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Technical notes

Confidence intervals for flood control design
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1 Introduction

Flood control agencies at the city and county level typically develop standards and
guidelines to be used in the design of local flood control facilities. Generally, a
flood protection criterion is selected. such as 100-year flood protection, and this cri-
terion becomes the design standard for tpe region. Often) this flood protection goal
results in the need to estimate a T -year flood peak flowrate, such as 1o, Which is
then used for the design of flood control channels. While many statistical methods
exist for developing an estimate of 4y based on an annual flood flow series, sel-
dom do flood control agencies address the uncertainty inherent in the use of (1) the
particular statistical technique or distribution, (2) the chance selection of sampling
data, (3} the use of regionalized parameters {such as skew), and (4) the uncertainty
in the data guality due to measurement errors, flooding problems, or due to the
effects of changing ¢atchment conditions (e.g., urbanization).

Although the Water Resources Council Bulletins [7A and 17B (USWRC 1967)
utilize the log Pearson I1i distribution in their analysis, several questions concern-
ing the use of this distribution have been raised (e.g., Kite 1975, Stedinger 1983},
Other statistical fits are often used with the data due 1o preferences or ease of use.
For example, oftentimes the log Pearson [11 aralysis is replaced by a straight-line
plot on log-log-paper defined by an eye-fit to the annual peak flow data, and the
resuiting line is then used to develop design vaiues of peak flow.

Random variation in the data points used causes a corresponding variation in
the resulting flood frequency curve. The use of regionalized parameters such as
the skew parameter in Bulletin 17B is also subject to uncertainty due to variations
in the skew with changing conditions. and due to variations within the region.
Finally, the uncertainty in the quality of the data and its measurement introduces
an uncertainty which presently cannot be guantified.

In spite of these sources of uncertainty, it is currently a common practice for
flood control agencies 10 adopt a particular flood control goal (e.g.. Qg design
flows) and simply utilize a flood frequency curve for developing the estimate of
@ op This approach does not take into account the problem of statistical uncer-
tainty.

In this paper we consider aspects of two of these issues. In connection with
issue (1), the specific probability distribution used, it is shown that the practice of
using a linear plot on log-log paper of discharge versus return period T to predict
peak discharges constitutes a hidden assumption that the underlying probabilit'y
distribution of the logs of the discharges is an exponentia) distribution. This
corresponds to a log Pearson [I1 distribution with a skew value of 2. which is a
relatively large value for the skew. The vaiue of the peak T-year discharge Qr as
predicted by the method is then compared with that predicted by assuming 2 log
Pearson III distribution with more usual values of skew. In connection with issue
(2), the chance collection of data points, tables are given which allow the computa-
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tions of confidence intervals for peak Q values derived from the linear plot dis-
cussed above. The other issues as to the use of another choice of probability distri-
bution, the quality of the data, the goodness of measurement, and the use of
regionalized parameters are not considered; these issues must be decided on a case
study basis,

2 Estimate for the T -year flood
The data for a gauged site usually consists of a collection of m values. for Q:

@y .... @, The values of T which are associated with the values of @ via the
assumed empirical relationship
Q = of¥, (1)

(Q the yearly maximum discharge in cfs, T the return period in years, a and
positive numbers) are not known. Indeed, for design purposes these values of T
are exactly what is nceded; we want to know the magnitude of the T year floods
for a representative set of values of T, and these magnitude could be obtained by a
linear interpotation via Eq. (2), if the T values {T;} for the O values {Q;} were
known.

Taking iogarithms in Eq. (1)

X =a + bZ (2}

where X = log, @ = loga, b = B, and £ = log¥. The value of T which goes
with a given ¢, being unknown, can be regarded as a random variable distributed
in the way that follows from the definition of T as a return period:
P(T =)= 1/t. Interms of Z = logT,

PZ=z=n=¢"", (3)

so Z has an exponential distribution with mean unity and Eq. (2) represents X as a
simple linear function of Z.

From Eq. (2)
E(X)=a + bE(Z)=2a + b; (4)
E(X?) = a? + 2abE(Z) + b*E(Z%) = a® + 2ab + 2b? (5)
It follows from Eq. (4) and Eq. (5) that
b? = var(X); a = E(X)— b (6)
Estimating the mean E(X) and the variance var(X), from the data
logQ,. . ... logQ,,, gives estimates for @ and &. Then the magnitude of Q. for a

given value of T, can be obtained from Eq. (1).

3 Confidence intervals for O
Let p be the mean of X and |1 be the estimator for p:
go=(1/m)3X;, = (I/m)¥(a + bZ;) =a + bliy (N

where [i, is the mean of the m values Z,,. ... Z, which are, by assumption, m
exponentially distributed random variables. Similariy, using the usual estimator ¢
for the standard deviation of X,

& = (1/(m~ )X, — )
and replacing X; by a + &Z,, it follows that
&* = b263 (8)
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where Gf- is the estimator for the standard deviation of the m values
Z,.....,Z,. The true value of X and the estimate of X, given T, are respec-
tively
X =p +o(logT ~ 1), X =i + 6(log7 —~ 1) (9)
Thus
X = X)/6 = {(u — @)/6} + {{6 — 8)/6}(logT — 1) (10)

Equation (10} allows the construction of confidence intervals for the true value X
because, using Eqs. (7) and (8), its right hand side R, ,, can be written

Rrm =z — Hz)/0z} + {(o7 — 87)/67}(l0gT — 1} (11)
For a specific value of T, corresponding to the T-year flood. and 2 given number
m of data points 0, ..., Q,, the random variable Ry, given by Eq. (11) has a

distribution which can be simulated. Once an empirical distribution for Ry ,, is
known, confidence intervals for X can be found by using Eq. {10).

A computer program was written to simulate this distribution of Ry ,, and the
resuits are given in Table 1 as an example for sample size 50. Similar tables are
available from the authors for other sample sizes.

4 Compnrison with log Pearson 1]

The methodology of Bulletin 17B (USWRC 1967) of the Water Resources Council
for determining the T-year flood @ involves fitting the logarithms of the peak Qs
with a Pearson type III distribution. On the other hand, as we have seecn, the
empirical relation given in Eq. (1) becomes, in use, an assumption about the distri-

Table 1, Simulation of the Ry sq distribution

Percentiles Sample size = 50

These percentiles are for the distribution of (iogQT —elogQT }/esd. where QT is the peak
discharge for return period T', ¢logQ7T is the statistical estimate for log@7, and esd is the sta-
tistical estimate for the standard deviation of 10gQ7T. The model from which these percentiles
are derived is logQ7 =g +#logQ7, T the return period. The simulation was 10 blocks of size

1000.
percentile T=2 =3 T=10 =13 T=30

3 -0.17 .32 -0.47 -0.68 -0.84
10 -0.14 -0.25 -0.37 -0.54 Q.67
1% 0.1t -0.2¢ -0.30 -0.43 -0.53
0 -0.09 -0.16 -0.24 (.34 -0.41
25 -0.07 0.13 019 0.26 0.32
30 -0.06 -0.10 014 019 -0.23
3s -0.04 -0.07 -0.09 0.13 -0.15
40 -0.03 ~0.04 0.04 £.06 0.07
45 -0.01 -0.01 0.00 0.01 0.02
0 0.00 002 0.05 0.05 0.11
£s 0.01 0.06 0.10 Qls 0.20
&0 0.03 0.09 0.13 0.23 0.30
6z 0.04 0.13 0.20 0.31 0.39
70 0.06 0.17 0.26 0.40 0.50
78 0.08 0.21 0.33 0.46 0.62
80 0.10 0.26 0.40 0.60 0.75
g3 012 0.32 0.4% 0.73 0.91
90 0.15 0.40 0.61 0.90 113

95 0.20 ©.55 0.83 .22 {.50
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bution of log ¢ and this distribution is a Pearson type 111 but with the fixed value
of skew = 2, as opposed to the region values of skew suggested in the Bulletins.
This raises the question of how these two different assumptions about the skew
affect the feature of major interest, namely the predicted size of the T-year flood.

As a test of the predictive difference between these distributions suppose that
the distribution of peak Qs is actually given by Eq. (1) but, instead, the log Pear-
son 11l model with zero skew is used to predict the magnitude of the 7 -year flood.
The foilowing table gives the relative error made in using the log Pearson 111 distri-
bution for a set of floods, normalized by setting the 2-year flood Q, = 100, in
terms of the ratio {2490/ Q 5.

To understand this close agreement. note that the prediction of the T-year flood
based on log Pearson III has the form p + oK(T) (Beard 1962). So using
(L =a + b, o = b, and the notation of Table 2,

(A ~ B)A = {aTblogT — (a+b+bEK(TNH}/(a + blogT) (12)
= {logT — 1 — K(T)}/{la/b) + logT}
= {log7 ~ | — K(T)}/{{u/o) + logT — 1}.

For Q|00/Q2 = 2, a/b = 25.3, for le/gz = 10, a/b = 71, and for
Qioo/¢@2 = 100, a/b = 3.2. Therefore, although in the numerator of Eq. (12)
logT — 1 is only a rough approximation to K{T), the relatively large size of a/b
{or of /o) reduces the percent relative error to within acceptable limits even for
such different values of skew as 0 and 2.

Recall that generaily the skew parameter for the log Pearson I distribution is
determined from either a map or regional skews or from a large pool of data from
the area. while the other two parameters of the log Pearson III distribution are
determined from the mean and standard deviation of the data; see the Bulletins
(USWRC 1967). The values for K(T) used in Table 3 were taken from exhibit 39
in {Beard 1962).

Table 2. Table of Relative Percent Error 100 X (4 — B)/A4
A = the irue value Q7 of the T-year flood given by logQ = a +blogT

B = the predicted value from log Pearson HI with zero skew
o0/ Q2 T =2 T =35 T =10 T =125 7 = 30 T ="100
2 -1 -1 0 2 3 4
4 -2 -2 a 3 5 g
(] -3 -2 0 4 6 9
§ -4 -2 0 4 7 10
10 -4 -3 0 5 8 1t
100 -8 -5 0 7 12 16
Table 3. Table of Relative Percent Error 100 X {4 — B)/4
A = the true value (g0 of the 100-year flood giver by log@ = a +blogl00
B = the predicted value from log Pearson 111 with skew v as shown below
Qww/ @ y= —08 v=—904 r¥=0 Yy =04 v =08
2 [ 5 4 3 2
10 16 13 11 8 6
100 24 20 16 13 9

Note that the error diminishes as the skew approaches the value of 2.
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On the other hand, if the data are actually from a log Pearson III distribution.
but instead the 7 -year flood is predicted using Eq. (1), then, in the notation of
Tables 2 and 3,

(B8 — A)/A = {p + oK(T) — (a+b(ogT — 1)}/ {p + oK(T)}
= {K(T) — (logT — 1)}/{(u/0) + K(T)].

But because (B — A4)/B is approximately —(A4 — B)/A, as Tables 1 and 2 indi-
cate, the relative percent error 100 (B — 4)/A is approximately the negative of
the error given in Tables 2 and 3.

We have seen that the predicted values of @ g9 do not differ greatly for the
usual range of values of skew when compared with the values for a skew of 2.
However, confidence intervals do vary significantly with skew, as Table 4 indicates.
In this table, it is also seen that the 85 percent confidence estimates of Qg9 vary
with skew much more than the 50 percent confidence estimates.

Table 4. Table of values 4 (B) for

85 percent confidence intervals (4 ,c0) for { o

50 percent confidence intervals (8 ,00) for {099

M = 20 data points, J; = 100, skew ¥ as indicated

P10/ 02 y=10 ¥=1 ¥ =2
) 130(160) 220(180) 280(210)
10 660(430) 13400760} 3230(1200)
100 4360{23200 17.950(5820) 103,900(14.380)
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On the method of maximum likelihood estimation for
the log-Pearson type 3 distribution
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1 Introduction

Much interest has been penerated in the log-Pearson type 3 (LP3) distribution since
it was first recommended by the U.S. Water Resources Councii (USWRC 1967},
and subsequently updated in 1973, 1977 and 1981 as the base method of flood fre-



