where the
nodal point density needs to be increased to reduce error in
modeling heat flux over nodal point control volumes. The
basis of the procedure is to examine the accuracy of the
numerical model in predicting steady-state conditions where
various boundary conditions are considered. In order to ex-
amine the steady-state predicted values, the Complex Variable
Boundary Element Method or CVBEM is used to develop
nodal point approximation values and estimates of nodal
point modeling error. Nodal points are then added (or re-
moved when possible) in regions where the domain model
estimates of the stecady-state values differ significantly from
the CYBEM predicted values. In this fashion, the conduction
process modeling error due to choice of discretization is
reduced.

Two-dimensional models of heat transport have been ex-
tensively reported in the literature. Generally, either a finite
element or finite difference method is used to develop a system
of algebraic equations of nodal point values as functions of
the problem domain, heat parameters, and boundary condi-
tions. For example,

B[y 08, 8 (g 30 _ ~9¢
ax (K’r ax) +8y (K,. &y) ¢ at ()
where

¢ = temperature
K., K, = x and y-direction thermal conductivities
heat capacity

For homogeneous, isotropic domains equation (1} can be
rewritten as
7o 8 _Cae
ax* a4y’ Kat
. Application of a domain numerical method results in a matrix
system

(2)

[Kl¢ +[C)¢ = F (3)

where {K] is a symmetrical banded matrix representing the
heat flow rates from the nodal point control volumes; [C] is
a symmetric banded matrix representing the capacitance of
the nodal point control volumes; F is a vector of specified
nodal point values and flux boundary conditions (with [K]
and [C] appropriately modified); and ¢ and ¢ are the vectors
of nodal point values and their time derivatives. Hromadka
et al. [2] show that an infinity of domain methods can be
described by equation (3) when written in form

K} + [C(n))é = F (4)

where 7 = 2, 24, o results in the Galerkin finite element
formulation, subdomain integration, and an integrated finite
difference formulation, respectively.

In this paper, only errors in approximating the heat flux
are considered. To evaluate the numerical errors resulting
from the [K] matrix, a steady-state problem is solved of the
form

(Kl = F %)

where F is a vector representing the boundary conditions for
a selected steady-state scenario. Usually, several boundary
value problems are considerad resulting in several approxi-
mations in the form of equation {5) which can be examined
for numericai error development. However, to evaluate the
error in equation (5), the ¢ vector needs to be compared to
the correct solution vector ¢*. Because an analytic solution
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for equation (5} is seldom available, the CVBEM is used to
develop another approximation vector ¢ and a correspond-
ing relative error distribution. The ¢ * values represent a highly
accurate estimate of the exact solution values ¢*, such that
l¢*— ¢’ | issmall. The ¢’ vector is then used for comparison
purposes with the domain model solution of ¢ in order to
locate regions where the domain method approximation de-
viates substantially from the CYBEM approximation values.

Moving Boundary Error Evaluation

For steady-state conditions, the governing heat flow equa-
tions reduce to the Laplace equation (the transient heat ca-
pacitance term is omitted). The following assumptions are
utilized (Fig. 1):

1 The two-dimensional soil system is rigid with negligible
deformations due to frost heave. (Deformations could easily
be included in a general purpose model by including an
appropriate frost heave approximation procedure.)

2 The soil system is completely frozen above the freezing
point and completely thawed below the freezing point.

3 The soil-water flow is assumed negligible.

4 All boundary conditions are assumed constant for all
time.

5 The soil system is homogeneous and isotropic (or the
system is rescaled such that the modified domain is homoge-
neous and isotropic). .

6 The effects of ice-lensing at the freezing front are ig-
nored.

7 The steady-state heat conduction processes are modeled
by the two-dimensional Laplace equation.

The steady-state conditions are evaluated by solving simul-
taneously

KV, =0, inQ (frozen)
KV3¢ =0, inQ (thawed) (6)

where ¢ is the potential temperature function and (K, K,) are
the frozen and thawed thermal conductivities corresponding
to the respective domains (£, ;). On the freezing front
(assumed 0°-C isotherm) the conditions required are

¢f=¢l’=0, (x!y)ec (7)

and
by _ . db .
Kas = Krgs ®

where (g, ¢,) are the frozen and thawed temperatures on the
freezing front contour, C'; and y is the stream function which
is conjugate to the potential ¢; and §'is a tangential coordinate
on C.

The procedure starts by developing a CVBEM approxima-
tor @f{z) and &,(z) for the frozen and thawed domains,
respectively. Hromadka and Guyman [8] gives the details for
developing such CVBEM approximators. The numerical tech-
nique determines the analytic function @(z), which satisfies

04{FROZEN)

Fig. 1 Problem definition
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the boundary conditions of either normal flux or temperature
specified at nodal points located on the problem boundary,
I'. Because @ (z} is anaiytic throughout the interior domain 2,
which is enctosed by I, then the real and imaginary parts of
w(z) = ¢(z) + iY{z) both exactly satisfy the Laplace equation
over {. (This property afforded by the CVBEM is not guar-
anteed by any of the domain methods, such as finite elements
or finite differences.)

For the steady-state condition, the governing heat flow
equations reduce to the Laplace equations shown in equation
(6). Consequently, a &(z) determined for both the frozen and
thawed regions satisfy the Laplace eguations exactly, leaving
only errors in satisfying the boundary conditions. To develop
a CVBEM steady-state solution, a @(2) is developed for each
of the separate regions. Initially, both &(z) and &,(z) are
defined by (Fig. 1)

ze R
z€EQ (9)

afz) = &',

‘:’I(Z} = ‘:?r],

Fig. 2 Redefining the freezing tront location

Ty

\ $=-10

where in equation (9) @ = Q, U 9 is the global domain, and
the first-order CVBEM approximators are based on the entire
domain. This procedure results in simply estimating the 0°-C
isotherm location for the homogeneous problem of Q being
entirely frozen or thawed. Let C' be the contour correspond-
ing to this 0°-C isotherm.

The second iteration step begins by defining 2,? and 9,
and Q.2 respectively. A X

Examining the stream functions % and ,%, estimates of
the discrepancy in meeting equation (8) are evaluated. The
a* function is now used to determine the next location of the
0°«C isotherm. This is accomplished by determining a new
a* (and modified by conductivity) superimposed at the nodal
values of C', Next, a new 0°-C isotherm is located for o,*.
The next estimated location for the 0°-C isotherm, C?, is
located by averaging the y~coordinates of the nodal points
between C' and C*. Figure 2 illustrates this procedure,

The third iteration step proceeds by defining 92, and @,
based on the mutual boundary of C* and the foregoing
procedure is repeated.

The iteration process continues until the final estimates of
@y and @, are determined with corresponding o, and &, ap-
proximators, such that

| Kdiy/ds — K, d,/ds| <e¢, zEC (10

Applications

Figure 3 depicts an application of the geothermal model for
a roadway embankment problem and the use of the approx-
imative boundary. Figure 4 Hlustrates the two-dimensional
steady-state freezing front location for a geothermal problem
involving a buried subfreezing 3-m-dia pipeline. An exami-
nation of the approximative boundaries indicate that a good
CVBEM approximator was determined by use of a 26-node
CVBEM model. The maximum departure 5 between the
approximative boundaries and the problem boundary I' oc-
curred along the top of the pipeline and had a value of
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Fig. 4 Application of the CVYBEM gecthermal model to predict steady-state conditions
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Fig. S Application of the CVBEM coupled model

approximately 3.5 cm. The average departure 3 is estimated
at fess than | cm.

The freezing front maximum departure is approximately 4
cm and occurred at the right-hand side. Average departure on
Cis less than 2 cm. By the Maximum Modulus theorem, the
error | ¢* — ¢ | must have a maximum on the boundary;
gh;]s interior of the domain model errors are bounded accord-
ingly,

Conclusions

From the figures it is seen that the CYBEM approximations
are good estimates for the freezing front location. This evail-
uation is based upon the close fit between the problem and
the CVBEM approximative boundary. That is, if the approx-
imative boundary is assumed to be the constructed version of
the problem, then the CVBEM is the exact solution to the
steady-state boundary value problem.

Thus, the CVBEM can be used to develop a quasi-analytic
solution to the boundary problems which occur in freezing/

" thawing studies. The CVBEM maodel is then used to compare
with domain solutions in order to evaluate the numerical
ervor.

After a satisfactory performance of the domain model is
obtained, various parameter values (e.g., nonhomogeneity)
can be introduced and long-term simulations initiated.
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APPENDIX a:

Complex Variable Bondary Element Method

Hromadka and Guymon [8] present a detailed development
of the CVBEM. A comprehensive presentation of the method
is given in Hromadka [9]. A feature available with the
CVBEM is the generation of a relative error measure which
can be used to match the known boundary condition values
of the problem. Consequently, the method can be used to
develop a highly accurate approximation function for the
Laplace equation and yet provide a descriptive relative error
distribution for analysis purposes. Because the main objective
of this paper is to analyze the numerical error in solving
equation (5), it is noted that the Laplace equation is solved
throughout the problem domain (if homogeneous) or in con-
nected subregions (if nonhomogeneous). Many anisotropic
effects can be accommodated by the usual rescaling proce-
dures or by subdividing the total domain into easier-to-handle

Fig. 6 Simply connected domain 2 with simple closed contour boundary
r
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subproblems. The CVBEM is then applied to the problem
domain(s) as discussed in the following.

Let @ be a simply connected domain with boundary I'
where T is a simple closed contour (Fig. 6). Discretize T' by
» nodal points into m boundary elements such that a node
is placed at every angle point on I (Fig. 7). Each boundary
element is defined by

T, ={z: z = z(s)}

where
)=z +{(zm—2z) 0=s5=<1, j#m (1)
with the exception that on the last element
T, = {z: z = z(s5)}
where
zZ(8) = zm + (21— Zn)s, 0=s5=]
Then
r=ur, (12

Let each T; be discretized by (k + 1) evenly spaced nodes
(k= 1) such that I is subidivided into k equilength scgments
(Fig. 8). The T, is said to be a (k + 1)-node element. From
Fig. 8, each T, has an associated nodal coordinate system such
that Zj1 = I and Zikel = 21t = Zig)) .

On each T, define a local coordinate system by

,C(S) =2z + (z;,kﬂ - Zj_l)S, 0=<s=1

=z, + (24 — 2,)8 (13)

where d{; = (2,441 — z;.,) ds.
On each (k + 1)-node element T, a set of order & polyno-
mial basis functions are uniquely defined by

Nf.,(.‘i) =&uot &G, s+ + a}.:.ksk (14)
wherei= 1,2, ... (k+ 1)and 0 = s < |, and where
Zin— Z I, n=i
Nk "t .1 )= s ' 15
ok (aj.k+i - z,u,] 0’ n ;é 1 ( )

The basis functions are further defined to have the property

thatfor { €T
N ( =2z, )= ( =2 ) ter,
!t Zjk+1 — Zj| 0, Zj kvl = Zjy ’ e 1",

Let w(z) be analytic on @ U I. That is, let w(z) be the
sotution (unknown to the steady-state boundary condition
problem being considered). At each nodal peint on T, define
a specified nodal value by (Fig. 8)

NE,
(16)

(17)

where from Fig. 8, &;: = & = &;-1.4+1. Using equation (16)
and equation (17), an order k globatl trial function is defined

@;i = w(z,)
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by
z}

{2z
(ZJ-H = ZJ) (13)

From equation (18), the global trial function is continuous
on I'. An H, approximation function «:(z) Hromadka [9] is
defined by the Cauchy integral

k
2 2 “"J.I'Nf‘l

joi=1

G =L GGH =
/

o1 [Ga
mk(e)-zﬂ_J; T-, v €% z&T  (19)

Because the derivative of &, (z) exists for all z € @, then
wx(z) is analytic in © and exactly solves the Laplace equation
in .-

Expanding equation (19) and using equatio_n (12) gives
[ewd_§ [Guwd
r §‘ - Z =1 r; f -2

Integrating on boundary element j gives (Hromadka [9])

fc*mds“:
b {—z

(20)

.R_,k—l(:-')

d . % 2~ 214
+ ¥ @uNfiy)in {—=} @21
i=1 zZ=- Zi

where R*“'(z) is an order (¢ — 1) complex polynomial
resulting from the circuit around point z (see Fig. 9) and «, is
equal to (z — z;)/(z,+1 — z,). Thus, the CVBEM results in the
approximation function

2= Zjy)

=z )) (22)

(23)

. 1 A -
wlz) =3~ )) (R;*"'(Z) + Z &Ny, )in (
o i
or in a simpler fo:m (Hromadka [9])

Gu(z) = RM2) + == ¥ In(z ~ 2) & T*
27” J i

Fig. 9 Branch-cut of In(z — {) function, f € T

-
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where T/X = @;_ | N¥1(v;-1) — &;.:¥F (v, ), and R*(z) follows
from equation (22).

The approximation function of equation (23) exactly sat-
isfies the governing flow equation in the problem domain Q
for the approximated boundary conditions on the problem

boundary, T'. Because w(z) is analytic on {2, then the maxi-
* mum relative error of | w(z) — @(z)| must occur on T.
Consequently, the total approximation error can be simply
evaluated on T' with the corresponding errors on the interior
of @ being less in magnitude. Because the boundary conditions
used to evaluate equation (23) are known continuously on T,
then wy(z) can be determined within arbitrary accuracy by
the addition of nodal points on T' due to (without proof)

M K
Gn(z) = J; Meirie G (6 28

lim

max |, |—o

2xi

_JwDar .
_J:mf'—z = 2niw(z)

(24}

Fig. 10 The analytic continuation of o(z) to the exterior of @ U I'. Note
branch cuts along I' at nodes z,.
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APPENDIX B:

The Approximative Boundary for CVBEM Error
Analysis

Generally, the prescribed boundary conditions are values
of constant ¢ or ¢ on each I;. These values correspond to
level curves of the analytic function w(z) = ¢ + iy. After
determining a ¢(z), it is convenient to determine an approx-
imate boundary I’ which corresponds to the level curves of
@(z} = ¢ + iy which are specified as the prescribed boundary
conditions. The resulting contour T is a visual representation
of approximation error, and I' coincident with I' implies that
©(z) = w(z). Additional collocation points are located at
regions where T’ deviates substantially from T.

A difficulty in using this method of locating collocation
points is that the contour I' cannot be determined for points
z outside of @ U T'. To proceed, an analytic coatinuation of
@(z) to the exterior is achieved by rewriting the integral
function equation {9) in terms of

I G dt

ridr -2
=Ri(z)+ ¥ (o + i8Nz ~ z)Lnz — )} (25)
=1

where o, and g, are real numbers; and Ln(z - z;) is a principal
value logarithm with branch-cuts drawn normal to I' from
each branch point z; such as shown in Fig. 10. The resuiting
approximation is analytic everywhere except on each branch-
cut. The R(z) function in equation (25) is a first-order
reference polynomial which results due to the integration
circuit of 2r radians along T. If w(z) is not a first-order
polynomial, then R (z) can be omitted in equation (10).

Implementation on a computer is direct, although consid-
erable computation effort is required. One strategy for using
this technique is to subdivide each T, with several internal
points (about 4 to 6) and determine &(z) at each point. Next,
I' is located by a Newton-Raphson stepping procedure in
locating where @ (z) matches the prescribed level curve. Thus,
several evaluations of w(z) are needed to locate a single T
point. The end product, however, may be considered very
useful since it can be argued that &(z) is the exact solution to
the boundary value problem with T transformed to I, and T
is a visual indication of approximation error.

The use of the method discussed for locating additional
collocation points on [ is demonstrated by application of the

b §

b
olxyy) » {x? + y*)72 - ' {a/al + yIpt - 1)/{a? ¢ bY)

Fig. 11 Application problem geometrics and exact solutions for temperature, $(x, y)
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CVBEM for solving 2 steady-state heat transfer problems. The
problems considered each involve a different geometry and
set of boundary conditions of the Dirichlet class. The anaiytic
solution to the problems are included in Fig. [ 1. Fach solution
satisfies the Laplace equation and is defiped as a function of
a local coordinate x ~ y systen with an origin specified as
shown in the figures. On the problem boundanes, I, the
potential function or temperature is also 2 continuous func-
tion of position defined by

Pz € I') = (x? + y?) (26)
From equation (26), it is seen thai the boundary conditions

are not level curves; consequently, the determination of an .

approximative boundary T requires further definition. in
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these applications, the problem is approached by using the
statement

I = {z: $(z) = %(x? + y*) = B} z}} 27
The sirategy of working with tevel curves (i.e., ¢ = ¢, for
€Dy, f=1,2, ..., m), follows analogously.

The two applications illustrate the development of CVBEM
approximation functions which exactly satisfy the governing
partial differential equation (Laplace equation) in 2 and ap-
proximately satisfy the boundary conditions which are contin-
wously specified on T', The subsequent figures illustrate the
CVBEM error evaluations along I' for evenly spaced nodal
placements for each problem boundary.
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