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ABSTRACT

Recently advanced techniques in modeling groundwater contami-
nant transport include Boundary Element Methods and the more
recent Compiex Variable Boundary Element Method (CVBEM). In
this paper, the CVBEM is reviewed and then applied to a suite of
practical case studies. Problems considered inciude contaminant
transport between contaminant sources and pumping wells, landfjll
sites and pumping wells, and the influence of injection wells on
contaminant transport. Determination of flow-fields about protected
barriers is examined. Thess recent mumerical advances suggest
future promise in the use of computer modeling techniques to
develop solutions for mitigating contaminant transport.

INTRODUCTION

Mathematical modeling techniques which have been deveioped to
predict the exient of subsurface contamination of groundwater fall
into three broad categories: @ analytical techniques; @ quasi-
analytical techniques; and @ numerical modeling techniques based
on domain methods such as finite diffcrence integrated finite differ-
ence or finite ejement.

Each modeling category develops a mathematical statement which
satisfies the flow continuity and mass balance equations. However,
as the problem requirements and conditions increase in compiexity,
the minimum level of sophistication needed to model the problem
quickly passes between the modeiing categories.

Forsimple time-dependent solute :ransporn within a domain which
includes steady and uniform groun.water flow, analytical solutions
are available for several one-dimensional or radial flow scenarios.
For example, Van Genuchten and Alves® summarize the mathemati-
cal solutions to severai onc-dimensional convective-dispersive sol-
ute transport problems. Generally, such mathematical solutions are
based on limited groundwater flow conditions such as uniform flow.
Additionally, the assigned contaminant source mechanism often
limits the tnodeling application to highiy idealized situations. However,
for studies which afford little data for identification of the various
flow parameters, the analytical solution technique can be used to
provide preiiminary estimates as to the time scale and the potential
extent of the contamination,

" The second category of modeling techniques utilizes well-known
potential flow theory to develop streamlines of the underlying
groundwater flow (that is, the Laplace Equation). Using analytic
functions of the complex variable, a two-dimensional flow field is
modeled by superposition of flow pattems, sources and sinks, and
boundary flow conditions.

For problem scenarios where the groundwater flow field is steady-
state and the contaminant transport moves with the fiuid, the quasi-
analytical approach provides a powerfu tool for study purposes.

However, for scenarios where time-dependent boundary conditions
and dispersion and diffusion effects are significant, the minimum
modeling sophistication nceded transcends to the third category.

Another major limitation of the quasi-analytic technique is the
accommodation of nonhomogeneity and anisotropy within the aqui-
fer and the capability to modet the uaderlying flow field as a function
of the boundary conditions rather than as a prescribed potential flow
field.

The third category of modeling techniques is based on the well
known domain numerical methods of finite difference, integrated
finite difference or finite element. Using such a modeling approach
requires the discretization of the domain into control volumes or
finite elements. Each element has an associated parameter set which
accommodates for the nonhomogeneity of the aguifer, fluid proper-
ties and contaminant properties. Consequentiy, flow conditions and
desired contaminant transport mechanisms can be modeled by the
incorporation of various flow submodels or bookkeeping algorithms
which simulate particular transport processes.

Associated with numerical methods are the complication of cali-
bration of the modei 1o meet known physical conditions and the
potential for numerical approximation error in satisfying the govern-
ing flow equations and the specified boundary conditions. For
example, the analylical and quasi-analytical techniques exactly
satisfy the governing flow equations; in comparison, the domain
aumerical methods approaches only satisfy the goveming steady-
state flow equations for basic scenarios such as nniform flow.
Consequently, when using numerical methods, onc must pay atten-
tion to numerical stability, choice of discretization, timestep ad-
vancement, timestep size and the overall accuracy of the coupled
numerical models.

Various domain numerical models are availabie which include
submodels for accommodating particuiar transport processes. A
detailed tabulation of 32 such domain models is given in Javandei
et al.,’ which itemizes the numerical modeling approach, anciiiary
submodels and included transport processes.

A new direction for subsurface contaminant transport modeling is
the use of the compiex variable boundary element method or
CVBEM.* This modeling technique simulates two-dimensional
contaminant transport as an extension of the quasi-analytical ap-
proach. That is, potential flow theory is utilized to develop the
underlying groundwater flow field as provided by sources and sinks
(groundwater weils and recharge wells), but the backzround flow
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conditions are modeled by means of a Cauchy integral collocated at
nodal points specified along the¢ problem boundary. The technique
accommodates nonhomogeneity on a regional scate and can include
spatially distributed sources and sinks such as mathematically
described by Poisson’s Equation.

For steady-state, two-dimensional problems, the CVBEM devel-
0ps an approximation fupction which exactly solves the governing
groundwater flow equation (Lapiace Equation) within each homoge-
neous domain. For unsicady problems, the CVBEM can be used to
approximately solve the time advancement by implicit finite differ-

_ence timestepping analogous to domain models.

In this paper, only the steady-state, two-dimensional flow problem
will be considered in a homogeneous domain. The ¢xtension to
unsteady flows or nonhomogeneous domains is referenced by
Hromadka® or Brebbia.! A new development from this paper wilt be
the solution of the Poisson Equation in a homogencous domain; this
caiculation will be the first time that the CVBEM has been applied
to this class of partial differential equations.

Application of the CVEEM contaminant transport model is cur-
rently restricted to steady-state flow field scenarios where solute
transport is water-coincident. That is, mass transport by diffusion
and dispersion is not included. However, it is neted that the CVBEM
model requires only a limited amount of data and does not require the
discretization of the domain into 2 mesh or set of control volumes or
finite elements. Additionally, because of the small number of nodal
points required, the computer program can be accommodated on
most currently available microcomputers with s FORTRAN capabil-
ity.

Modeling error evaluation is readily available vsing an approxi-
mative boundary approach. Because the CVBEM modei provides an
exact solution to the partial differential equation, all modefing error
occurs in matching the specified boundary conditions. The approxi-
‘mative boundary is the locus of points where the CVBEM model
achieves the desired boundary values. Consequently, should the
approxisative boundary coincide with the true problem boundary,
the CVBEM model is the exact solution to the boundary value
problem. Equivalently, the ervor of approximation is visually
demonstrated by the deparmre between the approximative and
problem boundaries.

CVBEM DEVELOPMENT

For steady-staie flow conditions, groundwater flow in a saturated,
homogeneous, isotropic aquifer is mathematically modeled by the
Laplace Equation. The CVBEM has been shown to be a powerful
numerical technique for the approximation of properly posed bound-
ary vaiue problems involving the Laplace Equation * The keystone of
the numerical approach is the integral function:

. 1 G(z)dg
w(z) = M
2mi L -z
T

where T is & simple closed contour enclosing a simply connected
domain £2; ¢, is the variable of integration with % £ I'; z is a point in
©; and the direction of integration is in the usual counterciockwise
{positive) sense. The function G(t, ) is a global trial function which
is contintous on . For example, given m nodal points specified on
T defined by coordinates z, j = 1, 2,..., m, let @ j be notation for the
nodal values at node j. Then the m nodes result in m boundary
elements I', j = 1, 2,.... m where I, is the straight line segment
between coordinates z and Z (Figure 1). A linear global trial
function is defined by:

G(g) = L
j=1
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dj(N. w, + N )]

595 Nja B5a)

whr.reb}: 1if§errand‘!j=01ﬂ',srj.1nthisasc, the functions N,
and N 'are the usual linear basis functions. In the above, the index
situation of j = m impiies that index (j+1) is egual to index 1. From
the definition of G(L) we have:

Jﬁtc)dc 1de

o1 ! (3)

[ataras [
E S R e g £ -z
b T

n fr:(.:)dc (5 w, = X
T

T, . .
T j 3 j

» = Elernent endpoint nodes

o = Element interior nodes
X

Figure 1
Boundary Elements
Showing Interior and End-point Nodes

The CVBEM continves by using Equation 3 to develop m equations
as a function of the m unknowns associated with the undeiermined
nodal values of either ¢ or 1 at each node. That is, w = § + iy where
¢ and y are nodal vaiues of the potential and stream functions,
respectively. Given m nodes specified on I, we necessarily know
either ¢ or Y (not both) at each z, i =1, 2,.., m. To estimate the
remaining m nodal vaiues, ©(z) is collocated in the form of a
Fredbolm Equation by forcing:

. ¢, (z.) = Re (:)(Z.)
CLASS 1: L J
& N o=1 . z.
vk(ZJ) m wf J) )
éU(zj) = Re u(:j)
CLASS 11:
- - (4b)
vu(zj) = Im w{zj)

In the above cquations, the subscript U and k refer to unknown and
known boundary condition nodal vatues, respectively. Because o (z,)
=w (%,,9,,V, W), then aw (z) is determined by either Equation 4a or
4b for j = 1, 2,..., m. The difference between these two approxima-
tions is that the class I system resuits in a CVBEM approximator
which matches all the known nodal point boundary condition values,
whereas the class TI system results in an approximation which equals
the CVBEM-estimated unknown nodal point boundary condition
values.

Because G(T) is continuous on each Fj, w (Z) is analytic for aiiz
£ £, Thus w (Z) can be written as the sum of two harmonic conjugate
functions by w (z) =0 (2} + i (). Both the approximation ¢ (z) and
(2) functions satisfy the Laplace Equation exactty for any z € Q.

The modeling approach is to match the boundary conditions
continuously on I". That is, we know values of ¢ or v at each nodal
pointz, (thus we also know either ¢ ory continuousiy alongeach I).



However, the CVBEM class | approximator gencrally only equals

the boundary conditions at nodal points, whereas the class [ system

resuits in a o (z) which may not equal a boundary condition vatue at

any nodal point. If « (z) equals the boundary conditions continuously

on [, then «x(z) is the exact solution to the boundary vatue problem.
Nodal equations are determined by taking the limit as the

point z € £ approaches a selected nodal potatz. £ [ by:

.( } 1 G(zgidg
wiz.) = lim
. - 2 L -2 &)
zwz,
j r

The limiting value is also the Cauchy principle value, and by using
either the class I or class I systems, a set of m equations resnit which
are solvable for the unknown nodal values by the usual matrix
solution techniques such as Gaussian elimination.

FLOW FIELD MODEL DEVELOPMENT

The CYBEM is used to develop a potential function F(z) which
exactly satisfics the Laplace Equation in Q by:

- Q.
i
F{z) = w{z}) + T 7 In (z-zi), z el (6§
i=]
where Q. is the discharge from well i (of n) located a1 2 and w (2) is
a CVBEM approximator developed for €. It is noted that F(z) is
subject to the boundary conditions:

£(z) = 44(z) + i(1-8)¢(z), 2 e T ™

where A =1if ¢ (z) is known; A =0ify (z) is known; and E (z) is
a boundary condition distribution along I.

Bul the source and sink collection included in Equation 6 repre-
sents an exact representation of the steady-state flow condition.
Thus, E(z) must be modified in order to develop & w (z) on Q by:

L

n .
E*(z) = £{2) ‘_I % 1n (z-zi), z eT (8)

i=]

Thus, the flow field represemation is developed by collocating
(z)atcachnodez € I" according to the boundary condition distribu-
tion of § *(z). The resuiting approximation F(z) describes the CVBEM
numerical model. In Equation 8, £ *(z) is defined according to the real
and imaginary parts as given in Equation 7.

POISSON EQUATION

Given a continuous distribution of sources (such as from precipi-
tation) or sinks in a flow field in domain L, the steady-state flow
mode} of the Laplace Equation must be extended 1o the Poisson
Equation:

=k 9)

where ¢ is the flow potential. Equation 9 can be modeled by choosing
a particuiar solution ¢, such that:

A%y 2%
——E +- —2FB = Kk (10)
ax? ray?-

For example, ¢, = k/2(x>+y?) is a suitable choice (an infinity of other

particular solutions are available). After choosing ¢, the boundary
condition function E{z) must be modified in order o Jeveiop w(z)on
£ by:

. n Q.
- 1 - -
E*(z) = E(z) -j:]_ Vil in {z zi) wp{z), z el an

and now w (2) is collocated at nodes z with respect to £*(z). Thus,
the Poisson Equation is exactly solved by:

o

" n
Fz) = wlz) + I o n ) v e (12)

The above procedure is extended to an arbitrary relation of the
form: :

2 2
242202 £ix,y) (13)
ax?  ay?

by choosing a ¢_such that Equation 13 is satigfied, and proceeding
with the development of a suitable w (z) as described in the
discussion leading to Equation 12.

SOLUTE TRANSPORT

The solute ransport mechanism assumed is only applicabie to the
modeling of steady-state, fluid-coincident contaminants, or those
which move with the groundwater flow. The solute transpoft process
is approximated by calculating point flow velocitics given by the
derivative of the potential function ¢ (z) where:

$(z) = Re F(z) a4)

In Equation 14, Re F(z) is the real pan of the CVBEM approxima-
tor defined on £2. The extent or boundary of the subsurface contami-
nation is then redefined according to the point values of the flow
velocity and the time increment selected before reevaluation from
the flow velocity field. Thus:

ax /90 (153)
~3¢
= ik, A (15b)
v 2 /8

where (u,v) are (x,y)-direction specific discharges, and ©_ is the
saturated water content or porosity of the aquifer material. (A
retardation factor, r, can be included in the denominator of Equation
15 in order 1o account for contaninant transport velocities being iess
than the actual fluid velocity or specific discharge.)

The velocity of a contaminant particle is used to estimate the
displacement with respect to time by setting:

dx* _ "
F T (163)
. _

dt (16b)
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where(x*,y*)are the coordinates of the subject contaminant particie.
Integration of Equation 16 with respect to time determines the
pointwise rate of displacement of a traced contaminant particle.

CVBEM MODELING ERROR ANALYSIS

The specified boundary conditions are values of cither constant ¢
or Y on each I‘j. These values correspond 10 level curves of the
analytic function @ (2) = ¢ + i Y. After developing a CVBEM
approximation « (z), an approximative boundary I can be deter-
mined which corresponds to the level curves of w (z) = ¢ + iy which
‘equal the prescribed boundary conditions on T, Use of the class I
system is preferable due to I intersecting I' at each nodal point. The
resulting contour I' is a visual representation of approximation error,
and I coincident with T implies that © (z) = w (z). Additional collo-
cation points are located at regions where I' deviates substantiatty
from I

A difficulty in using this method for locating additional colloca-
tion points is that the contour I' cannot be determined for points z
outside of © U T by vsing w (z) as defined by Equation 1. Thus, an
analytic continuation of w (2) to the exterior is achieved by rewriting
the integral fimction from Equation 1 as:

1 G{g)de a )
= Ry(2) + El (nj - 1BjJ(z-zj) Ln (z-zj) amn

ni g -1 j=

r

where @ and B, are real numbers, and Ln (2-z) is a principal value
logarithm with branch-cuts drawn approximaiely normat to T from
each branch point z, as shown in Figure 2. The resulting approxima-
tion is analytic evefywhere except along each branch-cut. The R (z)
function in Equation 17 is a first order reference polynomial which
results due to the integration circuit of 2 n radians along I'. If w (z)

is not a first order polynomial, then the R(z) can be omitted.

kY §

BRANCH~CUT
FROM Z,

Figure 2
The Analytic Continuation of w (z) 1o the Exteriorof QUT.
Note Branch cuts along I" at nodes z,

One strategy for determining the location of I" is to subdivide each
I‘j with several internal points (approximately 4 to 6) and determine
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w(z) ateach point. Next,I"is located by a Newton-Ralphson stepping
procedure in locating where w(z) matches the prescribed ievel curve.
Thus, several evaluations of w {z) are needed to locate a single T
point. The end-product, however, may be considered very useful
since it can be argued that o (z) is the exact solution 1o the boundary
value problem with I transformed to I', and I" is a visual indication
of approximaticn error.

For example, Figure 3 shows a triangle domain with a specific
local coordinate system. The CVBEM can be used to model the
Laplace Equation with boundary conditions for the potential given
by:

1
o(z € T) = 5 (xZ+y?) (18)

The approximative boundary I is determined by location of the locus
of points where:

" 1
$(z) = 5 [z (19)
) ¥
e0°
X
60°*
L
o
Figure 3
Triangie Domain (Potential Probiem)

Figure 4 shows three approximative boundaries corresponding to 6,
12 and 38 nodal points on I” where nodes are located according to
maximum departures between I' and T,

APPLICATION

As an example application of the CVBEM technique, the problem
presented in Javandel et al.* is studied. Figure 5 shows a completely -
penetrating groundwater well (discharge 50 m¥hr) located in &
homogeneous isotropic aguifer 10 m thick. Contaminated water is

* being recharged (recharge of 50 m/br) at another wel) located 848.5

m from the supply well. Effective porosity is 0.25, and negligible
background groundwater flow is assumed. Retardation is assumned to
be unity.
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Figure 4
Approximative Boundaries for Three Nodal Point Distributions
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Figure §
Contaminant Transport Extent
As a Function of Time (Zero Background Flow)

Shown in Figure 5 are the limits of groundwater contamination
corresponding to model times of 0.5, 2 and 4 years. The predicted
locations of the contaminant ciosely agree with the results given in
Javandel et al.? (not shown). Additionally, the CVBEM model
predicts a first arrival of comamination at time 4.4 years which
agrees well with the Muskat estimate of arrival time (4.3 years) for
injected water to reach the pumping site.*

Figure 6 shows the probiem of Figure 5 restudied with the
condition that a uniform background groundwater flow is evident at

1000 - — -+
4 yeors
[ [
INJECTION
5004 WELL (3
(«
[ [
(o ] 1
[ [
DISCHARGE
~500 ¢ WELL [ 2
4 ACKGROUND FLOW t
T\
=000 - -

PROPORTION OF INJECTION WELL CONTAMINANT (C/C,)

245 inclination, and a flowrate of fluid is 50 m/yr. In this study, the
arrival time of contaminant is slowed to 4.7 years.

NODAL POINTS
. /"

-1000 =500 ] 500 1000

DISTANCE (m}

Figure 6
Contaminant Transport as a Function
of Time (45° Background flow)

In both cases, the quantity of contamination arriving versus time
is estimated by simply integrating between the stream function y )
values according to the contaminant arrival times. A comparison of
the quasi-analytic estimate of contamination arrival® to the CVBEM
cstimates is given in Figure 7 for both case studies.

100

JAVANDEL ET AL.
CYBEM

o L 1 L ! ] L L J
[ 50 [Te]s] 150 200
TIME [ YEARS)
Figure 7a
Asmival of Contaminant at the Discharge Well. (Case Study 1)
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PROPORTION OF IRJECTION WELL CONTAMINANT {C/Cy)
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——= CVBEM
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25
: o n ! 1 A 1 i 3 ;
4] 1.5 150 225 300
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Figure Tb

Arrival of Contaminant at the Discharge Well, (Case Study 2)

It is noted that the CVBEM model reduces to the quasi-analytic
approach for the simpie case studies considered. For considerations
of regional anisotropy and nonhomogeneity, the CVBEM techuique
provides for a significant extension of the quasi-analytic approach,
enabling this overall study method to be applied (o a much larger
class of problems.
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CONCLUSIONS

The CVBEM can be used to develop a model of steady-state, fluid-
coincident, contaminant transport in groundwater. Because the
CVBEM provides approximations which exactly solve the Laplace
angd Poisson partial differential equations, all modeling error occurs
in matching the prescribed boundary conditions. This modeling
error, in turn, is subject to a direct and easily interpretabie error
analysis by constructing an approximative boundary where the
CVBEM approximation satisfies the boundary conditions.

The presented model considers steady-state conditions for two
dimensional scenarios. The modeling technique is pot extendable to
three-dimensional problems. However, the modeling approach can
include various steady-state boundary conditions, regional nonho-
mogeneity and anisotropy, and pointor distributed sources and sinks.

Becayse the modeling technique is based upon a boundary integrai
equation approach, domain mesh generators or conwol volume
(finite element) descretizations are not required. Nodai points are
required only along the prablem boundary rather than in the interior
of the domain. Consequently, the computer coding requirements are
small and can be accommodated by many currently availabie home
microcomputers.
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