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Abstract

Almost all rainfall-runoff models in use today involve the subdivision of the
catchment into smaller areas, linked together by a system of channel links.
These "link-node" hydrologic models represent the flow processes within the
channel links by a translation (moving in time) and an attenuation {reduction of
the maximum or peak flow rate) of the runoff (floodwater) hydrograph. The
runoff in each subarea is based upon the available rainfall data, modified
according to an assumed "oss rate" due to soil-infiltration, ponding, exaporation,
and other effeets. The net effect of all these approximations is to result in &
vast spectrum of possible modeling structures. Using a stochastie integral
equation, we can mathematically approximate many of these rainfall-runoff
models with a generalized model that is more tractable to detailed analysis of
the model structure. We can then proceed to evaluate rainfall-runoff model
uncertainty in overall generality. The approach used in this paper is to isolate
the uncertainty in runoff predictions from the expected value of the model
runoff estimate, and then attempt to analyze the uncertainty as a separate form
of information. In this way, the uncertainty may be analyzed as a stochastic
process. Once the underlying distributions are identified, they can be normalized
with respect to certain catchment characteristic variables, so that these
distrtibutions can be rescaled for application at arbitrary study sites.

PAPER "Estimating Uncertainty in Design Storm Rainfall-Runoff Models Using a
Stochastic Integral Equation” presented at American Geophysical Union (AGU)
Fall 1989 Meeting, San Francisco, Session H31C, Paper No. 12.



INTRODUCTION

Due to the nondeterministic nature of the rainfall-runoff processes
oceurring over the catehment, the mathematical descriptions of these processes
result in stochastie equations. Additionally, the so-ealled deterministic rainfall-
runoff models used to deseribe the several physical processes contain parameters
or ecoefficients which have well-defined physically-based meanings, but whose
exact values are unknown. The boundary eonditions of the problem itself are
unknown (e.g., the temporal and spatial distribution of rainfall over the
catchment for the storm event under study and also for all prior storm events)
and often exhibit considerable variations with respect to the assumed boundary
conditions, the measured rainfall at a single loeation (e.g., Nash and Suteliffe,
1970; Huff, 1970). Thus the physically-based parameters and coefficients, and
also the problem boundary eonditions, are not the assumed values but are instead
random variables and stochastic processes whose variations about the assumed

values are governed by certain probability distributions.

In this paper, the uncertainty problem is addressed by providing a
methodology which can be incorporated into almost all rainfall-runoff models.
The methodology is based upon the standard theory of stochastic integral
equations which has been sucecessfully applied to several problems in the life
sciences and chemical engineering (e.g., Tsokos and Padgett, 1974, provide a
thorough development). The stochastie integral formulation is used to represent
the total error between a record of measured rainfall-runoff data and the model
estimates, and provides an answer to the question: "based upon the historic
rainfall-runoff data reeord and the model's aceuracey in estimating the measured
runoff, what is the distribution of probable values of the subject criterion
variable given a hypothetical rainfall event?" Using the analysis results
(Hromadka, 1989), we now extend our findings in order to generalize the analysis

to arbitrary rainfall-runoff model structures.



Almost all rainfall-runoff models in use today involve the subdivision of the
catchment into smaller areas, linked together by a system of channel links.
These "link-node" hydrologic models represent the flow processes within the
channel links by a translation (moving in time) and an attenuation (reduction of
the maximum or peak flow rate} of the inflow hydrograph. The runoff in each
subarea is based upon the available rainfall data, modified according to an
assumed "loss rate" due to soil-infiltration, ponding, evaporation, and other
effects. The net effect of all these approximations is to result in a vast
spectrum of possible modeling structures. Using the model structure presented
in Hromadka, (1989), we can mathematically approximate many of these rainfall-
runoff models with a single model structure, and can proceed to evaluate
rainfall-runoff model uncertainty in overall generality. The approach used in
this paper is to isolate the uncertainty in runoff predictions from the expected
value of the model runoff estimate, and then attempt to analyze the uncertainty
as a separate form of information. In this way, the uncertainty may be analyzed
as a stochastic process. Onece the underlying distributions are identified, they
can be normalized with respect to certain catehment characteristic variables, so
that these distributions can be resecaled for application at arbitrary study sites.

STOCHASTIC INTEGRAL EQUATION
Rainfall-Runoff Model Errors
Let M be a deterministie rainfall-runoff model which transforms rainfall

data for some storm event, i, noted by Pgi(t), into an estimate of runoff, Mi(t),

by
M: Pgi(t) —Mi(t) (1)

where t is time. In our problem, rainfall data are obtained from a single rain
gauge. The operator M may include loss rate and flow routing parameters,
memory of prior storm event effects, and other factors. It is noted that
precipitation data are now used in the current analysis rather than using a

measured effective rainfall such as employed in Hromadka (1989).



Let Pgi(t) be the rainfall measured from storm event i, and Qgi(t) be the
runcff measured at the stream gauge. Various error {or uncertainty) terms are
now defined such that for arbitrary storm event 1,

Qgl(t) = Mi(t) + Ep(t) + Eqi(t) + Epi() )

where
Emi(t) is the modeling error due to inaccurate approximations of the
physieal processes (spatially and temporally);
Edi(t)is the error in data measurements of Pgi(t) and Qgi(t) (which is
assumed hereafter to be of negligible significance in the analysis);
Eri(t) is the remaining "inexplainable" error, such as due to the unknown
variation of effective rainfall (i.e., rainfall less losses; rainfall

excess) over the catchment, among other factors.
Let Ei(t) be redefined to equal the total error
Ei(t) = Ep (1) + E4l(t) + E,d(1) (3)

where Et) is necessarily highly correlated to Eri(t) due to the given
assumptions. Because Ei(t) depends on the model M used in Eq. (1), then Egs. (2)

and (3) are combined as
Qgl(t) = Mi(t) + Epri(t) (4)
where EMi(t) is a conditional notation for EXt), given model type M.
The several terms in Eq. (4) are each a realization of a stochastie process.

And for a future storm event D, the EyD(t) is not known precisely, but rather is
an unknown realization of a stochastic process distributed as [EpPD(t)] where

[QuP(t)] = MD(t) + [EpD(t)] (5)



In Eq. (5), [QuMP()] and [EyD(t)] are the stochastic processes associated to
the catchment runoff and total modeling error, respeetively, associated with
model M, for hypothetical storm event D. Hence in prediction, the model output
of Eq. (5) is not a single outcome, but instead is a stochastie distribution of
outcomes, distributed as [QmP(t)]. Should A be some funetional operator on the
possible outcome (e.g., detention basin volume; peak flow rate; median flow
veloeity, ete.) of storm event D, then the possible value of A for storm event D,
noted as Ay D, is a random variable distributed as [AMD], where

[aMP] = AlQuP(v)] (6)
Developing Distributions for Model Estimates

The distribution for [EMD(t)] may be estimated by using the available
sampling of realizations of the various stochastic processes:

{EMID)} = 1Qgl(t) - Mi(D)}, 1 = 1,2, @)

Assuming elements in {Epmi(t)} to be dependent upon the "severity" of le(t),
one may partition {Epmi(t)} into classes of storms such as mild, major, flood, or
others, should ample rainfall-runoff data be available to develop significant
distributions for the resulting subelasses. To simplify development purposes,
[EMP(t)] will be based on the entire set {Emi(t)} with the underlying
assumption that all storms are of "equivalent" error; storm elasses will be used
later.

The second assumption involved is to assume each Epyi(t) is strongly
correlated to some function of precipitation, Fi(t) = F(Pgi(t)), where F is an
operator which includes parameters, memory of prior rainfall, and other factors.
Assuming that EMi(to) depends only on the values of Fi(t) for time t < ty, then
EMi(t) is expressed as a causal linear filter (for only mild conditions imposed on
Fi(t)), given by the stochastic integral equation (see Tsokos and Padgett, 1974)



Epi(t,) = Flit, - 5) hari(s) ds (8)

[ ————

s=0

where hMi(t) is the transfer funetion between (EMi(t) Fi(t)). Other convenient
candidates to be used in Eq. (8), instead of Fi(t), are the storm rainfall, Pgl(t),
and the model estimates itself, Mi(t),

Given a significant set of storm data, an underlying distribution [hy(t)] of
the { hyi(t)} may be identified, or the { hpi(t)} may be used direetly as in the
case of having a diserete distribution of equally-likely realizations, Using
[hpm(t)] as notation for both cases of distributions stated above, the predicted
response from M for future storm event D is estimated to be

[QyP(t)] = MD@t) + [EyDP(®) ] (9)

Combining Egs. (8) and (9),
t
[QuP(t)] = MDt) + [ FP(t - s) [hy(e)] as (10)
s=0
and for the functional operator A, Eq. (6) is rewritten as

t

[

r
J
s=0

[AMP] = AlqQyPw]= A{MD(t)w‘ FD(t - 5) [hy(s)] ds 11)

Confidence interval estimates for the chosen eriterion variable can now be
obtained from the frequeney-distribution, [AyP]. It is noted that [ayP] is
necessarily a random variable distribution that depends on the model structure,
M.



DEVELOPMENT OF TOTAL ERROR DISTRIBUTIONS
A translation unsteady flow routing rainfall-runoff modetl

The previous concepts are now utilized to direetly develop the total error
distributions, [Ep(t}], for a set of three idealized catchment responses. Besides
providing a set of applications, additional notation and concepts are introduced,
leading to the introduction of storm classes.

Let F be a functional which operates on rainfall data, Pgi(t), to produce the
realization, FI(t), for storm i by

F: Pgi(t) —s Fi(t) (12)

The catchment R is subdivided into m homogeneous subareas, R = U R;j,
(see Fig. 1; where, m = 9), such that in each Rj, the effeetive rainfall, eji(t), is

assumed given by
eji(t) = » j(1 + X;) Fi(t) (13)

where ?\j is a constant proportion factor; and where in is a sampie of a random
variable, which is constant for storm event i. The parameter Aj is defined for
subarea Rj and represents the relative runoff response of Rj in comparison to
Fi(t), and is a constant for all storms, whereas in is a sample of the random
variable distributed as [Xj], where the set of distributions, {[Xj]; ji=1,2,m}
may be mutually dependent.

The subarea runoff is

t t
gl = | &t - 5) ¢jils) ds = [ AL+ X0 Fi(e - ) 44i(s) ds (14)
J
5=0 s=0

At this stage of development, unsteady flow routing along channel links
(see Fig. 1) is assumed to be pure translation. Thus, each channel link, Lk, has
the constant translation time, Tx. Hence from Fig. 1, the total runoff response
at the stream gauge for storm event i, Qgi(t), is the sum of subarea runoffs, each
translated by the sum of associated link travel times:



9
Qgl(t) = .Zl qjl(t - 15) (15)
J=

where qji(t = Tj) is defined to be zero for negative arguments; and Tj is the sum
of link travel times (e.g. from Fig, 1, 71 = Tq + Tg +T3; Tg = Tg + Tg; Tg = 0).
For the above particular assumptions,
9 t
Qglt)= j M+ X)) Fie - 5) o4i(s - T4) ds
J=1 s=0
(16)
L 9 .
= J FY{t -s) [E A1+ XY fbjl(s - Ty fds
5=0 3=l
In a final form, the runoff response for the given simplification is
t 9
Qgl(t) = [ Fit-s) | %jojls - 1) o
=0 =1
(17)
t 9
+ [ Fitt-s) § 1 jXjleii(s - 15) ds
s=0 J=1
In the above equations, the samples {in} are unknown to the modeler for any
storm event i. From Eq. (17), the model structure, M, used in design practice is

t
» . 9 -
MI(t) = ( Fi(t-s) ] 2j $ji{s -~ 74) ds (18)
5=0 J=1
Then, Qgi(t) = Mi(t) + EMi(t) where
t
Epit) = f Fi(t - s) hyl(s) ds (19)
s=0

where hpi(s) follows directly from Egs. (17) and (18).
Should the subarea UH all be assumed fixed, (i.e., ¢ji(t) = ¢(t), for all i), as
Is assumed in practice, then the above equations can be further simplified as



t
Mi(t) = [ Fi(t - 5) 0(s) ds (20)
s=0
where &(s) = jél)‘j ¢jls - T§). Additionally, the distribution of the stochastic
process | hy(t)] is readily determined for this simple example,
g
[hp(0)] = J_zl[Xj] Aj it =1 (21)
where [hy(t)] is directly equated to the 9 random variables, {Xj,j =1,2,--,9}.
It is again noted that the random variables, Xj, may be all mutually dependent.

In prediction, the estimated runoff hydrograph is the distribution [ QnP(t)]
where [QuP(t)]= MD(t) + [EyMDP(t)], and M refers to the model structure of
Egs. (18) or (20).

For this example problem, the stochastic integral formulation is

t t
@uP®] = | FD(t-s) oy ds+ | FD(t-5) y(o)] ds (22)
s=0 siO
where the error distribution, [EMD(t)], is assumed to be correlated to the model
input, FD(t), as provided in Eqgs. (19) and (21).

Multilinear unsteady flow routing and storm classes

The above application is now extended to include the additional assumption
that the channel link travel times are strongly correlated to some set of
characteristic deseriptions of the runoff hydrograph being routed, such as some
weighted mean flow rate of the associated hydrograph. For example, the widely
used Convex Routing technique (Mockus, 1972) often utilized the 85-percentile
of all flows in excess of one-half of the peak flow rate as a statistic used to
estimate the routing parameters. But by the previous development (i.e.,
definition of eji(t)), all runoff hydrographs in the link-node channel system would
be highly correlated to an equivalent weighting of the model input, Fi(t). Hence,
storm classes, [ £ ;], of "equivalent” Fi(t) realizations could be defined where all
elements of [£ ;] have the same characteristic parameter set, C{Fi(t)), by

[£2] = {Fi(t) | c(Fi(t)) =z} (23)



And for all Ft) e [t zl, each respective channel link travel time is identical,
that is Ty = Ty, for all Fitt) € [5,]. In the above definition of storm class, z is
a characteristic parameter set in vector form. (An example of such a
characteristic parameter set is given in a subsequent section.)

This extension of the translation unsteady flow routing algorithm to a
multilinear formulation (involving a set of link translation times) modifies the
previous runoff equations (20) and (21) to be, in general

t t
Mi(t) = J Fit-5) ¥ » j 9j(s = Ty%)ds = f Fi(t - 5) 04(s)ds; Fi(t) e [£,](24)
s=0 J s=0

where ¢ 5(s) = ] A djls = 74%), and
J

t
Epgi(t) = J Fi(t - s) thi(s) ds; Fiy e [g,1] (25)
s=0

The structure of the new set of equations motivates an obvious extension of the
definition of the subarea UH, the subarea X j proportion faetor, and the subarea
random variable distribution [X;], to all be also defined on the storm class basis
of [£,]. Thus, Eq.(24)is extended as

t
Mi(t) = J Fi(t - g) 2 )\jz ¢>jz(s- T§2)ds
$=0 J
= J Fi(t - s) ox(s) ds; Fi(t) Ez, 1 (26)
s=0

The stochastic process [hMZ(t)] is distributed as

[y, (0= [X52] 252 9426 - 1525 Fi(t) e [ &,] (27)
J

And in prediction,

[QmMP®] = MD(t) + [EyqD()T; ¥D(1) € [£p ] (28)



where
t
[EqD(t)] = j!- FD(t - ) [hpp(s)] ds; FO(W e [Ep ] (29)
s=0
A Multilinear Rainfall-Runoff Model

The previous two model derivations resulted in the development of the
total error distribution, [EM(t)], for some particular model structures. In this

section, the above results are generalized to include a wide range of possibilities.

As before, Let F be a functional defined on the assumed rainfall data,
F: Pgi(t) —Fi(t), The catchment R is subdivided into m subareas, {Rj; j =
1,2,-+,m} linked together by unsteady flow routing models. The link-node model
drains freely to the single stream gauge where the data, Qgi(t), is measured. The
problem is to predict the runoff response at the stream gauge corresponding to a
hypothetical storm event rainfall, PgD(t).

Each subarea's effective rainfall, ej!(t), is now defined to be the sum of
proportions of Fi(t) translates by

efllt) = g Mt + Xyed) Fitt - ogd); Fi(t) € [£,] (30)

where Xjki and iji are samples of the random variables distributed as [X]-k]
and [ejk], respectively. In the above equation and all equations that follow, it

is assumed that a storm class system is defined, [£z], such that for Fi{t) €
[£3], all parameters and probabilistie distributions are uniquely defined, and

there is no loss in understanding by omitting the additional notation needed to
indicate the storm class,
The subarea runoff is

t
qji(t) = f L Ak L+ Xy Fie - 50 -5) ¢5(s) ds (31)
s=0
or in a simpler form,
t
gii() = J =) T g0 Xy o - e (32)
s=0

10



It is assumed that the unsteady flow channel routing effeets are highly
cotrelated to the magnitude of runoff in each channel link, which is additionally
correlated to the magnitude of the model input realization, Fi(t). On a storm
class basis, each channel link is assumed to respond linearly in that (e.g., Doyle
et al, 1983)

04¥(t) = %az nit- og) (33)

where 011(t) and I3i(t) are the outflow and inflow hydrographs for link 1, and
storm event i; and {a,} and {u,} are constants which are defined on a storm
class basis which is also used for the model input, F1{1), Thus, the channel link
flow routing algorithm is multilinear with routing parameters defined according
to the storm class, [ﬁz](see Becker and Kundezewicz, 1987, for an analogy
based on multilinear approximation of nonlinear routing).

Should the above outflow hydrograph, O1(t), now be routed through another
link (number 2}, then Ia(t) = O1{t) and from the above

o
Qo) = § Bg, Iat- Gp,)
22=
(34)
nz n].
= §agy 7§ oag Iift- ag - o)
22:1 /Q,].:

For L links, each with their own respective stream gauge routing data, the
gbove linear routing techniques result in the outflow hydrograph for link number
L, O1,(t), being given by

i nL-1
o= [ ag 1 g
SR T
N (35)
ses a ap Iylt-a, =0, =s*+~q - o
222 % 2121 TR S R ha R

11



Using an index notation, the above Op(t) is written as

oLlity= 3} 8, I1{t- o o) (36)
<L>
For subarea Rj, the runoff hydrograph for storm i, jS(t), flows through L
links before arriving at the stream gauge and contributing to the total modeled
runoff hydrograph, Mi(t), ALl of the parameters ai< g~ and a.i< g> @are constants
on a storm class basis. Consequently from the linearity of the routing technique,
the m-subarea link node model is given by the sum of the m, qji(t) contributions,

. m ) . .
M= 5§ &t q.(t-a' ) (37)
31 <h> R Dl

Finally, the predicted runoff response for storm event D is the stochastie

integral formulation
t
e = | Pes) [ 17 el T e DD agls-Tog]
M =1 <. <SL>j K jk jk b jk
s=0 J

- ai<ﬁ>j )] ds; FO(t) € [£y ] (38)

Given Fi(t) ¢ L£,), all subarea runoff parameters {}j, ¢§(t)} and
distributions {[ Xjk 1, [ 8k ]} are uniquely defined for j = 1,2,---,m; and all link
routing parameters {ag, «g}are also uniquely defined. Then the entire link-
node model is linear on a storm class basis and once more Egs. (26)-(29) apply
without modifieation.

The sbove multilinear rainfall-runoff model structure represents a highly
detailed and distributed parameter model of the rainfall-runoff process whieh
not only ean be used to represent the catehment runoff response itself, but also
can be used to approximate the response of other hydrologic modeling structures.

12



Consequently, our final model structure can be used to study the effect on the
runoff prediction (at the stream gauge) from arbitrary model M, due to the
randomness exhibited by the mutually dependent set of random variabies, {Xjk,
6jk}. Hence for any operator, A, on the predicted runoff response of Eq. (38),
the outcome of A for storm event PgD(t) is the distribution [ApP], where for
all model parameters defined,

[AMP] = AIMP®] = AL [Xgc], Loy 1) (39)
STOCHASTIC INTEGRAL EQUATIONS AND UNCERTAINTY ESTIMATES

The distributed parameter rainfall-runoff model of Eq. (38) provides a
useful approximation of almost any rainfall-runoff model in use today. A
stochastic integral equation that is equivalent to Eq. (38) is

t

[auDW)] = [ FD(t - s) [n(s)]ds; FO(tyeLEp ] (40)
=0

where now [11(s)] is the distribution of the stochastic process representing the
random variations from the set of mutually dependent random variables, {Xjk,
Bjk}, defined on a storm class basis. (It is reealled that on a storm eclass basis,
the hydraulic parameters of 80> and o 7>y and the ¢3(s), do not vary.) In
prediction, the expected runoff estimate for storm events that are elements of

[z D] is
t
E [QuP®)] = [ FD(t - s) E [n(s)ds; FD(V) e [£p] (41)

5=0

whieh is a multilinear version of the well-known unit hydrograph method (e.g.,
Hromadka et al, 1987), which is perhaps the most widely used rainfall-runoff

modeling approach in use today.

13



Then the model M structure of Eq. (38), when unbiased, is given from Eq.
(41), by

MD(t) = E[QuD(t)] (42)
The total error distribution (for the subject model M) can be developed by
[EMD(®)] = [anP®] - E[QuP(t)] (43)

where all equations are defined on the storm class basis used in the previous
equations. Given sufficient rainfall-runoff data, the total error distribution can
be approximately developed by use of Eq. (43). Should another rainfall-runoff
model structure be used, then E[QyD(t)] is replaced by the alternative model,
and another set of realizations of [EyD(1)] is obtained from (43). Equation (43)
is important in that given a specified model, the total error in model estimation
Is approximately given by a stochastic process. And similar to any sampling
process, the modeling total error distribution becomes better defined as the
sampling population inereases. Through the equivalence between Egs. (38) and
(40), the uncertainty of the rainfall-runoff model of Eq. (38) can be evaluated by
use of Eq. (40). That is, due to the limited data available, one cannot evaluate
each of the random variables and processes utilized in Eq. (38), but one can
evaluate the total model error, as developable from Eq. {43).

APPLICATION

In our application problem, the model input functional F: Pgi(t) —Fl(t) is
specified as

F: Pgi(t) — A Pgi(D) (44)

where A is a constant runoff coefficient. The corresponding stochastic integral
equation used to related rainfall-runoff data is

t
Qgl(t = X | Pglt-s) ni(s) ds (45)
5=0
14



In this application, storm classes are defined (z) according to the 85-percentile
value of rainfall intensity in excess of one half of the maximum 5-minute mean
intensity, and also according to the total rainfall mass which occurs within 3
days prior to the subject storm event. Storm classes are then assembled
according to the characteristic z-value, at 0.5-inch increments.

For the study location of Southern California, Table 1 summarizes the
study catchment characteristics. Table 2 lists the available rain gauge sites and
the storm dates of events used in the rainfall-runoff data analysis. Because of
the spareity of rainfall-runoff data, several ecatchments are considered in order
to regionalize the statistical results, All storms considered in Table 2 are
assumed to be elements of the same storm class considered important for flood
control. That is, it is hypothetisized that the variations in the various random
variables and processes identified in Ea. (38), can be considered samples from
distributions that apply for each of the considered storm events of Table 2.

For each storm event and catchment, the rainfall-runoff data is used to
directly develop the {ni(s)} by use of Eq. (45). On a catchment basis, the
several resulting ni(s) are pointwise averaged together to determine an estimate
for E [n(s)] for the preseribed storm class, for the considered eatechment.

Summation (or distribution) graphs of the {ni(s)} indicate that normalizing
could be performed by plotting mass along the y-axis from 0 to 100-percent of
mass, and the x-axis as time with respeet to the parameter "lag" where 100
percent of lag equals the time at 50 percent of total mass. Plots of normalized
summation graphs of the ni(s) realizations for Alhambra Wash, for several
storms, are shown in Fig. 2, and plots of summation graphs of the estimates of
E[n(s)] for the several catehments are shown in Fig. 3. From the data used in
Fig. 2, the expected value (for the Alhambra Wash stream gauge} of the
charactistic parameters lag and ultimate discharge, U, are obtained.

A comparison between Figs. 2 and 3 shows that the variation in the
summation graphs of the E[n(s)] among the several considered catechments is of
a magnitude similar to the variation between the summation graphs of ni(s) for
Alhambra Wash alone. Therefore in order to regionalize the total error
distributions, and to increase the population of the random process sampling, the

15



TABLE 1. WATERSHED CHARACTERISTICS

Watershed Geometry Calibration Results
Length of Percent Peak F
Watershed Area Length Centroid Slope  [mpervious Te Storm ea p Lag Basin
Name {mi?} {mi} (mi)  (ft/mi) (%) {Hre) Date {inch/hr} {hrs) factor
Alhambra wash’ 13.67 8.62 4.17  82.4 a5 0.89 Feb.78  0.59,0.24 0.62 0.015
Mar.78  0.35,0.29
feb.80 0.24
ComptonZ® 24.66  12.69 6.63  13.8 55 2.22  feb.18 0.36 0.94 0.015
Mar,78 0.29
Fen.80 0.44
Verdugo Wash' 26.8 10.98  5.49  216.9 20 — Feb.78 0.65 0.64 0.016
Limekrint 10.3 7.77  3.41  295.7 25 - Feb.78 0.27 0.73 0.026
Feb. 80 0.27
San Jose’ 83.4 23.00 8.5 60.0 18 Fen.78 0.20 1.66 0.020
Feb. B0 0.39
Sepulveda’ 152.0 19.0 9.0 143.0 24 - Fep.78  0.22,0.21 112 0.017
Mar.78 0.32
Feb.80 0.42
Eaton Wash. 11.02° a4 3.4 90.9 a0 1.05 - e wae 0,015
{57%)
Rubio Wash: 12.20° 3.47 5.1 125.7 a0 0.68 e - .- 0.018
{3%)
Arcagia Wash' 7.70° 5.8 3.03  156.7 45 0.60  --- . _—- 0.015°
(183)
Comptonlt 15.08 9.47 3,79 143 55 1.92  --e - - 0.015°
Dominguez! 37.30 11,36 4.92 7.9 50 2.08 - .- - 0.015%
Santa Ana Delni®  17.5 8.71 417  16.0 40 173 - - --- 6.053°
0.04p10
Mestminster’ 6.7 5.65  1.39 13 %0 0.0797)
0.040
£1 Modena-irvine® 11.9 634  2.69 52 a0 0.78 .. - - o.028°
Garden Grove- 20.8 11.74  4.73  10.6 64 1.98  --- .- - ---
Wintersperg
San Diego Creek - 35,8 4.2 8.52  95.0 20 1,39 - .- “em -

Notes 1: Watershed Geometry based on review of quacrangle maps and LACFCD strom drain maps.
2: Watershed Geometry based on COE LACDA Study.
3: MWatershed Geometry based on €0E Reconstitution Study for Santa Ana Delni and Westminster Channels {June, 1983).
4. Area reduced 57% due to severzl debris basins and Eaton Wash Dam reservoir, and groundwater recharge ponds.
5: Area reduced 3% due to debris basin.
€: Area reduced 14% due to several debris basins.
7: 0,013 basin factor reperted by COE (subarea characteristics, June, 1984).
8: 0.015 baswn factor assumed due to similar watershed values of 0.015.
4: Average basin factor computed from reconstitution studies
10; COE recommended basin factor for flood flows.
11: COE = U.S. Army Corps of Engineers.
12: LACDA = Los Angeles County Drainage Area Study by COE.
13: LACFCD = Los Angeles County Fiood Control District.
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TABLE 2. PRECIPITATION GAUGES USED IN LOS ANGELES
COUNTY FLOOD RECONSTITUTIONS

LACFCD
Stream Gauge Storm Rain Gauge
Location Reconstitution No.#
Alhambra Wash near Feh 78 191, 303, 11148
Klingerman Street Mar 78 191, 303, 1114
Feb 80 191B, 235, 280C, 1014
Campton Creek near Feb 78 116, 291
Greenieaf Drive Mar 78 116, 291
Feb 80 116, 291, 718
Limekiln {reek above Feb 78 B7A, 446
Aliso Creek Feb 80 259, 446
San Jose Creek Channel Feb 78 92, 1078, 1088X
above Workman Mil1 Rd. Feb 80 96CE, 347E, 1088
Sepulveda Dam {infTow) Feb 78 57A, 282DE, 446, 735H
Mar 78 57A, 435, 762
Feb 80 292, 446, 735
Verdugo Wash at Estelle Ave. Feb 78 280C, 373C, 498, 758
*No. Station Name lat. Long. Elev. Type
LOS7A Camp Hi Hi1l (OPIDS) 34-15-18 118-05-41 4240 SR
10092 Claremont-Pomona College 34-05-48 117-42-33 1185 SR
LOO96CE Puddingstone Dam 34-05-31 117-48-24 1030 SR
L0116 Inglewood Fire Station 33-47-53 1l18-21-22 153 SR
LO191(B) Los Angeles-Alcazar 34-03-46 118-11-54 400 SR
L0235 Henninger Flats 43-11-38 118-05-17 2550 SR
L0259 Chatsworth-Twin Lakes 34-16-43 118-35-41 1275 SR
L0280C Sacred Heart Academy 34-10-54 118-11-08 1600 R
L0291 Los Angeles-96th & Central 33-56-56 118-15-17 121 R
LO292(DE) Encino Reservoir 3A-08-56  118-30-57 1075 SR
L0303 Pasadena-Cal Tech 34-08-14 118-07-25 800 SR
LO347E Baldwin Park-Exp. Station 34-05-56 117-57-40 384 SR
1G373C Briggs Terrace 34-14-17 118-13-27 2200 SR
L0435 Monte Nido 34-04-41 118-41-35% 600 SR
L0446 Aliso Canyon-Qat Canyon 34-18-53 118-33-25 2367 SR
L0498 Angeles Caest Hwy-Drk Cny Tr 34-15-21 118-11-45 2800 R
L071e Los Angeles-Ducommun S$treet 34-03-09 118-14-13 306 SR
LO735{H) Bell Canyon 34-11-40 118-39-23 895 R
L0758 Griffith Park-Lower Spr Cyn 34-08-02 118-17-27 600 R
L0762 Upperstone {anyon 34-07-27 118-27-15 943 R
L1014 Rio Hondo Spreading 33-59-57  118-06-04 170 SR
L1078 Covina-Griffith 34-04-10 117-50-47 975 SR
L1088(X) LaHabra Hts-Mut Water Co 33-86-55  117-57-51 445 SR
L1114(B) Whittier Narrows Dam 34-01-29 118-05-02 239 SR

S
R

Standard 8" raingauge (non-recording).
Recording raingauge.
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variations among all the ecatchment ni(s) summation graph realizations are
normalized and assembled together to form one regionalized distribution of
summation graph realizations.

To describe the data, a "shape" sealing parameter, Y, is introduced by
plotting each summation graph realization on Fig. 4 and averaging the upper and
lower reading for Y. The regionalized marginal distribution for the parameter Y
is shown in Fig. 5. With the normalization process, the variations in the timing
parameter, 1agi, and the summation graph total mass (i.e., ultimate discharge,
Ui), must be also accounted, and were assumed to be distributed according to the
sampled frequeney-distributions of Figs. 6 and 7. From these deseriptor
variables, each ni(s) is represented, in summation graph form, by the parameter
values of {lagl, Ui, Yi},

Based upon the model M defined by Egs. (42)-{45), a severe storm of
Mareh 1, 1983 (which was not used in the development of [n(s)]) is analyzed for
the Alhambra Wash stream gauge. The outcomes of [QMD(t)] are plotted along
with the recorded stream gauge data in Fig. 8. From the figure, the uncertainty
in the model prediction of [QyP(t)] is significant, and should be included when
analyzing an operator A on the runoff predictions.

If the underlying distribution between the variables in {Y,lag, mass} could
be ascertained, the distribution of [n(s)] could be identified (associated to F).
One simple approach is to assume each of the variables to be independent, and to
generate [ Qu ()] by probabilistie modeling.

DISCUSSION AND CONCLUSIONS

In the use of the above rainfall-runoff model, MD(t} is given by

t
MD(t) = E[QuP(DT = 2 f PgD(t -s) E[n(s)] ds (46)
s=0
The model uncertainty is then evaluated from Eq. (43) by
t
EyD( = A f (PgD(t - 5) ([n(s)] - E [n(s)] ) ds (47)
$=0

18



where from Eq. {29),
[hp(8)] = [n(s)] - Elnls)] (48)

Hence it is seen that the distribution of [n(s)] includes the effeets of both
the rainfall-runoff model itself and the associated uncertainty, where from Egs.
(38) and (40),

m
BInel =, <§>jal<2>j L gk 0+ ELXD) 05 G- E [03d- oo

for FP() e [ep ] (49)

The various stochastic distributions utilized are estimated from regional
rainfall-runoff data and the chosen model structure. Because runoff data are
available for the precise catechment point under study (i.e., we have a stream
gauge), the various distributions represented by Figs. 2 through 7 can be rescaled
to correspond to the selected study point (because from the stream gauge data
being studied, we ecan estimate the expected value for lag and ultimate
discharge). However, in order to utilize these distributions at ungauged points in
the catehment, or at other catehments where there are no runoff data, a method
of transferring these distributions is needed. That is, a method is needed for
estimating the expected values for lag and ultimate discharge (or other
deseription variables used) for the point under study. Given these estimates, the
various distributions can be rescaled, and a distribution [n(s)] ecan be estimated
from the rainfall-runoff data pool.

In a subsequent paper, the above results will be generalized in order to
facilitate use of the model uncertainty distribution (such as Eq. (48)) at other
catchments, including catchments that have no runoff data to develop site
specific information.
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