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ABSTRACT

In this paper, the uncertainty in the effective rainfall
distribution (i.e., rainfall less losses) over the catchment
(R) 1s considered to be a dominating influence in causing flood
flow modeling errors in discretized models {i.e., subdivision
of R into subareas, linked by channel routing). A single area
unit hydrograph (UH) model is also used to represent the
uncertainty not only in the effective rainfall distribution
over R, but also the uncertainty in the catchment hydraulic
responses. Both modeling approaches are focused towards the
typical case where only one stream gauge and one rain gauge are
available for data analysis. It is shown that due to the
limited data available, the simple single area UH model
includes several uncertainties that the discretized model
misrepresents.

INTRODUCTION

A review of the literature which raises questions as to
the development, application, and calibration, of hydrologic
models is contained in Hromadka and Whitleyl, In that
literature review, it appears that the unknown distribution of
effective rainfall (i.e., rainfall less losses} over the
catchment, R, is a barrier to the success in the use of
hydrologic models for predicting hydrologic responses.

For example, Schilling and Fuchs? write "that the spatial
resolution of rain data input is of paramount importance to the
accuracy of the simulated hydrograph" due to "the high spatial
variability of storms™ and "the amplification of rainfall
sampling errors by the nonlinear transformation” of rainfall
into runoff by hydrologic models, In their study, Schilling
and Fuchs analyzed an 1,800-acre catchment with three rain
gauge densities {all equally spaced) of 8l-, 9-, and a single
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centered gauyge. They concluded that wvariations in runoff
volumes and peak flows "is well above 100 percent over the
entire range of storms implying that the spatial .resolution of
rainfall has a dominant influence on the reliability of
computed runoff." It is also noted that "errors in the
rainfall input are amplified by the rainfall-runoff
transformation” so that "a rainfall depth error of 30 percent
results in a volume error of 60 percent and a peak flow error
of 80 percent.” (Other key quotations regarding other studies
are contalned in Hromadka and Whitleyl.)

In this paper, the uncertainty in the effective rainfall
distribution (i.e., rainfall 1less losses) over the catchment
(R) is considered to be a dominating facter in causing
hydrclogic modeling errors in discretized models (i,e.,
subdivision of R into subareas, linked by channel routing). A
single area unit hydrograph (UH) model is then used which
represents the uncertainty not only in the effective rainfall
distribution over R, but alsoc the uncertainty in the catchment
hydraulic responges. Both modeling approaches are focused
towards the situation where only one stream gauge and one rain
gauge are available for data analysis and runoff estimates are
needed at the stream gauge site.

Because of the uncertainties present in the catchment
response, and the uncertainty in effective rainfall over the
catchment for each storm, the modeling output is cast as a
probability distribution in order to represent the variability
in predicted hydrologic estimates given a design storm or
hypothetical storm for study purposes. It is shown that the
single area UH model can produce such a distribution in output,
which represents the natural variance in the correlation of the
available rainfall-runoff data; whereas the discretized model
typically  misrepresents the available data should the
discretized model be used for uncertainty analysis.

HYDROLOGIC MODEL DEVELOPMENT

For modeling development purposes, assumptions are made
about the catchment, R, and the storm effective rainfall
distributions over R.

The catchment, R, is assumed to be sufficiently drained by
a free-flowing «collector system such that detention or
backwater effects are minor throughout R. The catchment is
relatively homogeneous such that it can be subdivided into m
nearly homogeneous subareas, Rj, J = 1,2,...,m Channel
routing along links are assumed to be nearly translation, with
a characteristic travel time for each 1link, for each storm
event, i; consequently, a nonlinear response is modeled by
using a different travel time Ffor each storm. {Channel flow
routing storage effects can be included by assuming a linear
routing technique (Hromadka3). However, only translation
effects will be considered herein in order to simplify the
mathematical notation.) Runoff hydrographs are directly summed
at confluence points. Finally, a single stream gauge is
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located at the downstream end of R. In each subarea, Rir @
unit hydrograph (UH} ig defined for each storm event i ‘such
that the subarea runoff hydrograph, lett) is given by

t
Qsitey = I esi(t - 8) ¢4its) As (1)
5=0

where ejltt) is the effective rainfall uniformly distributed
over subarea Ry. Because the subarea UH's, ¢j1(s), may differ
between storm events, i, and the channel link travel times also
vary on a storm by storm basis, the resulting m~subarea link
node model, OQpl(t), is a reasonable approximation of any
hydrologic model. The global model Qpt(t}) for R and storm
event i is given by

ity =

0 ~13

le(t - le) (2)
Jj=1

where le(q - Tji) is the runoff hydrograph from Ry offset in
time by le from the stream gauge; and le is the sum of 1link
travel times from Ry to the stream gauge, and is variable
between storms, i. For storm event i, the stream gauge runcff
hydro-graph is given by Qgl(t).

The available single rain gauge is associated with a
runoff measuring system such that the effective rainfall
distribution is measured at the rain gauge site, noted as

egl(t) for storm i. Each subarea Rj is agsumed to be
sufficiently small such that the subarea effective rainfall,
ejl(t), applies uniformly in Ry. The esl(t) are assumed to be
linear with respect to egl{t) such that ?Hromadka3)

T‘I"

3 J 3 ] »
est(t) = Ajkt egllt - G4 {3}

k=1

where Ajki are positive coefficients k - 1,2,..., ji: and the

ijl are timing offsets. These several constants apply only to
Ry and storm i, and enable ejl(t) to be written as a finite sum
o% proportions of the data eg'(t), each offset in time by a
timestep, O4xl.

Combining Egs. (1), (2), and (3} gives the global m-
subarea model of R for storm i,
i
3 m t . nJ I3 ] ] »
Opt(t) = Z egl(t - s) kzl Ajkt ¢tes - 65kt - 151) ds
(4)

Equation (4} is immediately reduced to the single area UH
model (HromadkaS3)
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t
Ottty = Qe = f wiedit - &) pls) as (5)
§=0

where Wl is the ratio of stream gauge runoff to the rain gauge
site's effective rainfall; and Yl(s) is the unit hydrograph
defined by

m J
1{a) = I 1 Ayt oylts - ejki - T4ttt (6)
J=1 k=1

In order to evalvate all of the parameters used in Egs. (5) and
(6}, a stream gauge is required to be located at each subarea
{to evaluate the Aaki, CEPE ¢ i(s)) and along each channel

link (to evaluate Tji) A more convenient representation of
Eq. (5) is
t
Qi) = J egi(t - 5) ni(s) as N
s=0
where
nis) = wi yi(e) (8)

From the above development, the single area UH model, Qli(t),
includes all the assumptions leading to the m-subarea link-node
model, Qm {t). However, with only one stream gauge and rain
gauge, the practitioner must use the estimator Qmi(t) which has
an associated error due to the need to estimate the hydraulic
parameters, {¢jl(s), T3*} without the benefit of subarea
hydroglogic data. There is also the discretization error in
artificially defining the effective rainfall gdistribution over
R (i.e., in each subarea Ry). Without subarea ralnfall-runoff
data, the effective rainfall parameters {iyxi, O s L } are
all incorrectly defined in le(t) The fmportance og these
parameters in hydrologic modeling is reflected by the
literature review (Hromadka3).

In comparison to §pl(t), however, the (1l(t) integrates
the "correct” values for njl(s) for storm event i, (nl(s) also
includes the effects of channel flow routing storage effects).

In other words, with the available data the 011 (t) model
represents the "true® le(t) model with all parameters properly
defined; but in practice, use of the m-subarea link-node model
results in using the estimator, Omi{t}, given by

t

m
Opltt) = ’21 eyttt - s) $yits - 141) as (9)
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where the hats are notation for estimates. Each of the
estimates used in (9) are unsupported by subarea rainfall-
runoff data. Indeed, the rainfall over each subarea is

entirely unknown and is therefore "assigned" the values
measured at the rain gauge. The Ql (t) model, in comparison,
includes the correct variation in rainfall over R (magnitude,
timing, and storm pattern shape) in the unit hydrograph, wI(S),
ag shown in Eq. (6).

HYDROLOGIC MODELING UNCERTAINTY ANALYSIS: DATA REPRESENTATION

The ©11(t) model correlates the data pair {egql(t),
1(t)}, for each storm i, for the given modeling assumptions.
This correlation, is integrated into the time distribution of
the parameter, n 1(s). Thus for each storm event i, there is an
associated nl{s).

To proceed with the uncertainty analysis, it is assumed
that there is "sufficient® data at the rain gauge site such as
to develop equivalence <classes of  effective rainfall
distributions measured at the rain gauge site. These storm
classes are noted as <gq>. Any two events in <£q> would be
nearly identical {storm  duration, antecedent  moisture
conditions, and other effects) such that the catchment response
from R would be thought to be also nearly identical. It is
assumed that there is sufficient effective rainfall data to
develop a set of classes <€q3> such that a reasonable
statistical analysis can be made for each class individually.

Let <E,> be a class of storms, (it is recalled that the
measured effective rainfall distributions are used in the
classification, not the rainfall). Let egl(t) be an element of
<Eg>, for i = 1,2,...,ng where n, is the number of elements in
<Eg>. To each egl{t}) there is an associated Qﬁ {t) measured at
the stream gauge. Correlating each pair {eol(t), Qoi(t)} by
the single area UH model results in ng distributions, nolte)},
i=1,2,...,ng

The r1°i(s) can be represented by a summation graph,
solts), where

3
Solts) = [ noltt) dt (10)
t=0

Figure 1 shows a plot of Soi(s) developed from storms of
similar severity from a basin in Los Angeles County,
California, By examining the plots, usually a_normalization
technique is apparent, In Fig._l, plotting qach Bolls) divided
by its ultimate discharge, Upl, (i.e., Ugl = S, l(z = =)),
normalizes the vertical axis from 0- to 100-percent. Defining
lagl to be the time that Syl(s) reaches 50-percent of ultimate
discharge (Uol) normalizes the horizontal axis to be time in
percent of lag. Figure 2 shows the resulting S-graphs, noted
as Sol(s) for storm class <E5>. The geveral S-graphs can now
be identified by a characteristic parameter. A convenient
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parameter to use is the linear sgcaling X between the enveloping
curves of the BS-graph data set. Usually, two of the
correlation S-graphe will bound the entire set (see Fig, 3).
By identifying an X to each S-graph,

Sot(X,s) = X 8,A(s) + (1-%) 5.B(s) (11}

where SQA and SOB are the enveloping S-graphs, and X is the
scaling parameter with 0<X<1.

Based on the above normalizations and parameterizations,
each distribution graph, Soli{s), is identified by the three
point vector ne' = {lagl, Ui, xi}. Consequently, each
correlation distribution, Notis), is identified by the vector,

:

No*, for i = 1:2,0.04np.

Marginal distributions are developed by plotting
frequency-distributions of each point in the vector, ngl (see
Fig. 4). ”

Based on the marginal distributiong, the freguency
estimate agsociated to vector, noi, is given by P{ngl) where

P(nol) = Pllagl, upi, xi) (12}

Should more identifying characteristics be used to describe the
Nolis), Eg. (12) is immediately extended. However, there
should be sufficient storms in <Ea> to develop a reliable
frequency-distribution for each identifying characteristic.
From the above, a distribution [ngi(s}] of correlation
distributions, nol(s), is derived for storm class, <€.>.

From the above development, storm class <f,> is associated
with its distribution of vectors, Nol. Each storm class <€q>
can be analyzed to determine their respective vector
distributions, gql. And from Egs. (4) - (8), the variations
between Dql can be explained by the variations in the
parameters used to describe the spatial and temporal variations
of effective rainfall over R, and the variations in the routing
approximations,

HYDROLOGIC MODELING UNCERTAINTY ANALYSIS:
PREDICTIVE RELATIONSHIPS

An important use of flood flow hydrologic models is in
predicting a hydrelogic response from R given a design, or
hypothetical, storm event.

Given a design storm effective rainfall distribution to be
applied at the rain gauge site, eqP(t), the hydrologic model is
to be used to predict a runoff response from R.

Let egl(t) € < >,

Then the runoff response is the random variable [0;D(t}]
where
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t

[Q1D(t)] = eg{t - s} [not(s)] as (13)

5=0

where brackets indicate a2 random variable, Note that in Eq.
{13), the correlation distributions, ngl(s), are now shown as a
random variable, as there is no information in egD(t) which
determines a particular distribution from the ‘total set.
[Q]_D(t)] is the collection of runcff hydrographs which are
possible outcomes associated to the design storm effective
rainfall, eqP(t), applied at the rain gauge site. [no(s)] is
the ccllection of correlation distributions assoclated to storm
class <fo> where egl(t) is considered to be sufficiently
similar to the elements in <fg>. Because Eq. (13) is a
prediction, any of the elements in [no(s)], and hence [0iD(t)],
are candidates as realization of the stochastic process. The
model structure ig seen to be a causal linear filter.

The variation in any hydrologic quantity is reflected by
use of Eg. (13). For example, the variation in flow rate
estimates at storm time tg is given by

t
[o1Pito)] = egP ity - 8) [nots)] as (14)
s=0
Letting tp be the time of the peak flow rate (where t, is a
function of the random variable, [ngt(s)]), the uncertainty in
peak flow rate estimates, dpr is given by

t

p
[ap] = [01P(tp)] = egP(ty ~ 5) [no(s)]ds (15)

s=0
Figure 5 shows the distribution of 9p for a catchment in Los
Angeles, California. The frequency distribution of dp in

Fig. 5 is determined by evaluating Eg. (15) using the marginal
distributions shown in Figs. 3 and 4, according to the mutually
dependent probability of occurrence given by Eq. (12). BY
scanning the entire distribution of [no(s)] available in storm
class <£ >, the dp frequency distribution is constructed.

Generally, the available data is insufficient to develop
highly specific classes of storms, <Eq>, nor develop precise
statistical estimates within storm classes, should a storm
class categorization be made. Consequently to proceed with the
uncertainty analysis, another assumption must be invoked. One
approach is to transfer the distribution information of the
correlation distributions, [nq(s)], from another catchment
congidered hydrologically similar with respect to  the
correlation of rainfall-runoff data, (i.e., regionalization).
Another approach is to assume the [nq(s)] to be distributed
identically for "gimilar" storm classes <£q>. and combine the
several storm rainfall-runcff correlations, nl(s), into the
same distribution. The first technique may be utilized for any
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catchment, but the second technigue obviously requires local
rainfall-runoff data.

CONCLUSIONS

Given a catchment and rainfall-runoff data, a flood flow
model can only serve as a means to statistically correlate the
two forms of data. In an single area UH model, the unit
hydrograph serves as the link which correlates the effective
rainfall data to runoff data. The single area UH model
actually represents a complex 1link-node model, had subarea
hydrologic data been available to evaluate subarea runoff, and
had stream gauge data been available to evaluate all link-node
hydraulic parameters., Without subarea data, however, the link-~
node model representation becomes an estimator which is in
error due to the approximation of hydraulic parameters and the
misrepresentation of the effective rainfall distribution over
the entire catchment, (i.e., discretization error).
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