Uncertainty estimates for surface runoff models
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A lower bound for variance in surface runoff modeiling estimates is advanced. The bound is
derived using a linear unit hydrograph approach which utilizes a discretization of the catchment
into an arbitrary number of subareas, a linear routing technigue for channel flow effects, a variable
effective rainfall distribution over the catchment, and calibration parameter distributions
developed in correlating rainfall-runoff data by the model. The uncertainty bound reflects the
dominating influence of the unknown rainfall distribution over the catchment and is expressed as a
distributjon function that can be reduced only by supplying additional rainfall-runoff data. It is
recommended that this uncertainty distribution in modelling resulis be included in fiood controi
design studies in order to incorporate a prescribed level of confidence in flood protection facilities.
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INTRODUCTION

Many hydroelogic models allow for the subdivision of the
catchment into subareas, each linked by channel routing
submodels (1e, a link-node model). The effect of
subdividing a catchment on modelling accuracy has not
been fully investigated. The calibration of a link-node
model to available rainfall-runoff data is a related issue,
and the method of selecting the model parameters is
important to the accuracy of the link-node modelling
approach. Also, the uncertainty in the modelling
boundary conditions (ie., the true precipitation
distribution over the catchment) is propagated into
the fitted parameters of the model itself, and the effect
of insufficient knowledge of storm morphology affects
model accuracy. These three factors (i.e., watershed
subdivision, parameter estimation, and storm
morphology effects) are important to the accuracy of
hydrologic designs.

In this paper, the unit hydrograph method (UH) is used
to develop estimates of runoff modelling error in the
frequently occurring cases where the uncertainty in the
rainfall distribution over the catchment dominates all
other sou.ces of modelling uncertainty. Indeed, the
uncertainty in the precipitation distribution appears to be
a limiting factor in the successiul development,
calibration., and application of all surface runoiff
hydrologic models (e.g., Refs 1-6).

Schilling and Fuchs® write ‘that the spatial resolution
of rain data input is of paramount importance to the
accuracy of the simulated hydrograph’ due to ‘the high
spatial variability of storms’ and ‘the amplification of
rainfal] sampling errors by the nonlinear transformation’
of rainfall into runofl. They recommend that a model
shouid employ a simplified surface flow model if there are
many subbasins; a simple runoff coefficient loss rate: and
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a diffusion (zero inertia) or storage channel routing
technique.

In their study, Schilling and Fuchs® reduced the rainfall
data set reselution from a grid of 81 gages to a single
catchment-centred gage in an 1800 acre catchment. They
noted that variations in runoff volumes and peak flows ‘is
weil above 100 percent over the entire range of storms
implying that the spatial resolution of rainfall has a
dominant influence on the reliability of computed runoff”.
It is also noted that ‘errors in the rainfall input are
amplified by the rainfall-runoff transformation’ so that ‘a
rainfall depth error of 30 percent results in a volume error
of 60 percent and a peak flow error of 80 percent’. They
also write that ‘it is inappropriate to use a sophisticated
runoff model to achieve a desired level of modelling
accuracy if the spatial resolution of rain input is low’ (in
their study, the rain gage densities considered for the 1800-
acre catchment are 81, 9, and a single centred gage).

Similarly, Beard and Chang? write that in their study of
14 urban catchments, complex models such as continuous
simulation typically have 20 to 40 parameters and
functions that must be derived from recorded rainfall-
runoff data. ‘Inasmuch as rainfall data are for for
scattered point locations and storm rainfall is highly
variable in time and space, available data are generally
inadequate for reliably calibrating the various
interrelated functions of these complex models’.

Garen and Burges® noted the difficulties in rainfall
measurement for use in the Stanford Watershed Model,
because the K1 parameter (rainfall adjustment factor)
and UZSN parameter (upper level storage) has the
dominant impact on the model sensitivity.

In the extensive study by Loague and Freeze', three
event-based rainfall-runoff models (a regression model, a



3
1]
A
]
3
< TIME
¢ /
H
i
w | /r
E -, e;h) 4
g o
. #
] i
/allgo
9*2 I STORM TIME
.—'—-| 1
b
|

Fig. 1. Subarea effective rainfall as a linear combination
of rain gage measured effective rainfall

unit hydrograph model, and a kinematic wave quasi-
physically based model) were used on three data sets of
269 events from three small upland catchments. In that
paper, the term ‘quasi-physically based’, or QPB, is used
for the kinematic wave model. The three catchments were
25 acres, 2.8mi?, and 35 acres in size, and were
extensively monitored with rain gage, stream gage,
neutron probe, and soil parameter site testing. For
example, the 25 acre site contained 35 neutron probe
access sites, 26 soil parameter sites (all equally spaced), an
on-site rain gage, and a stream gage. The QPB model
utilized 22 overland flow planes and four channel
segments. In comparative tests between the three
modelling approaches to measured rainfall-runoff data it
was concluded that all modeis performed poorly and that
the QPB performance was only slightly improved by
calibration of its most sensitive parameter, hydraulic
conductivity. They write that the ‘conclusion one is forced
to draw ... is that the QPB model does not represent
reality very well; in other words, there is considerable
model error present. We suspect this is the case with most,
if not all, conceptual models currently in use’.
Additionally, ‘the fact that simpler, less data intensive
models provided as good or better predictions than a
QPB is food for thought™.

Based on the literature, the main difficutty in the use,
calibration, and development, of complex models appears
to be the lack of precise rainfall data and the high model
sensitivity to (and magnification of) rainfall measurement
errors. Nash and Sutcliffe’ write that ‘As there is little
point in applying exact laws to approximate boundary
conditions, this, and the limited ranges of the variables
encountered, suggest the use of simplified empirical
relations’.

Troutman® also discusses the often cited difficulties
with the error in precipitation measurements ‘due to the
spatial variability of precipitation’. This source of error
can result in ‘serious errors in runoff prediction and large
biases in parameter estimates by calibration of the
model’,

While surface runoff hydrologic models continue to be
developed in technical component complexity, typically
including additional algorithms for hydraulic routing
effects and continuous soil moisture accounting, the
problem setting continues to be poorly posed in a
mathematical approximation sense in that the problem

boundary condiitons {i.e.; the storm ramfall over the
catchment} remain unknown. Indeed, the usual case in
studying catchment runoff response is to have only a
single rain gage and stream gage available for data
analysis purposes; and oftentimes. neither gage is within
the study catchment. As a result, the rainfall distribution
over the catchment remains unknown; hence, the
problem’s boundary conditions must be approximated as
part of the problem solution. The fact that the uncertainty
in the rainfall distribution over the catchment has a major
impact on the success of any hydrologic model’s
performance and accuracy (e.g., Refs 3 and 6) indicates
that the underlying assumption used to specify the storm
rainfall over the catchment must necessarily be a major
factor in the development, calibration, and application, of
any hydrologic model.

CATCHMENT AND DATA DESCRIPTION

Let R be a free draining catchment with negligible
detention effects. R is discretized intom subareas, R;, each
draining to a nodal point which is drained by a channei
system. The m-subarea link node model resulting by
combining the subarea runoffs for storm i, adding runoff
hydrographs at nodal points, and routing through the
channel system, is denoted as Q/,(¢). It is assumed that
there is only a single rain gage and stream gage available
for data analysis. The rain gage site is monitored for the
‘true’ effective rainfall distribution. e;{t). The motivation
in using a measured e,(¢) at the rain gage site is to avoid
the necessity of using a multiparameter submodel to
approximate e;(t); rather we assume that an accurate
value of ¢,(t) is available, even though this data is
measured at the rain gage site which may be located
outside of the catchment. The stream gage data represents
the entire catchment, R, and is denoted by Q;(t) for storm
event i.

LINEAR EFFECTIVE RAINFALLS FOR
SUBAREAS

The effective rainfall distribution (rainfall less losses}in R;
is given by ej(¢) for storm i where ei{t) is assumed to be
linear in e,(t) by:

ei)=Y Ahei(t—8y), j=1,2,...m {1)
where 1}, and 8}, are coefficients and timing offsets,
respectively, for storm i and subarea R;. In equation (1),
the variations in the effective rainfall distribution over R
due to magnitude and timing are accounted for by the i}k
and 05, respectively. As an alternative to equation (1), the
e,(t) may be defined as a set of unit effective rainfalls, each
unit associated with its own proportion factor; however
for simplicity, the use of the entire e;(z) function will be
carried forward in the model development. Fig. I
illustrates the linear effective rainfall corresponding to
arbitrary subarea, R;.

SUBAREA RUNOFF

The storm i subarea runoff from R;, ¢}{r), is given by the
linear convaolution integral:

4i)= j £ilt=)8i(5)ds @)
4]

s=
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have a stream gage to measure e}(r), then (¢} can be
equated to the ‘available’ rain gage site measured effective
rainfall, e}(z), by means of equation (1). For example,
should subarea R; experience zero rainfall during storm
event i, the 4, in equation (1) would all be zero. Equation
(1) provides a means to correlate the subarea R; runoff for
storm i gi{t), to the available effective rainfall data
measured at the rain gage site, ¢,(1). _

It is noted that in the application problem, the 1} were
optimized in equation (7) such that nonnegative values
resulted, This constraint is used for the preference of
avoiding negative runoff hydrographs which would result
in the UH convolution process. Additionally, the use of
the w, and @, factors in equation (7) based on the subarea
aerial proportions is used to facilitate the approximation
effort.

LINEAR ROUTING

Let {,{1) be the inflow hydrograph to a channel flow
routing link (number 1), and O,(t) the outflow
hydrograph. A linear routing model of the unsteady flow
routing process is given by

"y

0, (t)= Z @G (t—oy ) (8)

k=1

where the g, are coefficients which sum to unity; and the
o, are timing offsets. Again, I (t—a, )=0 for r<a .
Given stream page data for [,(t) and O, (), the best fit
values for the a, and o, can be determined.

Should the above outflow hydrograph, ¢,(t), now be
routed through another link (number 2}, then 1,(t)=0,(t}
and from the above

n

0:(t)= 3 ada(r—ay,)
ky=1
& v a1 (t—a —a s
=Y a, ¥ %N ‘O, )
ka=1 &,

For Llinks, each with their own respective stream gage
routing data, the above linear routing technique results in
the outflow hydrograph for link number L, O,{1). being
given by

ng np_ . ny n
O,lr)= Z ey Z LTINERE Z ag, Z
k=1 kp_,=1 ky=1 k=1
X I(t—o —o, —. ..~y —ay,) (10)

Using vector notation, the above 0,(z) is written as

Outy=3 agyd (t—ug,) (11}

{ky

For subarea R, the runoff hydrograph for storm i, ¢ 1),
flows through L; links before arriving at the stream gage
and contributing to the total measured runoff
hydrograph, Q,(r). All of the constants a/,, and a/,, are
available on a storm by storm basis. Consequently from
the linearity of the routing technique, the m-subarea link
node model is given by the sum of the m, gj(t}
contributions,

Oult)= 3 3 ab gilt—oby,) (12)

j’l(k),‘
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where each vector (k> is associated toa R, and all data is
defined for storm i. It is noted that in all cases,

Y i, =1 (13)

<k

APPLICATION

The linear routing technique of equation (8) is a variant of
the stream flow routing convolution technigue of Dayle et
al. {1983). For channel reach #1 {link #1), the linear
routing parameters of proportions, a, , and timing offsets,
Oy,» Can only be accurately determined by use of stream
gage data which precisely give both the 1,(t) and 0,(z)
used in equation (8).

Fortunately, the derived parameters from equation (8)
provide good approximations for channel routing effects
(without significant backwater effects) for a range of flow
hydrographs. Hence for a class of hydrographs of similar
magnitude, a single set of routing parameters may be
appropriate with the linear routing model. Similarly,
another class of hydrographs would have another
associated sct of calibrated routing parameters (e.g., Ref.
7). Hence, the linear routing technique is actual
quasilinear in that the method is linear for specific ranges
of runoff hydrographs.

To demonstrate the utility of the linear routing
technique, a set of four hydrographs are considered in a
channel reach of 1000-foot length. All four hydrographs
are routed through a prismatic channel using a fully-
dyamic model solution as the ‘true’ solution. Using one
hydrograph (Fig. 4), the model of equation (8} is
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Fig.da. Fast flow linear
calibration using four translates
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Fig. 4b. Slow flow linear routing approximation
calibration using four translates



have a stream gage to measure ej{t), then ej(t) can be
equated to the “available’ rain gage site measured effective
rainfall, e;(t), by means of equation (1). For exampile,
should subarea R; experience zero rainfall during storm
event i, the 4, in equation (1) would all be zero. Equation
(1) provides a means to correlate the subarea R; runoff for
storm I, gi{t), to the available effective rainfail data
measured at the rain gage site, e(t). _

It is noted that in the application problem, the 4}, were
optimized in equation (7) such that nonnegative values
resulted. This constraint is used for the preference of
avoiding negative runoff hydrographs which would result
in the UH convolution process. Additionally, the use of
the w, and @, factors in equation (7) based on the subarea
aerial proportions is used to facilitate the approximation
effort.

LINEAR ROUTING

Let I,(t) be the inflow hydrograph to a channel flow
routing link (number 1), and O,{t) the outflow
hydrograph. A linear routing model of the unsteady flow
routing process is given by

ny

0,(t)= 3} Iy (t—-oy) (8)

Ky =1

where the q, are coefficients which sum to unity; and the
%, are timing offsets. Again, 1,(t—x, )=0 for r<a,.
Given stream gage data for I, (t) and O,(t), the best fit
values for the a, and o, can be determined.

Should the above outflow hydrograph, O,(t), now be
routed through another link (number 2), then I,(t)= 0, (z)
and from the above

- X e Lyt — o — ) )
Z akz klzl

For Llinks, each with their own respective stream gage
routing data, the above linear routing technique results in
the outflow hydrograph for link number L, 0,(t), being
given by

ny, oy "y ny
OL(I): Z ak[_ Z akL-l e z akz Z
k=1 kg, =1 k=1 k=1
X I (t—o, —o — e ) (10)

Using vector notation, the above 0, () is written as
OL(I)=Za<k>Il(f_GC(k>) (11)
&

For subarea R}, the runofl hydrograph for storm i, gi(t),
flows through L; links before arriving at the stream gage
and contributing to the total measured runoff
hyd.rograph, Q,(1). All of the constants a/,, and !y, are
available on a storm by storm basis. Consequently from
the linearity of the routing technique, the m-subarea link
node model is given by the sum of the m, g'()
contributions, !

m

QuD)= 3 3 dpajt—oy) (12)

i= 1,

where each vector (k)} is associated toa R »and all data1s
defined for storm i. It is noted that in all cases,

Y aly, =1 (13)

kY,

APPLICATION

The linear routing technique of equation (8) is a variant of
the stream flow routing convolution technique of Doyle et
al. (1983). For channel reach #1 (link #1), the linear
routing parameters of proportions, 4, , and timing offsets,
%, can only be accurately determined by use of stream
gage data which precisely give both the /() and O,(r)
used in equation (8).

Fortunately, the derived parameters from equation (8)
provide good approximations for channel routing effects
(without significant backwater effects) for a range of flow
hydrographs. Hence for a class of hydrographs of similar
magnitude, a single set of routing parameters may be
appropriate with the linear routing model. Similarly,
another class of hydrographs would have another
associated set of calibrated routing parameters {(e.g., Ref.
7). Hence, the linear routing technique is actual
quasilinear in that the method is linear for specific ranges
of runoff hydrographs.

To demonstrate the utility of the linear routing
technique, a set of four hydrographs are considered in a
channel reach of 10 00-foot length. All four hydrographs
are routed through a prismatic channel using a fully-
dyamic model solution as the ‘true’ solution. Using one
hydrograph (Fig. 4), the model of equation (8) is
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cahprated. ln this exXample, a least squares €rror norm 1s 2000 ‘ et

used with the constraint that all proportions, a, . are T e
nonnegative. Only four timing offsets, o, , were used in T T G
this application. The resultmg calibration apprommatlon

and the ‘exact’ solution is shown in Fig. 4 for a fast flow
{peak flow rate velocity of 24 feet/sec) and also a slow flow
channel condition {peak flow rate velocity of 12 feet/sec).
Using both sets of calibration parameters, four other
hydrographs are tested and compared to the ‘exact’
solution in Fig. 5 for both the fast flow and slow flow
conditions. From Fig. 5 it is seen that the linear routing EOURD)
mthod provides a good approximation of both
translation and storage effects for a useful range of
hydrograph magnitudes, cven though only four timing
offsets were used in the approximation effort,

1000

Qlcin

Fig. 5a. Fast flow linear routing model verification test (1
of 4). (Model was calibrated in Fig. 4a.)

LEGERD

This application not only ilfustrates the utility of the BN
linear routing technique but aiso demonstrates that a 2000 A,
calibrated linear routing model is also a good model for a e % APPRCHINETE. WYOROGRAPH

range of hydrograph magnitudes. As noted in Doyle et
al.”, different sets of calibration parameters would be
needed for different classes of hydrographs (e.g., low-flow
hydrographs versus high-flows). However for specified
ranges of classes of hydrographs, a single set of routing
parameters may be appropriate. Hence, on a hydrograph
class basis, the routing effects are essentially linear and are
adequately described by the model of equations (8).
The above conclusions (i.e., that the routing effects are
approximately linear for classes of hydrographs, and that

Gicts)

a single set of caltbrated routing parameters are Fig. 5a.
appropriate for a class of hydrographs) will be useful in
the latter sections of this paper when developing emo
uncertainty estimates for hydrologic models. T e e
& QUTFLOW HYDROGRARH
== * APPROX[MATE HYQROGRAPH
2000

LINK-NODE MODEL, Q. 1)

For the above lincar approximations for storm i,
equations (1), (4}, and (12) can be combined to give the

final form for the m subarea link-node model, Q. (r). 3 oto
Onit)= Z ) “<k>J‘ I
14w, =0
—5) z A k¢;(S 9_:;; a(k) ) ds (14) og — )
Because the measured effective rainfall distribution, e;(r}, Fig. 5a.

is independent of the several indices, equation (14) is
rewritten in the form

= INFLOW HiDROGRAPH
FAST FLOW:

= OUTFLOW HYDROGRAPH

+ HRPRUTTARTE HrLRGGRARK

. t . m 3000y
0i0)= j =9 £ ¥ ab, ¥ -

$=0 J=1<ky,

* Mppifs ~ jk‘“<k>,~) ds (13)

where all parameters are evaluated on a storm by storm
basis, i.

Equation (12) described a model which represents the
total catchment runoff response based on variable
subarca UH’s, ¢ {(s); variable effective rainfall
distributions on a subarea-by-subarea basis with
differences in magnitude (4! &) timing (6 ,‘) and pattern
shape (linearly assumpnon), and channel flow routing
translation and storage effects (parameters a/;, and oy, ).
All parameters employed in equation (15) must be
evaluated by runoff data where stream gages are supplied
to measure runoff from each subarea, R;, and stream Fig. 5a.
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Fig. 5b. Slow flow linear routing model verification test
(I of 4). (Madel was calibrated in Fig. 4b.)
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gages arc locafed upstream and' Aownsiream oOf eacn
channel reach (link) used in the model.

MODEL REDUCTION

The m-subarea model of equation (15} is directly reduced
to the simple single area UH model (no discretization of R
into subareas) given by Q}{t) where

Q'i(t)=f eyt —s)'(s) ds {16)
s=0

where ni(s) is the correlation distribution between the
data pair {Q,(t). e{t)}, for storm event i.

From equation (16} it is seen that the classic single area
UH model equates to the highly complex link node
modelling structure of equation (15), where considerable
runoff gage data is supplied interior of the catchment, R,
so that all modelling parameters are accurately calibrated
on a storm-by-storm basis. For the case of having
available only a single rain gage site (where the effective
rainfall is measured, e;(t)) and a stream gage for data
correlation purposes, the #'(s) properly represents the
several effects used in the development leading to
equation (15), integrated according to the observed
sampling from the several modelling parameters’
respective probability distributions. Because the simple
Q' (t) model structure actually includes most of the effects
which are important in flood control hydrologic
response, it can be used to develop useful probabilistic
distributions of hydrologic modelling output.

In comparing the two models of equations (15) and
(16), it is noted that Q(r)=0}(¢) only when interior
runoff data is supplied to accurately evaluate all the
modelling parameters used in equations (15). For
example, should the catchment be discretized into many
small subareas with small channel routing links (e.g., such
as used in highly subdivided catchments with UH
approximations, or as employed in kinematic wave {(Kw)
type models such as MITCAT, ot the KW version of
HEC-1), then with a stream gage located at each subarea
{or overland flowplane) and at each channel link, all
modelling parameters could be accurately evaluated on a
storm-by-storm basis, resuiting in the formulation of
equation (15).

Indeed, only by means of subarea stream gage data can
the subarea linear effective rainfall distribution
parameters of 43, and 8}, be accurately determined for
each storm event i. But 1t is these linear effective rainfall
distribution parameters that reflect the important spatial
and temporal vanability of storm rainfall over the
catchment which in turn causes the major difficulties in
the development, calibration, and use, of hydrologic
models (Schilling and Fuchs®; Troutman®; among
others).

It is assumed in this paper that only a single rain gage
{which is monitored to accurately develop the effective
rainfall at the rain gage site, ei(r)} and stream gage are
available for data analysis. Consequently, any hydrologic
model serves to correlate the data pair {e}(r), Q}(t)} for
gach storm event |,

The current direction of advanced development for
hydrologic models is a modelling structure such as
equation (15). With subarea and channel-link stream
gage data, the Q,(r) parameters can be accurately

Adv. Water Resources, 1988, Volume 11, March 7



uCLerInined, and
Q) =0118) (17a)

But in the typical case of having only the single gage and
stream gage, all the parameters in equation (15) must be
approximated, resulting in the estimator, },(t), wherein
the subarea linear effective rainfall parameters of
equation (1) are misrepresented by setting 6;k=0 (ie.,
zero timing offsets between the measured rainfall at the
gape and the subarea rainfalls), and also by assuming that
the magnitudes of rainfall intensitics are invariant
between subareas and the rain gage.

From the above discussion, the estimator model 0.,(£),
cannot achieve the accuracy of @',(t), (and hence, Q™' (1))

Qr)# Qi) (17b)
and from equation (17)
RO (17c)

From equations (17), the simple single area UH model,
Q! (t), properly represents the appropriate UH for each
subarea {or overland flow plane) for storm i the
appropriate linear routing parameters for each channel
link, for storm i; the appropriate timing offsets and
proportions of the measured cffective rainfalls, for each
subarea; and the appropriatc summation of runoff
hydrographs at each confluence. In contrast, the model
estimator, (. (¢), uses estimates for all of the parameters,
and subarea effective rainfall factors, and hence cannot
achieve the accuracy of Q)(t) without the addition of
interior rainfall-runoff data to accurately validate the
parameter values.

STORM CLASSIFICATION SYSTEM

To proceed with the analysis, the full domain of effective
rainfall distributions measured at the rain gage site are
categorized into storm classes, {£,>. Because the storm
classifications are based upon effective rainfalls, the
measured precipitations, P;(t), may vary considerably yet
produce similar effective rainfall distributions. That is,
any two elements of a class {&,> would result in nearly
identical effective rainfall distributions at the rain gage
site, and hence one would ‘expect’ nearly identical runoff
bydrographs recorded at the stream gage. Typically,
however, the resulting runoff hydrographs differ and,
therefore, the randomness of the effective rainfali
distribution over the catchment, R, results in variations in
the modelling ‘best-fit” parameters (i.e., in 8 (¢), the 1'(s)
variations) in correlating the available rainfall-runoff
data,

More precisely, any element of a specific storm class
{&,» has the effective rainfall distribution, e%{t). However,
there are several runoffs associated to the single ej(t), and
are noted by Q9'(1). In correlating {Q2(t), €2(t)}, a different
n'(s) results due to the variations in the measured Q;i(t)
with respect to the single known input at the rain gage
site, e5(z)-

In the predictive mode, where one is given an assumed
(or design) effective rainfall distribution, eg {t), to apply at
the rain gage site, the storm class of which (1) is an
element of is identified, <£,>, and the predictive output
for the input, ¢J(t), must necessarily be the random
variable or distribution,

[QYn]= f ep(t—s)nis)]pds (18)
5=0
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where [#(s)], is the distribution of #'(s) distributions
associated to storm class {£,].

Generally, however, there is insufficient rainfall-runoff
data to derive a statistically significant set of storm
classes, ( £,>, and hence additional assumptions must be
used. For example, one may lower the eligibility
standards for each storm class, ¢ £,>, implicitly assuming
that several distributions {#(s)], are nearly identical; or
one may transfer [#(s)], distributions from another
rainfall-runoff data set, implicitly assuming that the two
catchment data set correlation distributions are nearly
identical. A comman occurence is the case of predicting
the runoff response from a design storm effective rainfall
distribution, ¢5(s), which is not an element of any
ohserved storm class. In this case, another storm class
distribution must be used, which implicitly assumes that
the two sets of correlation distributions are nearly
identical. Consequently for a severe design storm
condition, it would preferable to develop correlation
distributions using the severe historic storms which have
rainfall-runoff data available for the appropriate
condition of the catchment.

EFFECTIVE RAINFALL UNCERTAINTY AND
THE DISTRIBUTIONS, [5s)).

This paper’s introduction includes brief statements from
several reports which conclude that the variability in the
rainfall (and hence the eifective rainfall) over the
catchment is a dominant factor in the development,
calibration, and application, of hydrologic models {e.g.,
Schilling and Fuchs®: among others). Including this
premise in hydrologic studies would indicate that
hydrologic model estimates must be functions of random
variables, and hence the estimates are random variables
themselves.

From equation (15), the correlation distribution for
storm event i, y(s), includes all the uncertainty in the
effective rainfall distribution over R, as well as the
uncertainty in the runoif and flow routing processes. That
is, #1°(s) must be an element of the random vartable [n(s)],
where

n'is)= Z > @y, Z Apdils — 04— 2 ) {19)
J=1 (hyy
and equation {19) applies to storm event i for some storm
class { £,>. Forsevere storms of flood control interest, one
would be dealing with only a subset of the set of all storm
classes. In a particular storm class, (£,», should it be
assumed that the subarea runoff parameters and channel
flow routing uncertainties are minor in comparison to the
uncertainties in the effective rainfall distribution over R
(e.g., Schilling and Fuchs?; among others}), then equation
(15) may be written as

[ns))= 2 X duw, 2 (Al s~ [0 —%0) (20)

i= 1k,

where the overbars are notation for mean values of the
parameters for storm class (&, But the mean values for
the linear routing parameters are essentially the
calibrated parameters corresponding to a class of
hydrographs (see the application following equation (13))
which accommodate a range of hydrograph magnitudes.



And for a highly discretized catchment model, the use of a
mean value UH for each subarea, ¢ (s), has only a minor
influence in the total model result53 Although use of
equation (16) in deriving the [#(s)], distributions resuits
in the uncertainties of both the effective rainfalls and also
the channel routing and other processes being integrated.
equation (20) is useful in mouvatmg the use of the
probabilistic distribution concept in design and planning
studies for all hydrologic models, based on just the
magnitude of the uncertainties in the effective rainfall
distribution over R. That is, although one may argue that
a particular model is ‘physically based’ and represents the
‘true” hydraulic response distributed throughout the
catchment, the uncertainty in rainfall still remains and is
not reduced by increasing hydraulic routing modelling
complexity. Rather, the uncertainty in rainfall is reduced
only by the use of additional rainfall-runoff data. In
equation {20), the use of mean value parameters for the
routing effects implicitly assumes that the variations in
storm parameters of [4; ][] are not so large such as o
develop runoff hydrographs which cannot be modelled by
a single set of linear routing parameters on a channel link-
by-link basis.

DISCRETIZATION ERROR

In the general case, the practitioner generally assigns the
recorded precipitation from the single available rain gage,
P‘(t) to occur simultaneously over each subarea, R;. That
is from equation (1), the 8}, =0 and the i} are set to
constants A; which reflect only the variations in loss rate
nonhomogenelty Hence, the ‘true’ QL(f) model of
equation (15), {and also equation (16)), becomes the
estimator Q {t) where

0it)= j Be-5) S T ¥
s=0

=14k,

X (s — &y, ) ds (21)

where hats are notation for estimates. These incorrect
assumptions result in ‘discretization error’. Indeed, an
obvious example of discretization error is the case where a
subarea R, actually receives no rainfali, and yet one
assumes that Pg(t) occurs over R;in the discretized model.
(It is easily shown that the equation (16) model
accommodates this exampie case.)

DISCRETIZATION CALIBRATION ERROR

A current trend among practitioners is to develop an m-
subarea link-node model estimator QF(t) such as
equation {21}, and then ‘calibrate’ the model parameters
using the available (singlc) rain gage and stream gage data
pair. Because subarea rainfall-runoff data are
unavailable, necessarily it is assumed that the random
variables associated to the subarea effective rainfalls are
given by

[0a]=
[’LJk] 4
But these assumptions violate the previously stated

p}'cm_ise that the uncertainty in the effective rainfall
distribution over R has a major effect in hydrologic

j (estimator, QL (t), assumptions)  (22)

modelling accuracy. The impact in using equation (22)
becomes apparent when calibrating the model to only
storms of a single storm class, {&.>.

Again, for all storms in (&>, the effective rainfall
distributions are all nearly identical and are given by the
single input, ej(t). But due to the variability in rainfall
across the R, the associated runoff hydrographs, Q2(t),
differ even though es(t) is the single model input.

It is recalled that in equation (21‘;, the effective rainfall
distribution is now the estimator, e“‘(t) That is, due to the
several assumptions leading to equation (22} for the
discretized model estimator, {7 (), the variations due to
[4;] and [6,,] are transferred from the [#(s}] distribution
to the ¢ (t) function. For storm class {¢,>, the estimator
Q‘”(r} can be written from equations (20) and (21} as

Gol)= f B\ T Y o, LAB ) ds (23)
s=0

J= 1<k,

where in equation (23), it is assumed that the variations in
model output due to using mean values (overbar
notation) are minor in comparison to the variations in
model output due to [4;] and [8,]. That is. even though
the rainfall distributions over the catchment, R, are
variable with respect to the single input, egf(f), the
resulting subarea runoffs still fall within a single linear
routing parameter class for each channel routing link,
respectively. But then equation (23) is but another single
area UH model:

Q,f(t)=f &5'(t — s)Ai,(s) ds (24)
s=0

where ﬁ,(s) is an estimated distribution which is “fixed’ for
all storms in a specified storm class {£,». In calibrating

)°(t), therefore, the work effort is focused towards
finding the best fit effective rainfall distribution &,
which correlates the data pairs {Q}(r), 7,(s)}, for each
storm i. That is, the ‘true’ single ey(r) is modified to be

‘"(t) in order to correlate the {Q2t), ?19(3)} for each storm

This contrasts with fi ndmg the best fit » i(s) which
corre'lates the pairs, {Q5(r), e2(1)}, such as in equation
{(16). It is recalled that from equations (200, (21}, and (24},
1,3} is a single distribution due to the assumptions of
equation {22}, and due to using a single storm class, {{,,
which develops runoffs that fall within a single class of
linear routing hydrographs.

The effective rainfall estimator, ég‘{t), used in equations
{23) and (24) is the correlation between the data pair
{Q%(1), #,(s)}. Consequently, similar to the #'(s)
dlstrlbutlons the €%(¢) must have an infinite degrees of
freedom in order to provide the needed correlation.
However, hydrologic models prescribe a given model
structure to the effective rainfall estimator which involves
only a finite number of degrees of freedom, or parameters.
This fixed model structure develops effective rainfalls,
noted as &{t), for storm event i. Convoluting &5(z) with the
17,{(5) estlmated for storm class {¢,> develops the general
hydrologic model, Qg(t) for storm {. The model Q (¢} is
the model that practictioners use. For storm class ( Lo
the correlation distribution is the fixed #,(s), and the
effective rainfall estimator is the smgle calibrated
distribution &5(r). Thus, for storm class {¢,>, the ‘true’
hydrologic model structure of equation (15) becomes the
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point estimate:

r

gst)= [

53=0

égt—s)j,(s) ds (25)

Because the effective rainfall submodel used in §! (1)
has a prescribed structure, it cannot match the best fit
e2i(r) for all storms and, consequently, modelling error is
introduced into the parameters of the loss rate submodel,
é5(t), when calibrated to storm class {Z,}.

An error which results due to use of equation (25) is
that the estimator modelling distribution [Qm(t}} for
storm class &> will be i 1mprec1se due to the variation in
derived loss rate parameters in &;(t) not achieving the true
variation in e;'(t) needed to corrclate {Q‘”(r) f{s)} in

equation {24).

HYDROLOGIC MODEL OUTPUT
DISTRIBUTIONS

The previous development resulted in the identification of
four modelling structures:

(i) QL(f)— this is the m-subarea link node model with
channel links connecting the subareas, (equation
(15)). Stream gage data is supplied for each subarea
{or overland flowplane) and also along each channel
link so that all modelling parameters and subarea
effective rainfall factors are accurately determined
for each storm event i, For storm class (&>,
(measured at the single ‘available’ rain gage site),
Q;,(¢) results in the distribution, [Q%(¢)].

(i) Qi(t) — this is a simple single area UH model. For
only a single rain gage and stream gage, Q}(t) is
equal to 0,,(t}in predicting runofl at the stream gage
{see equations (15) and (16)). For storm class (>,
Q1(r) becomes the distribution [Q9¢(t)] where

{3 =[5 .

(iii) QL(t) — should all the parameters in QX(z) be
estimated for a storm class, then Q) is
approximated by the estimator O! (r). However ona
storm class basis, Q%(t) reduces to another single
area UH model of equatlon (24) where the
correlation distribution, 1,(s), is fixed for storm class
CEY. QLin equates 1o Q,,,{t) when the effective
rainfall estimator, £}(t), is given an infinite number of
degrees of freedom.

(ivy (1) - because the effective rainfall estimates in an

m-subarea link node model are of a prescribed
structure, the estimates have a finite number of
degrees of freedom. For storm class {&,>, §i{t)
reduces to another single area UH model where the
correlation distribution is identical to that used in
Qn(t). But the effective rainfall distribution in the
single area UH representation is & ( ) where eg(t) 13
calibrated to best fit the dxstnbutxon of 8,(r)
distributions which are needed to correlate the data
pairs, {Q5(t), 7,(5)}, in storm class {&,).

From the four modelling structures, the parameter
calibration process can be interpreted. For storm class
($., distributions are deveioped for [Q2(t)] and [Q4(t)].
A distribution of QL(r), noted as [Q% t)], can be
developed provided the effective rainfall estimator is
given an infinite number of degrees of freedom. However,
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the ‘calibrated’ model of 0. (t) develops only a single
point estimate 2t} for storm class (&,).

For storm class {&,>, the several modelling output
distributions are as follows:

[Q?n(f)]= o(t S)Z z; @y, Z
- ' K I
x [i @ (s~ [0%] %% ) ds (26)
fotal= [ ae-sion.as @
s=0
[0x0)=[_ti0-olioas )
§=0

[Oait)] = 0o =J &y{t—s)M,(s) ds (2%
s=0

Again, [Qn()]=[Q1()]. [Qn()]=[0Cn (t)] only when

€5'(t} is given an infinite number of degrees of freedom
such as to correlate Q"‘(r) to #1,(s)for each storm . Finally,
éxt) is some welghted average of the distribution of
[€5(2)], usually, the expected value is used:

&1 = E[&(0)) (30)

APPLICATION: THE CALIBRATION PROCESS

In calibrating the model structure, Q4 (1), for storm class
(&, the data Q3'(r) and e€3(¢) is used to determine the
disitribution of [n(s}],.

In calibrating the model structure, Qm(r), the data Q“‘(t)
and the rigid Mo (s) is used to determine a best fit &} “r) for
each storm i in class {(&>.

In calibrating thc model structure, 7 {r), the effective
rainfall function, é%(z), is calibrated to best fit the
distribution of [é;(tﬂ such as by using a simple average.

To demonstrate the above discussion, a 25-subarea
link-node model of an idealized catchment is used which
satisfies the several assumptions leading to Q.,(2), (see Fig.
6). The single ‘available’ rain gage is shownasa triangle in
Fig. 6. Not shown in Fig. 6 are subarea-centred rain gages
and link stream gages which are used in Q. (¢}, but are
‘unavailable’ to the estimator, 0} (t). The catchment, R, is
1000 acres in size, with each R; being 4Q acres. All channel
links are rectangular channels with dimensions of
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Tuble {. Application problem daia

Subarea R; Te* AP A%° 5.4
1 30 1.0 1.0 0
2 30 1.0 1.0 0
3 45 1.0 i.0 0
4 45 1.1 [.1 3
5 30 1.1 1.1 3
6 30 09 09 3
7 45 0.8 0.8 3
g 30 08 0g 3
9 30 0.7 0.7 3

10 30 0.7 0.7 3
11 45 0.8 0.3 6
12 45 1.0 1.0 6
13 45 1.0 1.0 6
14 45 1.3 1.3 6
15 30 1.3 13 6
16 30 1.2 1.2 6
17 45 1.2 1.2 6
18 30 1.4 1.1 6
19 30 il 11 )
20 45 1.0 1.0 [
2 30 L0 1.0 6
22 30 1.0 1.0 6
23 30 09 09 6
24 45 09 0.9 6
25 45 0.8 0.3 6

* To=time of concentration in minutes

b I;=assumed ratio of effective rainfall at subarea to rain gage site
¢ A =mean value for i},. Note that i, =4,

4 9 x=~mean value {or 95, in minuies

|
.
05t
o 1 1 I L 1 A ] 1 L 4 L L |_’__
0 0.5 1.0 LS
o 4.0
Nik/ A jk
Fig. 7a. Frequency distribution for i (see Table {

Jor subgrea A.]k)
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- —
0—_11141;111-11T]-|1_|_|:

L
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8%k /0%

Fig, 7b. _ Frequency distribution for Bj}: (see Table 1 for
subarea 63)

Fig. 8. Runoff hydrographs,

depth = 20-feet (s0 as to guarantee no overflow), width=
8-feet, slope = 0.01 fi/ft. and a Mannings friction factor of
0.015.

Each subarea hasits own UH {(standard SCS triangular
unit hydrograph) which is assumed to be a function of its
time of concentration, Tc. Each subarea is assumed to
have a uniform loss rate funciion. The rain gage site is
monitored to determine the ‘true’ effective rainfalt, ei(¢),
{Fig. 6).

To evaluate the calibration process, a series of identical
effective rainfall distributions (i.e., storms ej(¢) are defined
at the rain gage site, which satisfy that each storm is in the
same storm class, { £,). For the model structure of 0,
the subarea eﬂ‘ectwe rainfalls are assumed related to the

eg(t) by the factors A 4; listed in Table 1. Other parameter
data 15 also listed in thls table. The “true’ distributions of

e9(¢) are random variables distributed according to Fig.
7a for i%, and Fig. 7b for timing offsets, %, where mean
values are listed in Table 1. The ‘true’ runoff hydrographs
are developed for each storm using Q,(¢) of equation (15),
and are shown in Fig. 8. The variations in runoff shown in
Fig. 8 are of the order of magnitude reported in Schilling
and Fuchs?, and should provide a useful case study in
examlining the model calibration process.

Because ¢5{z) is fixed, the 0° (t) model structure must
have a fixed. output. There fore, because #,(s) is fixed, a
least-squares best fit for e"‘(t) can be developed for each
storm n {&,>. Some of the resulting plots of effective
rainfail distribtuions are shown in Fig. 9. In the figure, it is
seen that a different e"‘(t) 1s derived for each storm i {in
class ({,)) in correlatmg {0540, 7, s)}

For Q"‘(t), however, the variations in e} i(t) are reflected
in the 'Io(S) variations. Some of the elements of the set
{n+(s)} are shown in summation (mass) graph form in Fig.
10.

From Fig. 9, the set of e"'(t) plots needed to correlate
the Q3 (1) to the single #,(s) cannot be duplicated by a fixed
loss rate model structure because the storm precxpxtatlon
is identical for each event and, therefore, a loss in
accuracy must occur during parameter calibration.
Additionally, the final calibrated parameters lose some of
the physical meaning for what they were intended, in that
they reflect variations in effects other than the loss rate.
The model structure, Q% (t), uses ‘calibrated’ effective
rainfall distribution, €j(¢), which is usually an average of
the derived e;‘(r) this is shown as the heavy line in Fig. 9,

“MEAN VALUE

Qi cle

. i N "
Q 0.7 2333 050 OB67 Q833 oo 1i67 1333
THE (NOURS)

5s(t) using 25-subarea
(Fig. 6) link-node model of equation (15) with effective

rainfalls in subareas according to equation (1) and Table |
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Fig. 9. Effective vainfalls, &'(t), needed to develop Fig. 8
runoff hydrographs, QSs(t), given the fixed Unit
Hydrograph, 1,(s), corresponding to the 25-subarea model
of Fig. 6 and uniform rainfalls across the catchment

([4]= ":; [6:]1=0)

Whether £3(t) can fit the heavy line in Fig. 9 depends on
the prescribed model structure of the loss function.

In Fig. 10, however, the resulting xi(s) plots
{summation graph form) are used to populate a freq uency
distribution for [x(s)], to develop the uncertainty
distribution for [Q?%(r)] using single measured es(z) as the
model input.

It is noted that in this apphcatlon the estimated i are
a,s_sumed ‘correctly’ in that the 4; equal the mean value of

4 (see Table 1). Hence in actual applications, the
discrepancies between €5'(t) could be augmented.

DISCUSSION

The application demonstrates how the unknown effective
rainfall distribution manifests itself in the single area UH,
Qift), model, and in a discretized link node model
estimator, (7 (¢), when using storms of a similar class to
calibrate model parameters. For the Qi(r) model, the
uncertainties are incorporated into the UH correlation
distribution, #(s). In the estimator, Q'fn(t), however, the
uncertainties are transferred to the effective rainfall
submodel parameters used in &i(z).

Because the n'(s) are allowed to freely vary, the
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frequency distribution [5(s}], of the n“(s) reflect the
several modelling uncertainties as well as the important
uncertainty in the effective rainfall distribution over R, for
storm class (£,

With the estimator, Z(t), however, the effective
rainfall estimator, &(z), is a fixed model structure which
cannot fit the irregular effective rainfall distributions
needed to correlate measured runoff data, Q"‘(t}, to the
0:.(r) model single UH correlation d:strlbunon 110(5) for
storm class {£,). As a result, the calibration of €,(z) must
be imprecise and, therefore, theQm(t) must be a more
uncertain model in the predictive mode than the Q3{t)
model on a storm class basis.

THE VARIANCE OF HYDROLOGIC MODEL
OQUTPUT

Consider the Q}(r) model structure in correlating the
single rain gage and stream gage. For storm class (.,
there is an associated distribution of correlation
distributions, [n, (s)],. Then in the predictive mode, the
predicted hydrologic model output is the distribution

[@9(r)] where
Losn] ={ es(t—s)[n(s)], ds (from eguation (26))
s=0

For storm time z, the distribution of flow rate values is
given by [Q}(z)], where

(3= a9l o 61)

wi=0

Let ¢, be the storm time where the peak flow rate, Q,,
occurs for storm class (£,>. Noting that , is a function of
[n(s)], then the distribution of [Q,], is gwen by

{&L=f’4m—ﬂmmLm (32)

vs=0

Let D be a singie time duration. Of interest is the
maximum volume of runoff during duration, D, for storm
class {{,>. Then the distribution of this estimate is given

{nitsids

1
50

-

t TIME (HOURS)

Fig. 10. Example summation graphs of distributions,
Ai(s) for storms in elass (&>



by

[maxf Qotydr] = maxf J eg(t—s)[n(s)], ds
o D Js=0
(33}

Let 4 be an operator which represents a hydrologic
process algorithm (e.g., detention basin, etc.) Then the
output of the operator for storm class (> is the
distribution

[4],= A(J! eg(t—s)n(s)], ds) (34)
o

§s=

The expected value of the hydrologic process A for storm
class (&, is

E[4],= ¥ AU e‘;(tns)n(S)dS)P(n(S)) (35)

[nts)], 5=0

where P{n(s)) is the frequency of occurrence for
distribution n{s) in [5(s)],. The variance of predictions of
hydrologic process 4 for storm class <£,) i§ (for A( )
being a mapping into the real number line; .., giving a
single number resuit},

1 2
varf4],= % (A(J &t —sinis) ds) - E[A],,) Pinis))
a

[ntsile 5=
(36)

From the above standard statistical definitions, and
equations (26}-(29), it is seen that the var[d], is
computed correctly when the single area UH model
structure distribution, [Q¢(t}], is used for storm class
(¢&,>. The use of additional subareas in the modelling
structure {for the given assumptions) must be
accompanied by runoff data in order to properly evaluate
the effective rainfall distribution in each subarea with
respect to the available single rain gage data site. Without
this additional data, the variance in modelling output wiil
not equate to the true variance provided by [Q?(z}] for
storm class {{,»>. Because the model estimator of
equation (29) cannot produce design estimates more
accurately than the single area UH model of equation
(273, the variance of equation (36) must be a lower bound
for all hydrologic models.

APPLICATION

Dominguez Wash is a fully developed 35-square-mile
catchment located in Los Angeles, California. It has been
essentially fully improved with a well-drained flood
control system for nearly 50-years. Of concern is the
design of a flood control detention basin at the stream
gage site,

The design objective is to build a flow-through type
detention basin which provides a level of protection for a
prescribed storm pattern and loss rate. The available
rainfall data is a single rain gage located off-site of the
catchment.

In reviewing the rainfall data, no storms were found
which precisely matched the design condition effective

rainfall distribution, €2(¢t). Consequently, a storm ciass
{¢py could not be developed.

The assumption that similar storm classes, £, have
similar correlation distributions, [x(s)],, was then
involved. By examining the available rainfail records and
the runoff data from the Dominguez Wash stream gage,
only 5 storms were identified which were considered
similar enough to e](r) to have similar correlation
distributions. More data would be neceded to have
statistical significance; however, this information is used
for demonstration purposes. _

The five correlation distributions, #'(s), are shown in
mass-curve form in Fig. 11. Each »'(s) is assumed to have
a probability of 0.20. The '(s) of Fig. 11 were derived by a
least-squares fit between estimated effective rainfall from
the rain gage and the stream gage using the Q}(r) model
structure.

For the prescribed design effective rainfall storm
condition (rainfall less losses) given by €}{r) at the rain
gage, the hydrologic model estimate for runoff is given by
the distribution [Q5(1)] of equation (19). _

By routing each Q7(t} model, (using a different '(s) for
each trial), through the detention basin, a different
demand on the basin volume is determined. Figs 12 and
13 show the resulting distribution of Qf(1) and the
associated detention basin volume requirements,
respectively, Also shown in Fig. 13 are confidence
estimates from the modelling results.

A

{niis)ds

$%0

1

— L P
P

Q5 10 L5

TIME {HOURS)}

Fig. 11. Correlation distributions n,(s), in correlating
Q{t) and &t) for the application problem, plotted in
summation (distribution) graph form

PROBABILITY

Fig. 12. The hydrologic model distribution for a
predicted response, [ Qplt)], from input, e? {t). Heavy line is
the expected distribution, E] Qp(t)]
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Fig. 13. Detention basin volume requirement

Adv. Water Resources, 1988, Volume 11, March 13



CONCLUSIONS

A lower bound for estimating the distribution of
uncertainty in surface rupoff modelling output is
advanced. The bound is based on a linear unit
hydrograph approach, which utilizes an arbitrary
number of catchment subdivisions into subareas, a linear
routing technique for channel flow effects, a variable
effective rainfall distribution over the catchment, and
calibration parameter distributions developed in
correlating rainfall-runoff data by the model, Because all
hydrologic parameters (e.g., subarea unit hydrographs,
channel routing parameters, effective rainfall distribution
factors) vary on a storm basis, the unit hydrograph
methodology is a reasonable approximation for assessing
uncertainty in hydrologic modelling estimates. The
uncertainty bound developed reflects the dominating
influence of the unknown rainfall distribution over the
catchment and is expressed as a distribution function
which can be reduced only by supplying additional
rainfall-runoff data. Tt is recommended that this
uncertainty distribution be included in flood control
design studies in order to incorporate prescribed levels of
confidence in floed protection facilities.

Also developed in this paper is the conclusions that the
single area UH modelling structure represents a highly
complex link-node model where all parameters are
validated by data. The single area model UH integrates
several effects occurring during storm event i; namely (1}
variation in the individual runoff hydrograph channel
routing effects, (2) the distribution of the individual runoff
hydrograph channel routing effects, and (3) the variations
in the effective rainfall magnitude, timing, and pattern
shape over the catchment. When correlating stream gage
runoff to effective rainfall, the single area UH determined
by calibration will inctude the above described effects.

In contrast, using a highly discretized model during
calibration will result in a ‘rigid’ UH which transfers the
vunknown variations in the above cited effects to the
model’s effective rainfall distribution, resulting in a less
reliable calibration of the loss function parameters.

The correlation of the effective rainfall to the runoff
hydrograph from the catchment R will result in a different
UH (for the single area model) for each storm event.
However, the resulting collection of UH’s reflect the
dominating uncertainty in the variation in the magnitude,
timing, and shape of the effective rainfall distribution over
R. When the data base consists of only a single rain gage
and stream gage these three uncertainties cannot be
reduced by including additional complexities into the
hydrologic model {e.g., subareas linked by hydraulic
routing submodels, additional soil-moisture accounting
algorithms, etc.). Only additional measured rainfail-
runoff data within the catchment R will reduce the
uncertainty. Without this additional data, the uncertainty
in the effective rainfall over R will remain and should be
included in flood control design and planning studies by
development of confidence levels in modelling results.

NOTATION

The following notation is used in this paper:

%, timing offsets for channel link # 1 used in the
linear routing technique

oy, o, corresponding to storm class (&>

A effective rainfall proportion factors for
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subarea R, and storm i

e effective rainfall timing offsets for subarea R,
and storm i

$i(s)  subarea unit hydrograph (UH) for subarea R;
and storm i

<& specific storm class

{ES arbitrary storm class

n'ts) correlation distribution between measured
effective rainfall and measured runoff, for
storm i, using a Voltera integral model structure

Ly translation timing offset for channel link j and
storm i

wq, @, area weighting factors

A, proportion factors for linear routing
technique, used for channel link # 1

A, subarea R, arca

D design condition

eir) effective rainfall measured at the rain gage
site, for storm i

ey(t) the effective rainfall corresponding to storm
class {£,>, measured at the rain gage

e;(t] subarea R; effective rainfall for storm i

i storm ¢vent §

ik indices

It} inflow hydrograph for linear routing

Olt) outflow hydrograph for linear routing

Pi(1) rainfall measured at rain gage site, for storm i
Q1) runoff hydrograph, for storm i, measured at
the stream gage

a Q}(t) resulting from an element of storm
class {£,>

g runoff hydrograph from subarea R;, storm i

Q5i(t)

Qi(t) m-subarea link-node mode! output for storm i
R total catchment
R subarea in R

5t temporal and integration variables

UH unit hydrograph

[Z] distribution for random variable Z

Zl [Z] for storm class <&.»

Z estimate for Z

Z calibrated estimate for Z

Z mean value for Z

k> vector notation for subscript sequence, k
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