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Abstract

In all phases of hydrologic modeling (including calibration, design,
and watershed evaluation) analyses on all except the smallest watersheds
involve watershed subdivision or discretization. This subdivision is often
done without proper discretization guidelines and in most cases 1ittle atten-
tion has been paid to the effect of this practice on the accuracy of model
results. Due to the sparse rainfall-runoff data typically available at a
watershed, it is questionable whether the subdivision of the catchment
into subareaé, when there is no data to calibrate subarea hydrologic model
parameters, is a "better” approach to modeling the catchment response. In
this paper, the subject of catchment discretization is examined. It is noted
that for a linear hydrologic model based on unit hydrographs (for various
levels of discretization into subareas)} and Tinear channel routing, a dis-
cretized model, with stream gage data given for each subarea, produces
results which are equivalent to those from a simple one-subarea model.
Further, calibration of the simple model accounts for the variation of
effective rainfall over the watershed that is not accounted for by the

discretized model unless subarea gage data is available and used.
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Notation

The

following notation is used in this paper:

[}

i

i

i

(]

timing offsets for channel Tink #1 used in the linear routing
technique

oy corresponding to storm class <Ey>

1
effective rainfall proportion factors for subarea Rj and storm i
effective rainfall timing offsets for subarea Rj and storm i

subarea unit hydrograph (UH) for subarea Rj and storm i
specific storm class
arbitrary storm class

correiation distribution between measured effective rainfall and
measured runoff, for Storm i, using a Voltera integral model structure

translation timing offset for channel link j and storm i
area weighting factors

proportion factors for linear routing technique, used for channel
link #1

subarea R, area
design condition
effective rainfall measured at the rain gage site, for storm i

the effective rainfall corresponding to storm class <go>,
measured at the rain gage

subarea Rj effective rainfall for storm i

storm event i

indices



UH
[Z]
tzl

>

inflow hydrograph for linear routing

outflow hydrograph for linear routing

rainfall measured at the rain gage site, for storm i
runoff hydrograph, for storm i, measured at the stream gage
a Qgi(t) resulting from an element of storm class <€g>
runoff hydrograph from subarea Rj, for storm i
m-subarea link-node model output for storm i

total catchment

subarea in R

temporal & integration variables

unit hydrograph

distribution for random variable Z

[Z] for storm class <>

estimate for Z

calibrated estimate for Z

mean value for Z

vector notation for subscript sequence, k



Introduction

Many hydrologic models allow for the subdivision of the catchment into
subareas, each linked by channel routing submodels (i.e., a link-node model).
The effect of subdividing a catchment on modeling accuracy has not been
fully investigated. The calibration of a link-node model to availabie
rainfall-runoff data is a related issue, and the method of selecting the
model parameters is important to the accuracy of the link-node modeling
approach. Also, the uncertainty in the modeiing boundary conditions (i.e.,
the true precipitation distribution over the catchment) is propogated into
the fitted parameters of the model itself, and the effect of insufficient
knowledge of storm morphology affects model accuracy. These three factors
{(i.e., watershed subdivision, parameter estimation, and storm morphology
effects) are important to the accuracy of hydrologic designs.

In this paper, the unit hydrograph method (UH) is used to develop
estimates of runoff modeling error in the freguently occurring cases where
the uncertainty in the rainfall distribution over the catchment dominates
all other sources of modeling uncertainty. Indesd, the uncertainty in the
precipitation distribution appears to be a 1imiting factor in the success-
ful development, calibration, and application of all surface runoff
hydrologic models (e.g., Loague and Freeze, 1985; Beard and Chang, 1979;
Schilling and Fuchs, 1986; Garen and Burges, 1981; Nash and Sutcliff,

1970; Troutman, 1982).

Schilling and Fuchs (1986) write "that the spatial resolution of rain
data input is of paramount importance to the accuracy of the simulated
hydrograph" due to "the high spatial variability of storms" and "the ampli-
fication of rainfall sampling erroes by the nonlinear transformation" of

rainfall into runoff. They recommend that a mode] should employ a simplified



surface flow model if there are many subbasins; a simple runoff coefficient
loss rate; and a diffusion (zero inertia) or storage channel routing
technique. |

In their study, Schiliing and Fuchs (1986) reduced the rainfall data
set resolution from a grid of 81 gages to a single catchment-centered gage
in an 1,800 acre catchment. They noted that variations in runoff volumes
and peak flows "is well above 100 percent over the entire range of storms
implying that the spatial resoluticn of rainfall has a dominant influence
on the ralizbility of computed runoff." It is also noted that "errors in
the rainfall input are amplified by the rainfall-runoff transformation®
so that "a rainfall depth error of 30 percent resuylts in a volume error of
60 percent and a peak flow error of 80 percent."” They also write that "it
is inappropriate to use 2 sophisticated runoff model to achieve a desired
level of modeling accuracy if the spatial resolution of rain input is low"
{in their study, the raingage densities considered for the 1,800-acre
catchment are 81, 9, and a single centered gage).

Similarly, Beard and Chang (1979) write that in their study of 14
urban catchments, complex models such as continuous simulation typically
have 20 to 40 parameters and functions that must be derived from recorded
rainfall-runoff data. "Inasmuch as rainfall data are for scattered point
locations and storm rainfall is highly variable in time and space, avail-
able data are generally inadequate for reliably calibrating the various
interrelated functions of these complex models.”

Garen and Burges (1981) noted the difficulties in rainfall measure-
ment for use in the Stanford Watershed Model, because the Kl parameter
{rainfall adjustment factor) and UZSN parameter (upper level storage)

had the dominant impact on the model sensitivity.



In the extensive study by Loague and Freeze (1985), three event-based
rainfall-runoff models (a regression model, a unit hydrograph model, and
a kinematic wave quasi-physically based model) were used on three data sets
of 269 events from three small upland catchments. In that paper, the term
"quasi-physically based", or QPB, is used for the kinematic wave model.
The three catchments were 25 acres, 2.8 mi%, and 35 acres in size, and were
extensively monitored with rain gage, stream gage, neutron probe, and soil
parameter site testing. For example, the 25 acre site contained 35 neutron probe
access sites, 26 soil parameter sites (all equally spaced), an on-site rain
gage, and a stream gage. The QPB model utilized 22 overland flow planes and
four channel segments. In comparative tests between the three modeling approaches
to measured rainfall-runoff data it was concluded that all models performed
poarly and that the QPB performance was only slightly improved by calibration
of its most sensitive parameter, hydraulic conductivity. They write that the
"conclusion one is forced to draw...is that the QPB model docs not represent
reality very well; in other words, there is considerable model error present.
We suspect this is the case with most, if not all conccptual models currently
in use." Additionally, "the fact that simpler, less data intensive models
provided as good or better predictions than a QPB is food for thought '

Based on the literature, the main difficuity in the use, calibration,
and development, of complex models appears to be the Tack of precise rainfall
data and the high model sensitivity to (and magnification of) rainfall
measurement errors. Nash and Sutcliff (1970) write that "As there is little
point in applying exact laws to approximate boundary ccnditions, this, and
the limited ranges of the variables encountered, suggest the use of simplified

empirical relations.”



Troutman (1982} also discusses the often cited difficulities with the
error in pfecipitation measurements “due to the spatial variability of
precipitation." This source of error can result in "serious errors in runoff
prediction and large biases in parameter estimates by calibration of the
model."

While surface runoff hydroloaic models continue to be developed in
technical component complexity, typically including additional algorithms
for hydraulic routing effects and continuous soil moisture accounting, the
problem setting continues to be poorly posed in a mathematical approximation
sense in that the problem boundary conditions (i.e., the storm rainfall over
the catchment) remain unknown. Indeed, the usual case in studying catchment
runoff response is to have only a single rain gage and stream gage available
for data analysis purposes; and oftentimes, neither gage is within the study
catchment. As a result, the rainfall distribution over the catchment remains
unknown; hence, the problem's boundary conditions must be approximated as part
of the problem solution. The fact that the uncertainty in the rainfall dis-
tribution over the catchment has a major impact on the success of any hydrologic
model's performance and accuracy (e.g., Schilling and Fuchs, 1986, and Troutman,
1982) indicates that the underlying assumption used to specify the storm rain-
fall over the catchment must necessarily be a major factor in the development,

calibration, and application, of any hydrologic model.

Catchment and Data Description

Let R be a free draining catchment with negligible detention effects. R
is discretized into m subareas, Rj, each draining to a nodal point which is
drained by a channel system. The m-subarea 1ink node model resulting by com-

bining the subarea runoffs for storm i, adding runoff hydrographs at



nodal pecints, . and routing'through the channel system, is denoted as Qmi(t).

It is assumed that there is only & single rain gage and stream gage available
for data amalysis. The rain gage site is monitored for the 'true' effective
rainfall distribution, egi(t). The motivation in using a measured egi(t) at
the rain gage site is to avoid the necessity of using a multiparameter submodel

to approximate eg’(t); rather we assume that an accurate value of e '(t) is

g
available, even though this data is measured at the rain gage site which may
be located outside of the catchment. The stream gage data represents the

entire catchment, R, and is denoted by 091(t) for storm event i.

Linear Effective Rainfalls for Subareas

The effective rainfall distribution (rainfall less losses) in Rj is given
by ejl(t) for storm i where ej1(t) is assumed tc be linear in egi(t) by:
i - i i i . s
e. (t) = E }‘jk e (t -ejk)s J -132! oM (1)

J 9

where AJL and ejl are coefficients and timing offsets, respectively, for

storm i and subarea Rj' In Eq. (1), the variations in the effective rainfall
distribution over R due to magnitude and timing are accounted for by the ljl
and ejl, respectively. As an alternative to Eq. (1), the egi(t) may be defined
as a set of unit effective rainfal]s,.each unit associated with its own pro-
portion factor; however fer simplicity, the use of the entire egi(t) function

will be carried forward in the model development. Figure 1 illustrates the

linear effective rainfall corresponding to arbitrary subarea, Rj.

Subarea Runoff

The storm 1 subarea runoff from Rj, qj1(t), is given by the linear con-

volution integral:
t

a; (1) = | ey'(t-s) 0575 as (2)
0

“‘-_

s



where ¢j1(s) is the subarea unit hydrograph (UH) for storm i such that

Eq. (2) applies. Combining Eqs. (1) and (2} gives

t
i - L i i
¥ (t) J ! e (t -85 s) Ak 5 (s) ds (3)
s=0
Rearranging variabies,
] t
i _ LI i LFPN
q; (t) e, (t-s) ) Mk 3 (s ejk) ds (4)
s=0

where throughout this paper, the argument of the arbitrary function F(s -Z)

is notation that F(s -Z) = 0 for s <Z.

Application

To illustrate the linear effective rainfall concept, a simple model
will be developed for the severe storm of March 1, 1983 over the 25 square
mile Compton catchment in Los Angeles, California. This catchment is fully
urbanized and is served by a well designed storm drain system which would
have only minor backwater effects for the subject storm. The catchment has
available a single rain gage and stream gage. The U.S. Army Corps of Engineer
(Los Angeles District Office) or COE previously developed regionalized unit
hydrographs for this area and, consequentiy, synthetic unit hydrographs can
be estimated from the catchment characteristics of slope and other physical
factors.

or demonstration purposes, a two-subarea model of Compton Creek 1is
used where the upstream subarea, R, runoff is modeled to be routed by pure
transiation {without peak flow attenuation) to the Compton stream gage where

the second subarea, R , runoff is directly summed. For the above assumptions,

the two-subarea model for storm event 1 is given by Qzl(t) where



0, (t) = a, (¢ - 7,7) + g, N (1) (5)

where q11(t -T11) is the q11(t) runoff from R, for storm i, offset in time
by 111 due to translation routing; and q21(t) is the runcff from R,. From

Eqs. (1) and (2), in(t) is rewritten as
t
0,7 (t) = f ) )\11 eg"(t-ell) ¢11(s -t 1) ds
s=0
t

I Mgy &g (-850 6, (5) ds (6)
0

-+
{f S———y

s

The subarea UH's, ¢1(s) and ¢,(s) are estimated using the COE regionalized
data. The appropriate sum of subarea runoffs, qli(t) and qzi(t), are then
set equal to the stream gage data for the storm, Qgi(t), and the respective
parameters kjL and ejl are estimated by minimizing the least-squares errov,

E, where
£ = [0y (8] -0, (1, )11, + Tl (0 -a, @11, 1)

In Eg. (7), w, and w, are proportion factors defined by w, = Al/(A1 +A2) and
w, = AZ/(A1 +A2), where A, A, are the areas of Rl, R, > respectively.
Additionally, E is minimized with the constraint that all factors AjL are
nonnegative. The timing offsets, ejl’ used in Eq. (6) for this example are
15-minute offsets for the entire Z24-hour storm duration. Thus, there are
96 translates being used to minimize E, for each subarea.

The resulting estimates for eji(t) are shown in Figs. 2a,b for sub-
areas R1 and RZ, respectively. Shown in the figures are the approximations

+

of the ej1(t) in comparison to the measured rain gage data, Pg1(t).
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From the figures it is seen that the estimated eji(t) are quite feasible as
being the 'true' average effective rainfall distributions over R, and R,.
Figure 3 shows the comparison between the modeled in(t) results (using the
eji(t) from Eq. (7)) and the stream gage data, Qgi(t), for the subject storm.

Obviously, a different set of UH's in Eq. (6) will result in different
eji(t) estimates in Eq. (7). However, the main objective of this simple
application is only to demonstrate the feasibility and utility of the linear
effective rainfall relationship of Eq. (1).

Each subarea's effective rainfall distribution, eji(t), can only be
accurately determined by the use of runoff data from each subarea used in
the mode). Should subarez Rj have a stream gage to measure eji(t),,then
eji(t) can be equated to the "available" rain gage site measured sffective
rainfall, egi(t), by means of Eq. (1). For example, should subarea Rj
experience zero rainfall during storm event i, the Ajk in Eq. (1) would all
be zero. Equation {1) provides a means to correlate the subarea Rj runoff
for sterm i, qji(t), to the available effective rainfall data measured at the
rain gage site, egi(t).

It is noted that in the application problem, the ljl were optimized
in Eq. (7) such that nonnegative values resulted. This constraint is used
for the nreference of avoiding negative runoff hydrographs which would re-
sult in the UH convolution process. Additionaily, the use of the w, and w,
factors in Eq. (7) based on the subarea aerial proportions is used to

facilitate the approximation effort,
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Linear Routing

Let I,(t) be the inflow hydrograph to a channel flow routing link
(number 1), and 0,(t) the outflow hydrograph. A Tinear routing model of
the unsteady flow routing process is given by

n
0,(t) = ;; 3 L(t-o ) (8)

where the ak: are coefficients which sum to unity; and the akx are timing

offsets. Again, Il(t -akl) =0 for t <“k1‘ Given stream gage data for

Il(t) and Ol(t), the best fit values for the akI and akl can be determined.
Should the above ocutflow hydrograph, Ol(t), now be routed through

another link (number 2), then Iz(t) = Ol(t) and from the above

n
0.(t) = Y2 a, I.(t-a )
RO A

n, n

= Z ay Z a, Il(t-ozkl-akz) (9)
For L 1inks, each with their own respective stream gage routing data,

the above linear routing technique results in the outflow hydrograph for

1ink number L, OL(t). being given by

@ e T, 1o L )
0,(t) = a a “oe a a, I {t-o, -~ -*+r-a -a
L™ 2 R ks Ker kg1 Ko fP R Tk k-1 KL
L L-1 2 1
(10)
Using vector notation, the above DL(t) is written as
OL(t) = <E> Ay Il(t '“<k>) (11)

12



For subarea RJ, the runoff hydrograph for storm i, qji(t), flows
through Lj links before arriving at the stream gage and contributing to
the total measured runoff hydrograph, Qgi(t). A1l of the constants ai<k>
and ui<k> are available on a storm by storm basis. Consegquently from the
Tinearity of the routing technique, the m-subarea 1ink node model is given
by the sum of the m, qji(t) contributions,

o 0= 1 Tl e (el ) (12)
m 551 <E>j <k>j b <k>j
where each vector <k>j is associated to a Rj’ and all data is defined for

storm i. It is noted that in all cases,

i
E a s, =1 (13)
<k>s j

Application

The linear routing technique of Eq. (8) is a variant of the stream
flow routing convolution technique of Doyle et al (1983). For channel reach
#1 {link #1), the jinear routing parameters of proportions, akl, and timing
offsets, akl, can only be accurately determined by use of stream gage data
which precisely give both the Il(t) and 0 (t) used in Eq. (8).

Fortunately, the derived parameters from Eq. (8) provide good approxi-
mations for channel routing effects (without significant backwater effects)
for a range of flow hydrographs. Hence for a class of hydrographs of similar
magnitude, a single set of routing parameters may be appropriate with the
linear routing model. Similarly, another class of hydrographs would have
another associated set of calibrated routing parameters {(e.g., Doyle et al,
1983). Hence, the linear routing technique is actual guasilinear in that

the method is linear for specific ranges of runoff hydrographs.
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To demonstrate the utility of the lirear routing technique, a set of
four hydrographs are considered in a channel reach of 10,000-fcot length.
A1l four hydrographs are routed through a prismatic channel using a fully-
dynamic model solution as the '"true' solution. Using one hydrograph (Fig. 4),
the model of Eq. (8) is calibrated. In this example, a least-squares error
norm is used with the constraint that all proportions, akl, are nonnegative.
Only four timina offsets, dkz' were used in this application. The resulting
calibration approximation and the 'exact' solution is shown in Fig. 4 for a
fast flow (peak flow rate velocity of 24 feet/sec) and alsoc a slow flow channel

condition (peak flow rate velocity of 12 feet/sec). Using both sets of cali-

Lot

bration parameters, three. other hydrographs are tested and compared to the . .

‘exact' solution in Fig. 5 for both the fast flow and slow flow conditions.
From Fig. 5 it is seen that the linear routing method provides a good approxi-
mation of both translaticn and storage effects for a useful range of hydro-
araph magnitudes, even though only four timing offsets were used in the
approximation effort.

This application not only illustrates the utility of the Tinear routing
technique but also demonstrates that a calibrated linear routing model is
also a good model for a range of hydrograph magnitudes. As noted in Doyle
et al (1983), different sets of calibration parameters would be needed for
different classes of hydrographs (e.g., low-flow hydrographs versus high-
flows). However for specified ranges of classes of hydrographs, a single
set of routing parameters may be appropriate. Hence, on a hydrograph class
basis, the routing effects are essentially linear and are adequately described

by the model of Eg. (8).
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The above conclusions {i.e., that the routing effects are approxi-
mately linear for classes of hydrographs, and that a single set of
calibrated routing parameters are appropriate for a class of hydrographs)
will be useful in the latter sections of this paper when developing

uncertainty estimates for hydrologic models.

i.ink-Node Model, Qmi(t)

For the above linear approximations for storm i, Egs. (1), (4), and
(12) can be combined to give the final form for the m subarea link-node
model, le(t).

t
i i ! i1 i i
Q. '(t) = a e '(t-s) ¥ r. ¢, (s-8, - ) ds 14
m jzl <E>j <k>31 g RSTRS k7% <k>y (14)
s=0

Because the measured effective rainfall distribution, eg’(t), is independent
of the several indices, Fq. (14) is rewritten in the form

. t m

i _ i j i i i i

J=1 <k>;
s=0 J

where all parameters are evaluated on a storm by storm basis, i,

Equation {12} described a model which represents the total catchment
runoff response based on variable subarea UH's, ¢ji(s); variable effective
rainfall distributions on a subarea-by-subarea basis with differences in
magnitude (AjL), timing (ejL), and pattern shape (1inearly assumption); and
channel flow routing translation and storage effects (parameters ai<k>' and
a]<k>.

J

data where stream gages are supplied to measure runoff from each subarea, Rj'

J
). A1l parameters employed in Eq. (15) must he evaluated by runoff

and stream ganes are located upstream and downstream of each channel reach

(1ink) used in the model.

15



Model Reduction

The m-subarea modetl of Eq. (15) is directly reduced to the simple
single area UH model (no discretization of R into subareas) given by Qli(t)

where
t

0,"(8) = | eg'(t-s) n'(s) ds (16)
s=0

where ni(s) is the correlation distribution between the data pair
{Qgi(t), egi(t)}, for storm event .

From Eq. (16) it is seen that the classic single area UH model equates
to the highly complex 1ink node modeling structure of Eq. (15), where con-
siderable runoff gage data is supplied interior of the catchment, R, so
that all modeling parameters are accurately calibrated on a2 storm-by-storm
basis. For the case of having available cnly a single rain gage site (where
the effective rainfall is measured, egi(t)) and a stream gage for data corres-
fation purposes, the ni(s) nroperly represents the several effects used in
the development leading to Eq. (15), integrated according to the observed
sampling from the several modeling parameters' respective probability
distributions. Because the simple Qli(t) model structure actually includes
most of the effects which are jmportant in flood control hydrologic response,
it can be used to develop useful probabilistic distributions of hydrologic
modeling output.

In comparing the two models of Eqs. (15) and(16), it is noted that
Qmi(t) = Qli(t) only when interior runoff data is supplied to accurately
evaluate all the modeling parameters used in Eq. {(15). For example, should
the catchment be discretized into many small subareas with small channel
routing Tinks (e.g., such as used in highly subdivided catchments with UH

approximations, or as employed in kinematic wave (Kw) type models such as
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MITCAT, or the KW version of HEC-1), then with a stream gage located at

each subarea (or overland flowplane) and at each channel 1ink, all modeling
parameters could be accurately evaluated on a storm-by-storm basis, resulting
in the formulation of Egq. (15).

Indeed, onlyv by means of subarea stream gage data can the subarea linear
effective rainfall distribution parameters of XJL and ejl be accurately
determined for each storm event i. But it is these linear effective rainfall
distribution parameters that reflect the important spatial and temporzl
variability of storm rainfall over the catchment which in turn causes the
major difficulties in the development, calibration, and use, of hydrologic
models (Schilling and Fuchs, 1986; Troutman, 1982; among others).

It is assumed in this paper that only a single rain gage (which is
monitored to accurately develop the effective rainfall at the rain gage site,
egi(t)) and stream gage are available for data analysis. Consequently, any
hydrologic model serves to correlate the data pair {egi(t), Qgi(t)} for each
storm event i.

The current direction of advanced development for hydrologic models is a
modeling structure such as Eq. (15). With subarea and channel-link stream

gage data, the Qmi(t) parameters can be accurately determined, and
i ool
Q, (t) =Q,'(¢) (17a)

But in the typical case of having only the single rain gage and stream gage,
all the parameters in Eq. {15) must be approximated, resulting in the
estimator, ami(t), wherein the subarez linear effective rainfall parameters
of Eq. (1) are misrepresented by setting ejl =Q (i.e., zero timing offsets
between the measured rainfall at the gagé and the subarea rainfalls), and
also by assuming that the magnitudes of rainfall intensities are invariant

between subareas and the rain gage.
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From the above discussion, the estimator model, ami(t), cannot

achieve the accuracy of Qmi(t), (and hence, 011(t)).

~

0. (t) # 0 (t) (17b)
and from Eq. (17),

a.'(t) #0,7(t) (17¢)

From Eqs. (17), the simple single area UH model, Qli(t),
properly represents the appropriate UH for each subarea (or overland
flow plane) for storm i; the appropriate linear routing parameters for
each channel link, for storm i; the appropriate timing offsets and pro-
portions of the measured effective rainfalls, for each subarea; and the
appropriate summation of runoff hydrographs at each confluence. In
contrast, the model estimator, ami(t), uses estimates for ail of the
parameters, and subarea effective rainfall factors, and hence cannot
achieve the accuracy of Qli(t) without the addition of interior rainfall-

runoff data to accurately validate the parameter values.

Storm Classification System

To proceed with the analysis, the full domain of effective rainfall
distributions measured at the rain gage site are categorized into storm
classes, <§x>. Because the storm classifications are based upon effective
rainfalls, the measured precipitations, Pgi(t), may vary considerably yet
produce similar effective rainfall distributions. That is, any two elements
of a class <> would result in nearly identical effective rainfall distri-
butions at the rain gage site, and hence one would "expect" nearly identical
runoff hydrographs recorded at the stream gage. Typically, however, the
resulting runoff hydrographs differ and, therefore, the randomness of the

effective rainfall distribution over the catchment, R, results in variations

18



in the modeling "best-fit" parameters (i.e., in Qli(t), the ni(s)
variations) in correlating the available rainfall-runoff data.

More precisely, any element of a specific storm class <£0> has the
effective rainfall distribution, ego(t). However, there are several
runoffs associated to the single ego(t), and are noted by Qgi(t). In
correlating {Qgi(t), ego(t)},'a different ni(s) results due to the
variations in the measured Qgi(t) with respect to the single known input
at the rain gage site, eg°(t).

In the predictive mode, where one is given an assumed (or design)
effective rainfall distribution, egD(t), to apply at the rain gage site,
the storm class of which egD(t) is an element of is identified, <£D> .
and the predictive output for the input, egD(t), must necessarily be the

random variable or distribution,
t
(,°(1)] = | e’(t-s) [n(s)]y os (18)

$=0

where [n(s)]D is the distribution of ni(s) distributions associated to
storm class [ED}.

Generally, however, there is insufficient rainfall-runoff data to
derive a statistically significant set of storm classes, <€y and hence
additional assumptions must be used. For example, one may lower the
eligibility standards for each storm class, <€.>s implicitly assuming
that several distributions [n(s)]x are nearly identical; or one may transfer
[n(s)]x distributions from another rainfall-runoff data set, implicitly
assuming that the two catchment data set correlation distributions are
nearly identical. A common occurrence is the case of predicting the runoff

response from a design storm effective rainfall distribution, egD(t), which
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is not an element of any observed storm class. In this case, another
storm class distribution must bc used, which implicitly assumes that the
two sets of correlation distributions are nearly identical. Consequently
for a severe desién storm condition, it would be preferable to develop
correlation distributions using the severe historic storms which have
rainfall-runoff data available for the appropriate condition of the

catchment.

Effective Rainfall Uncertainty and the Distributions, [n(s)],

This paper's introduction includes bfief statements from several
repcrts which conclude that the variability in the rainfall (and hence
the effective rainfall) over the catchment is a dominant factor in the
development, calibration, and application, of hydrologic models (e.q.,
Schilling and Fuchs, 1986; among others}. Including this premise in
hydrologic studies would indicate that hydrologic model estimates must
be functions of random variables, and hence the estimates are random
variables themselves.

From Eq. (15}, the correlation distribution for storm event i, ni(s),
includes all the uncertainty in the effective rainfall distribution over R,
as well as the uncertainty in the runoff and flow routing processes. That
is, ni(s) must be an element of the random variable [n{s)}x where
i

. m . N . .
i - 3 1 1 _ 1 _
n{s)=} 1 a <k>j ¥ Ak ¢ (s 854 - (19)

j=1 <k>j

<k>.)
J

and Eq. (19) applies to storm event i for some storm class <gx>. For severe

storms of flood control interest, one would he dealing with only a subset

of the set of all storm classes. In a particular storm class, <go>. should

it be assumed that the subarea runoff parameters and channel flow routing
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uncertainties are minor in comparison to the uncertainties in the effective
rainfall distribution over R (e.g., Schilling and Fuchs, 1986; among others),

then Eq. (15) may be written as

m
[n(S)]o = J‘Zl <E> .a<k>j z D‘-jk:l &'J (5 '[Bjk] "a<k>j) (20)
J

where the overbars are notation for mean values of the parameters for storm
class <£o>. But the mean values for the linear routing parameters are
essentially the calibrated parameters corresponding to a class of hydrographs
(see the application following Eq. (13)) which accommodate a range of hydro-
graph magnitudes. And for a highly discretized catchment model, the use of a
mean value UH for each subarea, ¢j(s), has cnly a minor influence in the total
model results (Schilling and Fuchs, 1986). Although use of Eq. (16) in deriving
the [n(s)]0 distributions results in the vuncertainties of both the effective
rainfalls and also the channel routing and other processes being integrated,
Eq. (20) is useful in motivating the use of the probabilistic distribution
concept in design and planning studies for all hydrologic models, based on
just the magnitude of the uncertainties in the effective rainfall distribu-
tion over R. That is, although one may argue that a particular model is
fphysica]]y based" and represents the "true" hydraulic response distributed
throughout the catchment, the uncertainty in rainfall still remains and is
not reduced by increasing hydraulic routing modeling complexity. Rather, the
uncertainty in rainfall is reduced only by the use of additional rainfall-
runoff data. In Eq. (20), the use of mean value parameters for the routing
effects implicitly assumes that the variations in storm parameters of [Aik]
[Sjk] are not so large such as to develop runcff hydrographs which cannot be
modeled by a sing]eqset of linear routing parameters on a channel link-by-

link basis.
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Discretization Error

In the general case, the practitioner generally assigns the recorded
precipitation from the single available rain gage, Pg1(t), to occur simyl-

taneously over each subarea, R,. That is from Eq. (1), the ejL 2 0 and the

J
le are set to constants Aj which reflect only the variations in loss rate
nonhomogeneity. Hence, the 'true' QmI(t) model of Eq. (15), (and also Eq.
(16)), becomes the estimator Qm1(t) where
t

Q' (8) = | e l(t-s) J_'gl <E>.;i<k>j RVETIE -&"<k>j) ds  (21)
s=0 J

where hats are notation for estimates. These incorrect assumptions result

in 'discretizaticen error'. Indeed, an obvious example of discretization

error is the case wherz a subarea Rj actuzlly receives no rainfall, and yet

one assumes that P i(t) occurs over Rj in the discretized model. (It is

g
easily shown that the Eq. (16) model accommodates this example case.)

Discretization Calibration Ervror

A current trend among practitioners is to develop an m-subarea link-
node model estimator ami(t) such as Eq. (21), and then "calibrate" the model
parameters using the available (single) rain gage and stream gage data pair.
Because subarea rainfall-runoff data are unavailable, necessarily it is
assumed that the random variables associated to the subarea effective rain-

falls are given by

1}
o

(6 5,]

P}

(estimator, Qm1(t), assumptions) (22)

3
>3

[A‘]k‘] -
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But these assumptions violate the previously stated premise that the uncertainty
in the effective rainfall distribution over R has a major effect in hydrologic
modeling accuracy. The impact in using Eq. (22) becomes apparent when cali-
brating the model to only storms of a single storm class, <EO>.

Again, for all storms in gy the effective rainfall distributions are

all nearly identical and are given by the single input, ego(t). But due to

the variability in rainfall across the Rj, the associated runoff hydrographs,
Qgi(t), differ even though ego(t) is the single model input.

It is recalled that in Eq. (21), the effective rainfall distribution is
now the estimator, ggi(t). That is, due to the several assumptions leading

to Eq. (22) for the discretized model estimator, a 1(t), the variations due

m
to [ljk] and [0,,] are transferred from the [n(s)] distribution to the Egl(t)
function. For storm class <g >, the estimator G;i(t) can be written from

Eqs. (20} and (21) as

t
Api And m - n -
Q' (t) = { eg (t-5) j§1 <E>§<k>3 LAy o508 -og ) ds (23)
s=0

where in Eq. (23), it is assumed that the variations in model output due to
using mean values (overbar notation) are minor in comparison to the variations
in model output due to [Aik] and [ejk]' That is, even though the rainfall
distributions over the catchment, R, are variable with respect to the single
input, egi(t), the resulting subarea runoffs still fall within a single linear
routing paramcter class for each channel routing link, respectively. But then

Eq. (23) is but another single area UH model:
t
07 _ 01, oy o
Qp (t) = e (t-s) n,(s} ds (24)

5=0
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where ﬁo(s) is an estimated distribution which is 'fixed' for all storms in

a specified storm class <£0>. In calibrating Qgi(t), therefore, the work
effort is focused towards finding the best fit effective rainfall distribution
~07

e”'(t), which correlates the data pairs {Qgi(t), ﬁo(s)}, for each storm i.

That is, the 'true' single ego(t) is modified to be Egi(t) in order to corre-
late the {Qgi(t), ﬁo(s)}, for each storm i. This contrasts with finding the
best fit ni(s) which correlates the pairs, {Q;i(t), e %(t)}, such as in Eg.
(16). 1t is recalled that from Egs. (20), (21), and (24), ﬁo(s) is a single
distribution due to the assumptions of Eq. (22), and due to using a single
storm class, <go>, which develops runoffs that fall within a single class of
Tinear routing hydrographs.

The effective rainfall estimator, égi(t), used in Eqs. (23) and (24) is
the correlation between the data pair {Qgi(t), ﬁo(s)}. Consequently, similar
to the ni(s) distributions, the Egi(t) must have an infinite degrees of
freedom in order to provide the needed correlation. However, hydrologic models
prescribe a given model structure to the effective rainfall estimator which
involves only a finite number of degrees of freedom, or parameters. This
fixed model structure develops effective rainfalls, noted as Egi(t), for
storm event i. Convoluting Egi(t) with the ﬁo(s) estimated for storm class
<g,> develops the general hydrologic model, agi(t), for storm i. The model
agi(t) is the model that practictioners use. For storm class <€ >, the
correlation distribution is the fixed ﬁo(s), and the effective rainfall

estimator is the single calibrated distribution e_°(t). Thus, for storm

g
class <go>, the 'true' hydrologic model structure of Eq. {15) becomes the
point estimate:

t
Qp (t) = | &(t-s) Ry(s) ds (25)

0

I

5
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Because the effective rainfall submodel used 1n 6mi(t) has a prescribed
structure, it cannot match the best fit égi(t) for all storms and, conse-
quently, modeling error is introduced into the parameters of the loss rate
submodel, Ego(t), when calibrated to storm class <£0>.

An error which results due to use of Eq. (25} is that the estimator
modeling distribution [ﬁm(t)] for storm class < > will be imprecise due to
the variation in derived loss rate parameters in goo(t) not achieving the

true variation in 531(t) needed to correlate {Qgi(t), ﬁo(s)} in Eq. (24).

Hydrologic Model Output Distributions

The previous development resulted in the identification of four modeling
structures:

(1) Qmi(t) -- this is the m-subarea link node model with channel 1inks con-
necting the subareas, (Eq. {15)}. Stream gage data is supplied for each
suybarea (or overland flowplane) and also along each channel link so that
all modeling parameters and subarea effective rainfall factors are
accurately determined for each storm event i. For storm class <€y>s
{(measured at the single "available” rain gage site), Qmi(t) results in the
distribution, [Qmo(t)].

(i1} Qli(t) -- this is a simple single area UH model. For only a single rain
gage and stream oage, Qli(t) is equal to Qmi(t) in predicting runoff at
the stream gage (see Eqs. (15) and (16)). For storm class <£0>, Qli(t)
becomes the distribution [Qlo(t)} where [Qlo(t)] = [Qmo(t)]--

(i11) ami(t) -- should all the parameters in Qmi(t) be estimated for a storm
class, then Qmi(t) is approximated by the estimator ami(t). However

on a storm class basis, 6m1(t) reduces to another single area UH model

of £q. (24) where the correlation distribution, ﬁo(s), is fixed for
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storm class <gy>- ami(t) equates to Qmi(t) when the effective rainfall
estimator, agi(t), is given an infinite number of degrees of freedom.
(iv) 661(t) -- because the effective rainfall estimates in an m-subarea Jink
node model are of a prescribed structure, the estimates have a finite
number of degrees of freedom. For storm class <£0>= 6mi(t) reduces
to another single area UH model where the correlation distribution is
identical to that used in ami(t). But the effective rainfall distri-
bution in the single area UH representation is Egi(t) where Egi(t) is
calibrated to best fit the distribution of Egi(t) distributions which

are needed to correlate the data pairs, {Qg1(t), ﬁo(s)}, in storm class

<E >,
EO

From the four modeling structures, the parameter calibration process can
be interpretted. For storm class <§y>s distributions are developed for
[Qmo(t)] and [Qlo(t)]. A distribution of ami(t), noted as [6m°(t)]. can be
developed provided the effective rainfall estimator is given an infinite
number of degrees of freedom. However, the "calibrated" model of ami(t)
develops only a single point estimate 5m°(t) for storm class <E >

For storm class <50>, the several modeling nutput distributions are as

follows:

t

(G (001 = | e(ts) | &g DDy o5 (Lol ) os

$=0 J

(26)
t

[Q,°(t)] = [ eg (t=s)[n(s)] ds (27)
" 5=0
t

[0 °(t)] =[ Fag°(t -5)] ny(s) ds (28)
s=0
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