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The variability in the maximum discharge is studied for a unit hydrograph model with a fixed
design storm by modelling the statistical variation in the unit hydrograph. A program is described
which allows the computation of percentiles for the maximum discharge under various
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UNIT HYDROGRAPH MODEL

The calibration of a rainfall-runoff model is uncertain,
particularly for a watershed with relatively little rainfall
runoff data or undergoing rapid urbanization. Using a
chosen design storm, and adjusting this rainfall to obtain
the effective rainfall e(z). the unit hydrograph model gives
the runoff O(t), as a function of time ¢, by the convolution
integral

Q(t)=j e(t —shu(s)ds (1)

0

The major source of variability in this method of
predicting the maximal discharge lies in the choice of the
unit hydrograph u. There may be several hydrographs for
the catchment. associated with various appropriate
‘large’ storms. Also several hydrographs may be available
from other catchments which are similar to the one which
is being analysed; these provide useful information for a
pauged catchment and the only information for an
ungauged catchment.

AN S-GRAPH MODEL

In Hromadka' a method was developed to model this
uncertainty in the unit hydrograph. For a given mass
curve M, which is one of those to be used for predicting
the catchment response, the associated unit hydrograph u
is defined by

M(t)=f ul{s)ds (2)
Q

This mass curve comes frotn a storm with ultimate
discharge U and a lag L. (The lag L can be estimated from
the time of concentration T¢ of the catchment and
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regression equation L=0.80Tc, for which see
Hromadka® and McCuen et al.?). When the mass curve is
divided by U/ and scaled by the change of variable t =1L,
the resulting curve C{t)= M(zL)/U, increases from O to 1
and has C(1)=1/2. When this scaling was studied in
Hromadka! for a specific flood control project for Orange
County, California, the scaled mass curves were found to
have similar shapes that could be modelled by

CT)=XC,(1)+ (1 — X)C,(r) (3)

where C, and C, are curves obtained from mass curves
for specific catchments, but in general could be
enveloping curves for the family of all scaled mass curves,
and X is a parameter in [0, 1].

The main feature of equation {3) is the simplification of
the study of the statistical variation in the family of all
curves C to the study of the statistical variation in X. An
empirical distribution for X was obtained in Hromadka'
from a histogram of the X’s for the family of curves.

The assumption that any relevant mass curve M can be
approximated by

M(zL)/U=XC,(1)+(1 - X)C,(7) 4

is a useful formulation of the random variation in unit
hydrographs.

DISCHARGE VARIATION

From equations (1), (2), and (4), the discharge @ can be
written as

QEyy =Jr elt—s}{ X Cy(s/L)+ (1 = X)C3ls/L); ds/L  (5)
Q

P
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The criterion variable of interest will be the rr{aximum
discharge maxQ. By means of the approximations
encapsulated in (4), the compllqated sta'qstmal variation
in max(Q, due to the uncertainty in the unit hydrograph u,
has been written in terms of the variation in the three real-
valued random variables X, L and U. Now L. U, and X
are probably dependent, but the data is insufficient to
determine the nature of this dependency. However, the
distribution of max@ caused by the variation in each one
of the three variables separately can be studied as can the
results of joint independent variation.

In this model, the variation in maxQ due to the
variation in U 1s merely that due to a multiplicative factor,
and so is readily understood. Writing

QYU = X{ f eft—s)}Ci(s/L) ds/L}
0 J

+(1—X){f e{t — s)Ch{s/L) ds/L} {(6)

v]

shows a simple dependence of Q on X. The dependence of
max@ on X can be more complicated, but for the specific
example analysed below it is not. The dependence on L is
the most complicated, and is illustrated below.

COMPUTING DISCUSSION

A Fortran program, maxgt, whose listing is given in
section below, simulates the variation of the maximum
discharge, due to variation in the variables X and/or L for
a fixed given effective rainfall. The effective rainfail used is
a simple triangle: increasing linearly from Oto 1 as 1 goes
from 0 to 1 and decreasing linearly from 1 to O as ¢ goes
from 1 to 4.

The curves C,{r) and C,(7) were read from Fig. 5in
Hromadka' and a piecewise linear approximation,
described in the function @ in the program listing, was
obtained for each curve. Then each derivative

h

Cilty= ¥ slopeitfly, ¢} (N

Ji=1

where slopei(j} is the slope for curve i, i=1,2, on the
interval (t;_,,¢,) where it is linear, and

_ (t_fl if xisin {a,b)
Lia, b} j‘io if x is not in (a, b)

The convolution (5) can be written

QU= 3. {X slopel(j)

J

by
+(1 — X)slope2{j)} f e(s)ds/L (8)

with a;=t~Ls;and b;=1~ Lt,_,. Formula (8) is used in
the program function Q to compute Q(r).

In the main body of the program, the user can choose
probability distributions to describe the variation in ¥
and L. After these choices are made, the user chooses the
number of values of maxQ to be simulated, For each
simulated value of X and L, the program computes maxQ
in the subroutine getmax(max(Q, maxtr), by means of

interval halving, and returns the value max() of the
maximum and the point maxt at which the maximum
occurs. This is the simplest way to allow for variations in
both X and L. For variations in X only, equation (&)
shows that © does not need 1o be repeatedly compured for
each value of X, and this fact could be used to speed up
simulations of maxQ in which only X varied.

The computed value of max( is then scaled by scale
factors which have been computed in the subroutine
scale, and the scaled value is used to update a histogram
with 400 equally spaced divisions in the subroutine tally.
When all the required values of max(Q have been
simulated, linear interpolation in the histogram, by the
subroutine calcpercent, gives the percentile values of
maxQ which are printed by the subroutine printpercent.

RESULTS

The simulation of X from taken from the empirical
histogram and L=1 not varying (and taking U=1 or,
equivalently, thinking of computing max(Q/U)) gives
easily interpreted results. The points maxt at which the
maximum occurs are found to be 2.33 for the percentiles
59{59)70% and 2.34 for the percentiles 75%(5 819597
Write equation (5) in the form

QUYU =X0,(1)+{1~X)Q,(t)

Computing and graphing Q, (t) and Q,(t) shows that both
of these functions obtain their maximum approximately
at t=2.33. Consequently,

maxQ/U=X0 (1) + (1 - X)0,(t5)
=X(0Mto)~ 05(te)) +Qal1,) 9

where 1,=233 Thus for any X, maxQ/U is
approximately just a linear combination «X + 8, and so
has a distribution which can be readily calculated.

Table |
Values of maxQ

Percentile Simulated values Computed values
10% 71.99 72.01
20%, 7299 73.07
30% 7713 77.33
409, 77.99 78.04
50% 78.64 78.66
609, 79.04 79.06
70 79.45 78.46
80% 79.93 75.97
902 80.69 §0.68

Table 2.

Percentife Value of maxQ? Point of maxQ
10% 54.77 179
20%; 61.94 1.95
30% 65.57 2,10
40%, 68.32 223
50% 70.53 234
60%; 72.52 248
70% 7487 264
807% 77.73 2.86
90% 80.32 333

Wadencnfi 1080 Val. 2 Na 1 ©
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Table 3.

Percentile Value of maxQ Point of maxQ
10°; 62.60 1.78
0%, 68.57 193
30% 72.28 2.08
40°7 75.12 2.22
30°, 77.62 2.34
60°, 79.65 2.47
70°%; 81.6% 2.65
80°; 84.11 2.88
90°; 87.03 340

As an example, for the case where X has the empirical
distribution, the simulated percentile values obtained for
max( from a simulation of 5000 values are computed in
Table 1 below with the calculated percentile values of
24.07X +58.67 obtained by computing {,(2.33)=82.74
and (},(2.33)=58.67 and using the percentile value from
the histogram for X in equation (9).

As an example of finding percentiles for maxQ from a
stmulation where L varies, Table 2 below gives the results
for a 1000 point simulation of L where L is chosen to have
the empirical histogram distribution and X is chosen to
have the fixed value X = 1/2 corresponding to the average
unit hydrograph.

The final example given will be the case where both X

PROGRAM LISTING

Program maxqt

Irvine, CA 92714

Q0 a0aa0

R.J. Whitley, Math. Dept., University of Calif.,
T.V. Hromadka II, Williamson and Schmid,

and L vary independently according to their empiricy
distributions.

Note that as a measure of dispersion. the 8y,
percentile minus the 20 th percentile is. in Tables {, 2 and
3: 6.94, 8.56, 15.09. Thus there is somewhat more
variation due to L than due to X and. of course. the mog
variation in maxQ is when both L and X vary. By
comparing Tables 2 and 3, the variation in L entirety
controls the variation in the time when the maximum ¢
occurs, which is in agreement with the values in Table L

CONCLUSIONS

For a unit hydrograph model with a fixed design storm,
the statistical distribution of maximum discharge can be
rqodelled as a function of the random variables: ultimate
discharge U, lag L, and a random variable X related to
the shape of the S-graph. The percentiles for the
maximum discharge can be obtained by simulation for
specific distributions for U, L, and X.
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Real Lsigma, maxt,maxd,mid(2), percent(2,19), range(2), temp, Xsigma
Integer answer,Block, count(2, 499}, 1, j, NoBlocks, NoL, NoX

parameter (Block=100@)

common/histograms/mid, range, count, percent

common /Xparameters /NoX, Xsigma
common /Lparameters/NoL, Lsigma

‘The random S graph is X*Cl+(1-X)*CZ, C1 and C2 given ?,

print *,
) 'S graphs’
print *, 'Choose a distribution for X by number
- print *,’1. X=@.5’
print *,’2. X normal N{1/2,sigma).’
print *,’3. X as in 2 but truncated to lie in {@,1].°
print %,’4. X uniform on [@,1].°
print *,’5. X given by an empirical histogram.’

read ¥, NoX

if ((NoX .eq. 2% .or.
print *,
read *,Xsigma

endif

{NoX .eq. 3)) then
’input sigma for X’

*

print *,’Choose a distribution for the lag L by number ’

10 Hvdrosoft. 1989. Vol. 2. No. 1
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i x,’1. L=1.0.°
gﬁ;ﬁi %,°2. L normal N(1,sigma).’
print *,°3. L as in 2 but truncated to lie in {.5,1.5].’
print ¥,’4. L uniform on [.5,2.01.°
print %,’5. L given by an empirical histogram.’
read *, NoL

if ((NoL .ea. 2) .or. (NoL .eq. 3}) then
print *, ’input sigma for L’
read *,Lsigma

endif

temp=rrand()

sets seed for random number generator

print ¥,’Now Scaling’
call scale()}
subroutine Scale computes scale factors used by subroutine tally
print *,’Input number of blocks in simulation. ~
read %, NoBlocks
do 28 i=1,2

do 10 3=1, 490

count(i, ji=@

continue
continue
count{i, j) is the histogram count; see subroutine tally

print *,’ Completed block numbers:’
do 48 i=1,NoBlocks*Block
call getmax{maxQ, maxt)
call tally(l,maxQ)
call tally(2, maxt)

if (mod{i,Block) .eq. @) then
write{(*,’ {("&",I4}’) int{i/Block)
endif
continue

print x

print *,’Print out data histograms (l=yes,®=no).
print *, ’WHARNING. The histogram is 499 lines of data.’
read *, answer

if {answer.eq.l) call printhistograms(NoBlocks, Block)
call calcpercent{NoBlocks, Block)

call printpercent(NoBlocks, Block)

3

stop
end

subroutine getmax{max@, maxt)

returns the value maxt, accurate to within

{B-AY/{2 to the power 11), at which the {local) maximum wvalue
max®, which is also returned, is attained. The max is found by
interval halving. For the Q’s considered in the program, this is a
unique max which therefore coincides with the local max maxd.

The function Q is external to this routine.

real a,b,h,maxQ,maxt,@, rvL, rvX, X(3),Y(3)
integer 1,3

call getX{rvX)
call getL{rvl)
A=0.D
B=5+4/rvL
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P is zero outside (@,4/rvL) and u is zero outside (@,5), so Q,
which is the convolution of P and u, is zero outside (G, 5+4/rv],)

X(2)=(B+A) /2

Y(2}=G{rvX, rvL, X{(2}})
h=(B-A)/4

do 10 i=1,10
X1)=X(2)-h
X3)=X(2)+h
YL =Q{rv¥,rvL, X(1)})
Y{(3)={rvX, rvL, X(3))

J=1
if ((Y(2) .ge. Y(1)) .and. (Y{(2) .ge. Y(3)

¥y =2
if ((Y(3) .ge. Y(1)) .and. (Y(3) .ge. Y(2))) j=3

X(Z2)=X{3)
Y(2)=Y(3)
h=h/2

continue
max@=¥{2)
maxt=X(2)

end

function Q{rvX,rvL,t)
Q is actually the scaled function Q(.)/U, U ultimate discharge.
The main hypothesis is that the mass curve M(.), when scaled by
multiplying the argument by the lag L=rvL and dividing by U can be
written as

M{t*L) /U=prvX*Cl (L) +{(1-rvi)XC2(1). (1)
{See Hromadka, T., Use of a Hydrolegic Model as a Flood Control
Policy Statement, Environmental Software, 2(1987) 63-7@.) The
discharge Q is given by the convolution of the effective rainfall
P with the derivative M’ of M. We take the curves C1 and C2 to be
piecewise linear on the intervals (tc(i-1),tc(i})),for i=1,..., NC;
as such they are piecewise linear approximations to the curves
given in the reference above. (For these variables, see the
description of the curves Cl and C2 given in this subroutine.)
From (1), M’(t} is a step function and the convolution giving Q is
a sum of the terms

{rvX*slopel(iY+(l-rvXislopeZ2(i)) times Z

where Z is the integral from t-Lktec{i) to t-L¥tc(i-1) of P(s)ds,
after a change of variable.

integer Nc

parameter{Nc=22)

real integralP,@,rvL, rvX,slopel(Nc), slopeZ2(Nc), sum,t,tc(@:Nc), temp
integer i

set parameters for curves Cl and Cl
data tc/0.0,9.222222,09.444444,0.666666,10.888888,1.111111,1.333333,
1.5555b5,1.777777,2. 000000, 2. 222222,2.444444,2. 666666,
2.888868,3.111111,3.333333,3.555555,3.777777, 4. 000000,
4,222222,4.444444,4. 666666, 4.888888/
data slopel/9,27,63,72,90,76.5,81,22.5,4.5,4.5,0,0,0,9,2,9,0,0,
@,8,0,8/
date slope2/41.5,72,58.5,48.5,36,31.5,27,22.5,22.5,18,13.5,13.5,
9,9,4.5,4.5,4.5,4.5,4.5,4.5,4.5,4.5/
end of curve parameters

g R e
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sum=0

do 19 i=1,Ne¢
temp=rvi*slopel(i)+(1-rvX)*slope2{(i)
temp=temp*integralP(t-(te(i)*rvl), t—{(tc(i~1)*rvL})
sum=sunt+temp

continue

@=sum/rvl

end

function integralP{a,b)

The curve P increases linearly from @ at p@ to a value of maxP at
pl, and decreasing linearly toc @ at the point p2. This subroutine
computes the intedral from @ to b and subtracts the integral

from @ to a.

real a,b,c(2), integral(2), integralP, maxP, ml, m2, pd, p1, p2
integer i
parameter (p@=9.9,pl1=1.6,p2=4.0, maxp=1.9 )

mi={maxp-@)/(pl-p@}
mZ2={G-maxp}/{p2~pl)

integral{l1})=0.0

c{li=a
integral(2)=0.9
c(Z2i=bh
do 10 i=1,2
if (c(i) .le. p@) integrall{i)=0.0
if ({cf{i) .gt. p®) .and. (c(i) .le. pl)) then
integral(i)={@.5}x{c{1}-p@)*X{mi*(c{i)-pB)}
endif
if ((e(i) .gt. pl) .and. (c{(i) .le. p2))} then
integral{i)=(@.5)*({pl-pd)*maxp
integral(ijzintegral (i}+(&. 5¥x{c(i)-pl)*{maxp+m2*(c(i)-p2))
endif
if (e(i) .gt. p2) then
integral(i)}=(%. 5)*(pl-p?) *maxp+{@d. 5¥(p2-pl ) *maxp
endif
continue
integralP=Integral(2)-integral(l)
end

subroutine getX{rvX)
Generates a random variable value for rvX depending on the
distribution choosen by the input number noX in the main progream.

real rl,r2,rvX, templ, temp2, Xsigma
integer noX
common /Xparameters/nod, Xsigma

if (noX .eq. 1) rvX=@.5
if (noX .eq. 2) then
call randomnormal({templ, temp2)
rvi=Xsigma*templ+@®. 5
endif
if (noX .eq. 3) then
call randomnormal(templ, temp2)
if (a2abs(Xsigma*templ) .le. .5 ) then
rvi=XsigmakXtempl+@.5
goto 20
endif
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real h,L,mid(2), range{2), stat, temp
integer count(2, 400), itenp, j

common/histograms/mid, range, count
data h/.91/,L/2.8/

temp=(stat-mid{ j))/{range{ ;) /4)
temp={temp+L) /h

if((temp.le.399.8) .and. {temp.ge.¥.0)) then
itemp=aint{temp)
count( j, itemp+I)=count( j, itemp+1i)+1

else
if (temp.gt.399.0) then
count{ j, 48@)=count( j, 400)+1
endif
if (temp.lt.@.8) then
count(j, 1)=count(j, 1)+1
endif
endif
return

end

subroutine printhistograms(NoBlocks, Block)
o) prints the histogram values of count{j,k) together with the
c scale factors necessary to convert them to percentiles

real mid(2), range(2)
integer Block, count(2, 488), i, j, NoBlocks, sum( 2, 490@)

common/histograms/mid, range, count

do 5 j=1,2
sum{ 3, 1Y=count{ j, 1)
5 continue
do 2@ j=1,2
do 10 i=2, 400
sum{ 3, 1)=sum{ j, i-1)+count({ j, i}
16 continue
20 continue
open{unit=2,file="prn’*)
write(2,3@0) NoBlocks,Block

30 format{1lx, ’Simulation histograms from ’,12,’ blocks of ’,
& ‘size ', 1I4Y
write(2, 49)
40 format()

write(2,’ (1x, "Two statistiecs are tabulated below. ")?*)
write(2,’(1x, "The first is maximal digcharge" }’)
write(2,’(1x, "The second is time to maximum discharge”)’)
write(2, 50}

format()

write(2, 55)

format{1lx, 'For the j-th statistic s(j) j=1 and 2 '/

1x ’the scale factors listed bhelow are used to produce’/
1x, the scaled statistic ss(j)=(s{j)-mid{ j))/{range(j)’,
’/4), The histogram given’/lx, ’below lists ’,

’in the k-th row k=1,...,40@0, and 3j-th column the number ’,
'of times’/1lx,’'ss{j) < -2+kx.@1. Linear interpolation and ’,
’rescaling of these counts gives’/1x, ’approximate *,
‘percentiles for the distributions of these statistics.’)

o
[ LB N
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formati{ix,’j= ’,I1,’ mid= ’,F8.4,° range= ’,F8.4)

continue

write(2, 109)

format()

write(2,110)

format(1lx,’ k J=1 3=2")

do 138 j=1, 400
write(2,120) 3,sum(l, 3}, sum(2, 3)
format.(1x, 317)

continue

write(2, 14@)

format{*1’}

form feed
close(unit=2,file="prn’)
return

end

subroutine calcpercent{NoBlocks,Block)
does linear interpolation in the count histogram to find

: percentiles for 5%(5%)95% and unscales to get percentiles
0 for the statistics of interest
real h, interp,L,mid(2),percent(2,19), range{2),x1,x2,y,¥l,¥y2
integer Block, count(2, 40@), i, j, k, NoBlocks, Pm, s
common/histograms/mid, range, count, percent
1L=2.9
h=.01
do 4@ j=1,2
do 38 i=1,19
pM=i1*5%NoBlocks*19
o] 1286 /108=19; Integer Bleock =1099
k=1
s=count(j, 1)
16 if (s.1t.pM) then
k=k+1
s=s+count{ j, k)
goto 10
endif
> k is the first index with s>pM, s=the sum of count{j,m),m=1,...,k
> {therefore count{ j, k)>®)
y=real (pM)
y2=real(s)
yl=y2-real{count{ j, k}))
x2=k*h-L-h/2
x1=x2-h
interp=({y-y1)}/(y2-y1) )Y *{x2-x1)+xl
percent{ j, i)=interp*{range( j)/4}+mid{ j)
30 continue
40 continue
return
end

subroutine printpercent{NoBlocks, Block)
: prints the percentiles percent(j,k) from "calcpercent"”
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end

2),p(2),percent(2,19),range(2),x

Sigma
integer Block,count(2,4®0),i

,j,NoBlocks,noL,noX

common/histograms/mid,range,count,percent :
common/Xparameters/noX,Xsigma .
common/Lparameters/noL,Lsigma A
open(unit:Z,file:’prn’)

write(z,’(lx,"Percentiles.“)’)
write(2,’(1x,“The pPercentiles in coly

"maximal discharge" )
write(2, N

write(Z,’(lx,“The distribution number for I, ig ", I3 nol,
write(2, 4@) NoBlocks,Blook

format(5x, ’ The simulation was °’, 12,
write(2, 5@)

format()

write(2, 64)

format(lx,’percentile

blocks of sigze ’,15)

L)
columni column2’) '
write(2, 7¢)
format(lx,’ ——————————————————————————————————— 2y
do 10@ j=1,19
do 89 i=1,2 3 k,
p(i):percent(i,j) , ¢
continue o
write(2, 9¢) 5%3,p(1),p(2) ] 0
format(lxIG,4x,2(3x,F7.2)) vk
continue g
write(2, 119) ! ar
format(’1*) N
close(unitzz,filez’prn’) g
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