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ABSTRACT

The classic single area unit hydrograph {UH) approach to modeling runoff
response from a free draining catchment is shown to represent several impor-
tant modeling considerations including, (i) subarea runoff response (in a
discretized model), (ii) the subarea effective rainfall distribution including
variations in magnitude, timing, and storm pattern shape, (iii) channel fiow
routing translation and storage effects, using the tinear routing technique,
(iv) subarea runoff hydrograph addition, among other factors. Because the UH
method correlates the effective rainfall distribution to the runoff hydrograph
distribution, the resulting catchment UH should be considered a correlation
distribution in a probabilistic sense. Should the uncertainty in rainfall
over the catchment be a major concern in modeling reliability, then the UH
output in the predictive setting must be considered to be a random variable.



INTRODUCTION

The current trend in hydrologic surface runoff model development is
to discretize the catchment (assumed to be free draining) into several small
subareas, each linked by a channel hydraulic flow routing algorithm. The
resulting model is then formulated as a 1ink node model which responds
hydraulically according to a specified effective rainfall in each subarea.
While over 100 such models have been developed in the open literature
{Hromadka, 1987), none have been shown to provide consistently "better"
results than the classic single area unit hydrograph (UH) methods in the
estimation of severe storm runoff of interest in flood control. It is
shown in this paper that the classic UH techniaue provides, (i) a rational
modcling structure which properly represents several hydrologic effects
which a highly discretized model misrepresents; (ii) a correlation distri-
bution (distribution frequency of UH's) which correlates the effective
rainfall to be measured runoff hydrograph; and (iii) a probabilistic model
which represents the model output as a random variable, whosc variance
represents the natural variance between effective rainfall and runoff.

CATCHMENT AND DATA DESCRIPTION

Let R be a free draining catchment with negligible detention effects.
R is discretized into m subareas, Rj, each draining to a nodal point which
is drained by a channel system. The m-subarea 1ink node model resulting
by combining the subarea runoffs for storm i, jS(t), adding runoff hydro-
graphs at nodal points, and routing through the channel system, is denoted
as Qmi(t). It is assumed that there is only a single rain gage and stream
gage available for data analysis. The rain gage site is monitored for the
'true' effective rainfall distribution, egi(t). The stream gage data re-

presents the entire catchment, R, and is denoted by Qg‘(t\.



LINEAR EFFECTIVE RAINFALLS FOR SUBAREAS

The effective rainfall distribution (rainfall less losses) in Rj is
given by ej1(t) for storm i where ej1(t) is assumed to be linear in egi(t)
by
i

ej"(t) - 1y, egi(t-ej;) (0

where Ajl and ejl are coefficients and timing offsets, respectively, for
storm i and subarea Rj. In Eq. (1), the variations in the effective rain-
fall distribution over R due to ﬁagnitude and timing are accounted for by
the Ajl and eji’ respectively. The subareas, Rj, are chosen such that
Eq. (1) is a good approximation for each subarea.

SUBAREA RUNOFF

The storm 1 subarea runoff from Rj is given by jS(t) where
t

i i
QJ (t) = { ej (t-s) QJi(S) ds (2)
s=0
where ¢ji(s) is the subarea unit hydrograph (UH) for storm i such that

Eq. {2) applies. Combining Eqs. (1) and (2) gives

t
: . : P
Qj‘(t) = J ) eg‘(t -ejL -5} Aqy 057 (s) ds (3)
5=0

Rearranging variables,

t
i - 1, i i ol
0 (t) J e (t-s) } Aj &5 (s ejk) ds (4)
s=0
where throughout this paper, arbitrary function F(s -Z) is notation that

F(s -2) = 0 for s <Z.




LINEAR ROUTING
Let I,(t) be the inflow hydrograph to a channel flow routing link
(number 1), and O, (t) the outflow hydrograph. A linear routing model of

the unsteady flow routing process is given by

1

0,(8) = I

k

1

#r~—13

akl I (t —akl) (5)

where the a, are coefficients which seem to unity; and the a, are timing
1 1
offsets. Again, I, (t o, } =0 for t < a, - Given stream gage data for
1 1

I.(t) and C (t), the best fit values for the a, and o can be determined.
: 1

kl
Should the_above outflow hydrograph, Ol(t), now be routed through

another link (number 2), then I,(t) = 0,(t) and from the above

n,
0.(t) = a, I (t-a )}
e k2£1 kz 2 k2
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For L links, each with their own respective stream gage routing data,
the above linear routing technique results in the outfliow hydrograph for

link number L, OL(t), being given by

n

) EL Lil 72 ) I (t )
0 (t) = 3 a ves a a TR -
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(7)

Using vector notation, the above OL(t) is written as

OL(t) = <E>a<k>11(t "d<k>) (8)



For subarea Rj' the runcff hydrograph for storm i, jS(t). flows
through Lj Yinks before arriving at the stream gage and contributing to
the total measured runoff hydrograph, Qgi(t). A1! of the constants ai<k>
and ai<k> are available on a storm by storm basis. Consequently from the
linearity of the routing technique, the m-subarea link node model is given
by the sum of the m, jS(t) contributions,

oiey= 3 T at, al(t-al ) (9)
m j<1 <E>j <k>j j <k>j
where each vector <k>j is associated to a Rj, and all dataz is defined for

storm 1. It is noted that in all cases,

1 -
E a s, =1 (10)
<k>, j

LINK-NODE MODEL, Q' (t)

For the above linear approximations for storm i, Egs. {1), (4), and
(9) can be combined to give the final form for Qmi(t),
m t
i _ i i i i i i
Q (t) = _Z E CRU A (t-s) ) Ajk ¢ (s PRL <i>.) 8 (11)
j=1 <k>, J J
J =0
Because the measured effective rainfall distribution, egi(t), is independent

of the model, Egq. (1) is rewritten in the final form

krelae ) ds (2)

t
iy o i m i i
s=0

where all parameters are evaluated on a storm by storm basis, 1.



Equation (12} describes a model which represents the total catchment
runoff response based on variable sybarea UH's, ¢ji(s); variable effective
rainfall distributions on a subarea-by-subarea basis with differences in
magnitude (Ajl), timing (Bji). and pattern shape (1inearity assumption); and

channel flow routing translation and storage effects (parameters a' and

<k>.
J

i
& cps ).

J
MODEL REDUCTION

The m-subarea model of Eq. {12} is directly reduced to the simple
single area UH model (no discretization of R into subareas) given by Qli(t)

where
t

0, () = J eg"(t-s) n'(s) ds (13)
$=0

where ni(s) is the correlation distribution between the data pair
g (t) e (D))

From Eq. (13) it is seen that the classic single area UH model
represents a highly complex link node modeling structure. For the case
of having available a single rain gage and stream gage for data correlation
purposes, the derived ni(s) represents the several effects used in the
development leading to Eq. (12}, integrated according to the sample from
the several parameters’ respective prebability distributions. Because the
csimple Qli(t) model structure actually includes most of the effects which
are important in flood control hydrologic response, it can be used to develop

useful probabilistic distributions of modeling output.



STORM CLASSIFICATION SYSTEM

To proceed with the analysis, the full domain of effective rainfall dis-
tributions measured at the rain gage site are categorized into storm clasces,
<Eq>. That is, any two elements of a class <5q> would result in nearly
identical effective rainfall distributions at the rain gage site, and hence
one would "expect" nearly identical resulting runoff hydrographs from the
stream gage. Typically, however, the resulting runoff hydrographs differ
and, therefore, the randomness of the effective rainfall distribution over
R results in variations in the modeling "best-fit" parameters in correlating
the available rainfall-runoff data.

More preci5e1y, any element of a specific storm class <§°> has the
effective rainfall distribution, ego(t). In correlating {Qgi(t), ego(t)},
a different q‘(s) results due to the variations in the measured Qgi(t) with
respect to the single ego(t).

In the predictive mode, where one is given an assumed (or design)
effective rainfall distribution, egD(t), to apply at the rain gage site,
the storm class of which egD(t) is an 2lement of is identified, <Ep>s
and the predictive output for the input egD(t) must necessarily be the
distribution t

[q,(t)] = J egD(t-S) n(s)]y ds (14)
s=0

where [n(s)]D is the distribution of n'(s) distributions associated to

storm class [g5].



Generally, however, there is insufficient rainfall-runoff data to
derive a sufficiently unique set of storm classes, <5q>, and hence additional
assumptions must be used. For example, one may lower the eligibility
standards for each storm class, <Eq>, implicitly assuming that
several distributions [n(s)Jq are nearly identical; or one may transfer
[n(s)]q distributions from another rainfall-runoff data set, implicitly
assuming that the two- catchment data set correlation distributicns are
nearly identical. A common occurrence is the case of predicting the
runoff response from a design storm effective rainfall distribution, egD(t),
which is not an e]emént of any observed storm class. In this case, another
storm class distribution of [n(s)Jq must be used which implicitly assumes
that the two sets of correlation distributions are nearly identical.
Consequently for a severe design storm condition, it would be preferable
to develop correlation distributions using the severe historic storms which

have rainfall-runoff data available for analysis.

EFFECTIVE RAINFALL UNCERTAINTY
The paper by Hromadka, (1987)(1), includes brief statements from
several reports which conclude that the variability in the rainfall (and
hence the effective rainfall) over the catchment is a dominant factor in the
development, calibration, and application, of hydrologic models (e.q.,
Schilling and Fuchs, 1986; among others)(2}. Including this premise in hydro-
logic studies would indicate that hydrologic model estimates must be functions

of random variables, and hence the estimates are random variables themselves.



From Eq. (12), the correlation distribution for storm event i, ni(s),
includes all the uncertainty in the effective rainfall distribution over R,
as well as the uncertainty in the runcff and flow routing processes. That
is, ni(s) must be an element of the random variable [n(s)] where

n'(s) = ')':l E ai<k> DA ¢y (s e d ol ) (15)
j<1 < > j Jk ¥j Jk <k>j
and Eq. (15) applies to a specific storm. For severe storms of flood
control interest, one would be dealing with only a subset of the set of al]
storm classes. In a particular storm class, <£°>. should it be assumed
that the subarea runoff parameters and channel flow routing uncertainties
are minor in comparison to the uncertainties in the effective rainfall dis-
tribution over R (e.g., Schilling and Fuchs, 1986; among others), then
Eq. (15) may be written as
m
)1y = 1 1 3, T D0 85 (5 -Togd -3y, ) (16)
J=1 < >3 J J

where the overbars are notation for mean values of the parameters for storm
class <§4,>- Although use of Eq. (14) in deriving the [n(s)] distributions
results in both the uncertainties in both the effective rainfalls and also
the submodel algorithms being integrated, Eq. (16} is useful in motivating
the use of the distribution concept in design and planning studies for all
hydrologic models, based on just the magnitude of the uncertainties in the
effective rainfall distribution over R. That is, although onc may argue
that a particular model is "physically based" and represents the "true"
hydraulic response distributed throughout the catchment, the uncertainty
in rainfall still remains and is not reduced by increasing hydraulic

routing modeling complexity.



DISCRETIZATION ERROR

The need for using the Q,(t) model in studies where detention effects
are minor is made more apparent when examining the effects of discretizing
the model into subareas without the benefit of subarea rainfall-runoff

data.

In the above typical case, the engineer generally assigns the recorded
precipitation from the single available rain gage, Pgi(t), to occur simul-
taneously over each Rj. That is from Eq. (1), the le = 0 and the ljl are
set to constants ij which reflect only the variations in loss rate nonhomogeneity.
Hence, the 'true’ Qmi(t) model of Eq. (12), {and also Eq. (13)), becomes the
estimator ami(t) where

* :
ami(t} = l ggi(t 'S).Z E ;i<k>. z Kj $ji (s ';i<k>,) ds (17)
o J=1 <k> J 1
where hats are notation for estimates. These incorrect assumptions result in
'discretization error'. Indeed, an obvious example of discretization error is
the case where a subarea Rj actually receives no rainfall, and yet one assumes
that P 1‘(t) occurs over Rj in the discretized model. (It is easily shown

g9
that -the Eq. (13) model accommodates this example case.)

DISCRETIZATION CALIBRATION ERROR
A current trerd among practitioners is to develop an m-subarea 1ink-node
model estimator ami(t) such as Eq. (17), and then "calibrate" the model
parameters using the available (single) rain gage and stream gage data pair.
Because subarea rainfall-runoff data are unavailable, necessarily it is
assumed that the random variables associated to the subarea effective rain-

falls are given by



[eij = 0 (estimator, 6mi(t), -
[Ajk] = Kj assumptions)
But these assumptions violate the previously stated premise that the
uncertainty in the effective rainfall distribtion over R has a major
effect in hydrologic modeling accuracy. The impact in using Eq. (18)
becomes apparent when calibrating the model to only storms of a single
storm class, <50>.
Again, for all storms in <g°>, the effective rainfall distributions

are a1l rearly identical and are essentially given by the single ego(t).

But due to the variability in rainfall over Rj’ the associated runoff
hydrographs, Qgi(t), differ even though ego(t) is the single model input.
It is recalled that in Eq. (17), the effective rainrfall distribution
is now the estimator, ;g°(t), which is the true egi(t) modified to best
correlate {Qgi(t), ego(t)}. That is, due to the several assumptions leading
to Eq. (18) for the discretized model estimator, ami(t), the variations due
to [Ajk] and [ejk] are transferred from the [n{s)] distribution to the ggi(t)
function. For storm class <£O>, the estimator ami(t) can be writter approxi-
mately from Egs. (16) and (17) as
t
0, (t) = { e, (t-s)
5=0

m ”~

a A 6.(s - ds 19
21 <E> <k> ) j ¢3( a<k>j) (19)
where in Eq. (19), it is assumed that the variations in model output due to
using mean values (overbar notation) are minor in comparison to the

variations in model output due to [Ajk] and [ejk]. But then Eq. (19) is

another single area UH model,



t
Q' (t) = f e (t =) n(s) ds (20)

s=0

where a(s) is an estimated distribution which is essentially 'fixed' for
all storms in a specified storm class <€ >. The ;(s) is fixed due to
nearly the same 1nput being applied to each subarea for each storm in g,
In calibrating Q (t), therefore, the work effort is focused towards
finding the best fit effective rainfall distritution, e i(t), which correlates
the several pairs {Q-i(t), a(s)} That is, the 'true' s1ng]e e °(t) is
forced to be modified to be e i(t) in order to correlate the {Q (t), n(s)},
for each storm, i. This contrasts with finding the best fit n (s) which
correlates the pairs, {Qgi(t), ego(t)}. It is recalled that from Egqs. (16),
(17), and (20), n{s} is "fixed" due to the assumptions of Eq. (18), and
due to using a single storm class, g >

Because the effective rainfall submodel used in ami(t) has a prescribed
structure, it cannot match the best fit ;gi(t) for all storms and, conse-
quentiy, modeling error is introduced into the calibration parameters of
the loss rate submodel in order to {1) modifv the true ego(t) due to the
effects of [Ajk] and [eJk]’ (2) the derivation of loss rate parameters
which are not "physically based".

Another error which results due to use of Eq. (18) is that the
estimator modeling distribution [am(t)] for storm class <€,> will be
imprecise due to the variation in derived 1oss rate parameters not achieving

the true variation in eg!(t).



The above results indicate that for the given assumptions, the cali-
bration of a highly discretized catchment model will generally lead to a
model that is no more reliable in the predictive mode than the simple single
area UH model. These results appear to be validated by the open literature
(Hromadka, 1987).

EXPECTED VALUE ESTIMATES

In practice, the single area UH model is used to correlate several
record data pairs {Qgi(t), egi(t)} of the same or similar storm class <g >
to derive the associate correlation distributions, {n'{(s)}. Although
the {ni(s)} are often integrated and normalized, and the several normalizing
parameters averaged together, the net effect of all this is finding the
expected value of the distribution of correlation distributions, denoted
by Efn{s)]. Then, the model used for predictive purposes (for storms of the
same class, <> used to develop [n{s)] ) is the expected disfribution E[Q,(t)]

given by
t

E[Q, ()] = [ eg(t) Eln(s)] ds (21)

5=0

where eg(t) is a design input in <g,>. From Egs. (12) and (13),
E[Q,(t)] = E[Qm(t)] which is the 'true’ expected distribution for the
given assumptions leading to Eq. (12).
In comparison, after calibrating the estimator, ami(t), to the available
data, the averaging of parameters resuits in the model (for storms in <go>)

t
€Q,(t)3 = | Ele(t)] n(s) ds (22)

s=0



where E[;g(t)] is the "best fit" to the expected value of the true effective
rainfalls (needed to correlate the {Qgi(t),;(s)}) using a specified rigid
Tink-node model structure.

Comparing Eqs. (21) and (22), it is seen that for storm class <€ >,
Eq. (21) is the 'true' expected value.

VERIFICATION TESTS OF MODELS

From Eqs. (21) and (22), the standard use of verification tests on
the models of E[Q,(t)] and E[am(t)] simply Eest the distribution of [Qg(t)]
about the mean estimates of E[Q,(t)] and E[Qm(t)] for storm class <g >.
The discrepancies reported in the literature for verification tests
indicates that the natural variance between the egi(t) and Qgi(t) is

usually quite large.
CERTAINTY IN FLOOD CONTROL DESIGN

Recalling the premise that the variations in the effective rainfall
distribution over the catchment, R, has a major impact on modeling accuracy,
it may be questioned whether using the expected value of a model output is
the proper use of a probabilistic distribution.

For example, suppose that a rain gage station with an extremely Jong
record length shows that a severe storm condition occurs fairly frequenily
(say, about every 100 years), and each occurrence results in a nearly
identical effective rainfall distribution at the rain gage site. Hence,

a storm class of design interest is well defined, <€p”s where each element
has a nearly identical input, egD(t), for any catchment hydrologic model.
Yet the catchment stream gage shows a variation in the runoff hydrographs,
Qgi(t), for each event of egD(t). From this information, a model distri-

bution is derived from Egs. (12) and (13) to give



[Q(£)] = J e (t -5)[n ()] ds (23)
s=0

Equation (23) is the distribution of hydrologic modeling estimates (see
Figure 1}, and is the best estimate available. Given another design storm
event, with the tame egD(t) resulting, the best a model can do in estimating
the resulting runoff hydrograph is reflected in Eq. (23), and Figure 1.

PROBABILITY

TIME
{HOURS)

Figure 1. The Hydrologic Model Distribution {Eq. 23)) for a Predicted
Response, [QD(t)], from Input, eg(t). Heavy line is the
Expected Distribution, E[QD(t)]

Should the expected model E[QD(t)] be used for design study purposes,
this expected runoff hydrograph typically would not be the most severe de-
sign condition for flood control facilities. Instead, the true distribution
[QD(t)} should be used to evaluate the flood control system perfcrmance,
and a level of confidence selected as to the success in predictive design.
That is, using the E[QD(t)] model for design purposes often results in a

design product that has only a 50-percent confidence level of protecting



for the specified design event, egD(t). given the available rainfall-
runoff data. Perhaps a higher level of confidence, such as 85-percent or
95-percent, may be more appropriate in the interest of public safety, and to

reduce the exposure to flood damage liability.

USING THE HYDROLOGIC MODEL DISTRIBUTION [Ql(t)]

From the development leading to the model of Eq. (12), use of the
standard single area UH model of Eq. (13) has a powerful representation
of the catchment response including: random variations in the sffective
rainfall distribution pattern shape, magnitude, and timing, on an arbitrarily
discretized subarea basis; variations in the subarea runoff response and
channel flow routing effects on a storm by storm basis; storage effects
in channel routing; among others. Calibration of the Q,(t) model to
rainfall-runoff data on a storm class basis results in a distribution
of correlation distributions, [n(s)], which reflects the natural variance
between the record data. The resulting model distribution, [Ql(t)],
reflects the natural variance in predicting runoff quantities for storms

of the same class used to derive [n(s)].

~

The 1ink node model estimator, Qmj(t), however, cannot achieve the true
distribution of [Q,(t}]. Only if rainfall-runoff data were available in each
subarea (in order to determine the Ajl and ejl on a storm by storm basis)
would the model parameters (e.g.. the loss rate model parameters be properly
calibrated and the variance due to the rainfall effects (i.e., [Ajk} and [ejk]
in £q. (12)) be properly reflected. Consequently, [Q,(t)] should be used.

The distribution [am(t)], developed by varying the loss rate parameters (as the

routing parameters are nearly invariant for storms of the same class}, cannot



achieve the true variance between rainfall-runoff due to the loss rate algorithm
structure. If ami(t) were supplied subarea rainfall-runoff data, and stream
gage data to evaluate all routing parameters, then ami(t) = Qmi(t) = Qli(t).
That is, given enough runoff data to evaluate all model parameters on a subarea
and 1ink basis, the 1ink node model will achieve the distribution variance
between model output and the given rainfall data as achieved by the classic

single area UH model.

APPLICATION: DETENTION BASIN VOLUME SIZING
The above developments are now applied to a simple application. A
catchment of 1,800-acres is studied to size a detention basin. The design
objective is to protect for a historic design storm. Based on the available
stream gage and rain gage data, a class of severe storms, <€.>» is developed
and the Qli(t)'model is calibrated for each element of <£0>. The resulting

n(s)] distribution is shown in mass curve form, [M(s)], where

t
Mi(s) = [ ' (x) dx (24)
x=0

A freguency distribution for {M{s)] is shown in Fig. 2.

Using [M(s)], the [n{s)] is found by differentiation and the model
distribution, [QD(t)], is given by Eq. (23) and shown in Fig. 1. Routing
the [QD(t)] through the detention basin resuited in the volume requirement
distribution shown in Fig. 3. Shown in the figure is the expected volume
requirement using E[QD(t)J, and also the 50-percent and 85-percent confidence
estimates. Note that in this case, the fexpected" volume requirement derived
by using E[Q(t)] (such as done in usua) practice) is slightly less than the

50-percent confidence estimate.
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CONCLUSIONS

The classic single area unit hydrograph approach to modeling runoff
response from 2 free draining catchment is shown to represent several
important modeling considerations including, (i) subarea runoff response
(in a discretized model), (ii) the subarea effective rainfall distribution
including variations in magnitude, timing, and storm pattern shape, (iii)
channel flow routing translation and storage effects, using the linear
routing technique, (iv) subarea runoff hydrograph addition, among other
factors. Because the UH method correlates the effective rainfall distri-
bution to the runoff hydrograph distribution, the resulting catchment UH
should be considered a correlation distribution in a probabilistic sense.
Should the uncertainty in rainfall over the catchment be a major concern in
modeling reliability, then the UH output in the predictive setting must be
considered to be a random variable. In this paper, the UH method is shown
to have a rational modeling structure for free-draining catchments. The
correlations represenrted by the class of UH's derived from similarly
categorized storms, properly reproduces the natural variance between
the effective rainfall and runoff hydrograph. By using the full set of
observed UH's (from the same storm category), a design product can be
developed which accommodates modeling uncertainty due to the uncertainty
in rainfall and other factors. The resulting UH model is then interpreted
to be a probabilistic distribution, in which a flood control design needs to
be tested by probabilistic simulation, varying the UH according to its
frequency distribution. As a case study, a distribution of runoff hydro-
graphs is used to estimate multi-outlet retarding basin design volume

requirements.
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