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INTRODUCTION

The Complex Yariable Boundary Element Method or CVBEM has been shown to
be a useful teol for the numerical znalysis of Laplace or Poisson eguation
boundary value problems (Hromadka, 1984a), The numerical procedure is to
discretize the boundary I by nodal points into boundary alements, and then
specify a continuous global trial function G(g) on I as a function of the
nodal values, Uszng the Cauchy integral, the resulting integral eguation is
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where ﬁ(zo) is the CVBEM approximation for z, e f; and @ 1s 2 two-dimensional
simply connected domain enclosed by the simple closed contour T,
Because G{g) 1s continuous on T, then w(z) is anzlytic over 0 and can be

rewritten as the sum of two harmonic functions
alz) = §{2) + ty(z) (2}

Thus both ¢(z) and $(z) exactly satisfy the Laplace equation over Q.

Approximation error occurs due to w(z) not satisfying the boundary conditions
on T exactly. However, an approximative boundary T can be developed (by trial
and error) which represents the location of points where o(2) does equal the
specified boundary conditions such as level curves (see Fig. 1). Consequently,
the CVBEM approximation error can be interpreted as a transformation of n—+;
where the ultimate obJective is to have F coincident with T'. Because all the
error of approximatfon 1s due to the incorrect boundary element trial functions,
accuracy is increased by the additfon of boundary noda) points where approxi-

mation error {s large (4.e., adaptive jntegration).
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In this paper, a computer Interactive technique 1Is reported whick
graphically displays T and T so that the numerical analyst can readily specify
additional nodal points on the CRT screen. In this fashion, the user interacts
with the CVBEM to Tocate the necessary nodal point addftions until Fand T
are within an acceptable level of tolerance. For example, the tolerance may
be the allowable construction limits specified for 8 shaft (torsion problem)
for use in aircraft design.

As T approaches ' geometrically, the analyst is assured by the Maximum
ModuTus Thearem that the maximum approximation error occurs on T and that the
governing partial differentfal equation (Laplace) 1s solved exactly,
Consequently, the final product is the exact sotution for a problem geometry

which 1s within the construction tolerance of the design,

THEORETICAL BACKGROUND OF THE CVBEM

A complete presentation of the CVBEM development, case studies, mathematical

proofs of convergence and existence, and several FORTRAN computer programs are
glven in Hromadka (1984a). In order to develop the geometric Interpretation of
modeling error assoclated with the approximative boundary concept, a brief
development of the CYBEM numerical technique is presented in the following.

Let 0 be a simply connected two-dimensional domatn (i,e. no holes within Q)
enciosed by & simple closed contour T (e,g. Mathews, 1982), Let ¢(x,y) be 3

two-dimensional harmonic function over QUT; that is,

aixy) R atplx,y)
a? ay?

=0, (x,ylenur {3)

Then there exfsts & simply connected domain ¥ such that qUT is a proper

subset of p* and ¢{x,y) is harmonic over Q°,

There ex{sts a harmonic function yw{x,¥) conjugate to ¢{x,y) which alse
satisfies the Laplace equation of (3} over 0" and additionally satisfies the

Cauchy-Rieman conditions of

do(x,y) ik} 3s(x,y) aw(x,y} *)
ax ¥y ey P
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let 2 = x+iy be & complex variable over 0% Then both ¢{x,y} and ¥(x,y) can
be written in terms of ¢(z) and ¢(z) such that an amalytic function w(z) is

defined over O by
w(z) = o{z) + iy(z) (5)

where to simply notation, (5) can be rewritten as w = ¢ + fy, Ze*,
Equation (5) represents a relationship between two conjugate harmonic

functions gemerally called the potentfal (¢} and stream functions {y}. A
1ist of typical potential and stream functions which occur in engineering and

physics is given in Table I {Mathews).

TABLE 1. POTENTIAL AND STREAM FUNCTIQNS

Physical

Phanomemon slx,y) = constant ¢l{x,y) = constant
Heat flow Isgthermals Heat flow lines
Electrostatics Equipotentials Flux ltnes

Fluid Flow Equipotentials Stream Tines
Gravitational field Potentials Lines of force
Magnetism Potentials Lines of force
Diffusion Concentration Lines of force
Elasticity Strain Stress lines
Current Flow Potenttal Lines of force

The Cauchy integral theorem equates values of u(zo) for z,ch o a line

integral of wg) for L er by

1 (c)d
iz« [ 0 .
2mi g-2

To #1lustrate the development of a CVBEM approximation functfon, w(z), consider
w{z) to be defined over R with QUL iInterior of g*. Subdivide T intom
boundary elements Iy such as shown in Fig. 2. Nodal points are specified at
each element endpoint (here, & linear polynomial CVEEM approximation {s being
developed). At each node, determine nodal values of w(z) by

w{zg} 2wy = alzg) * Ty(zy) = 9y F 155 G=1,2,000 00 (7)
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Then a global trial function of w(z) is determined for zeT by

B2) = T 65 lug Ng02) + gy Ny lad) (8)

Jel

Where meﬂﬁz)amlimarbﬁisfmcnnm (see Fig. 3); mdéj-l hrzcrr

and &, = 0 for z ¢ 5 Substituting G(z) in place of w{z) in (6) determines &

3
CVBEM approximation o(2) of wiz)

{9}

ofz) =

1 ! Glgldg

2ni -2

T
Letting |jr |} = max [z.].*1 - zJI, §=1,2,---,m, then it s seen {without proof)

that
e 6Glg} = wlg), ger (10}
[1vg1+0

and therefore

R 1 [lwfg) = 6(z))dg
e {w(z}-u(z2)} = 1im — | —— = (11)
1) 1+0 024 8-t
Thus the error of approximation, e(z), is defined by
1 {wlg) - 6lg))de
efz) = — | e {12)
2w r=-1

T

Because G(g) 1s continuous on T then g{z) is analytic over R which implies
both p{z) and #{z}, where G(z) = #{z) + 13{z), are potential functions over 1.
In practice, ¢{z} is known on r¢ and ¢{z) 1s known on a separate contour

an T, where = T UT,. Thus olz} is not completely defined without estimates

L]
for the unknown noda) values. To obtain such estimates, the real (or imaginary)
parts of w(z) are collocated to the m known nadal values, resulting in m
equations for the m unknown nodal values., Using these m nodal value estimates
along with the m known nodal values supplies the &fz) integra) function with

sufficient data to determine the CVEBEM approximation of {9).

CVBEM APPROX[MATION ERROR
Generally, numerical approximation errors in solving potential problems is

of two forms: (i) errors due to not satfsfying the governing equation over {1,

COMPLEX VARIABLE B E METHOD 15

and {11} errors due to not satisfying the boundary conditions centinuously on T.
For the CVBEM, {and for other boundary integral equation methods), the first
type of approximation error is eliminated due to both $ and 3 being potential
functions. But w{z} does not usually satisfy the boundary conditions continuously
on T (if 1t did, then &(z) = w{z)}. The next step in the CVBEM analysis is to
work with @{z) in order that w(z}— w{z}.

This step in the analysis of approximation error provides a significant
advantage over domafn numerical methods such as finite elements or finite
differences. In the domain methods, the analyst examines error with a form of
sequence Cauchy convergence criterfa by arbitrarily increasing the domain nodal
densities and comparing the resulting change in estimated nodal values. Whereas
with the CVBEM, the analyst has several forms of the approximation error to
work with [Hromadka, 1984b), Probably the easiest form of error to study is the
development of the approximative boundary F which represents the locatfons
where w(z) achieves the desired boundary values of w{z). Generally, the
boundary conditions are constant values of ¢ or ¢ along boundary elements, i.e.,
¢ = ¢y for zelyor g =y, for 2el. This set of m nodal values {wj.wk} are
level curves of w{z). The approximative boundary T 1s determined by locating
those points where 3 - ¢J and § = ¥ (see Fig. 1). Due to the collocation process,
F intersects T at least at each ncdal point location, 24 J=1,2,+,m,

To determine E. each element [“j {s further subdivided by interior points
{specified by the program yser) where w{z) is to be evaluated, At each element
interior point, w(z) is calculated from the Vine integral of (9} and the values
of ; and G are determined, If the appropriate ¢ (or ﬁ) matches the boundary
condition on rJ' then F intersects F at that point. Otherwise, subsequent
points are evaluated by marching pointwise along a 1ine perpendicular to rj
until the boundary condition value is reached. For point locations interior
of 0, eq. (9) is used. For points exterior of QUT, an analytic continuation

of (9} is used.

in this fashion, a set of points are determined where o(z) equals the
desired ¢J or ¥, values. The contour T is estimated by then connecting these
points by straight lines. Because ' and I intersect at least at nodal point

Tocations, E appears as a plot which oscillates about the I' contour.
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COMPUTER INTERACTION FOR ERROR REDUCTION

A procedure to use a graphical display for evaluating the CVBEM model is
to display both T and F superimposed on the CRT, B8y magnification of the
departure between I' and F, the analyst can easily inspect the performance of
the CVBEM approximatfon., Because the approximation error 1s due to the assumed
basis function assumptions, the integration error s reduced by the addition of
nodal points on T, similar to an adaptive integration technique.

The addition of nodal points can be made directly via the CRT screen and
s "locating the closest boundary cogrdinate” computer-graphics subroutine,
After the nodal additions are completed, & new G(z) is determined and the re-
vised T plotted on I'. By the addition (and deletion) of nodal points from T,
the analyst 1s able to quickly evaluate the quality of the CVBEM model.
Because the additfon of a nodal gpoint can be interpreted as the addition of
an approximation error sfnk term, the geometric representation of error by
means of T provides a mathematically sophisticated yet easy-to-use modeling

tool,

CASE STUDY

To #1lustrate the previous discussion, a computer-interactive versfon
of the CVBEM for solving potential problems in two-dimensional domains
as developed by ADVANCED ENGINEERING SOGFTWARE (Irvine, Califarnia} is
considered.

The test problem considered is the development of a CVBEM approximation
function for the two-dimensional domain shown in Fig, 4, This example repre-
sents any number of possible engineering problems such as listed in Table I.

The objective of the analysis is to locate s sufficient number of CVBEM
nodal points on T urti] F {s within an acceptable tolerance to T. Generally,
this tolerance s the allowable Timits of deviation from the design for
construction purposes,

Using symmetry, the domain of Fig. 4 is reduced to the domain of
Fig. 5. The purpose of using symetry is to reduce computational effort and
computer memory requirements., Because the CVBEM is a boundary integral method,
a1l nadal values are linked together resulting in a square matrix. Consequently
the use of symmetry to reduce the problem size, or even to use the computer-
interaction approach rather than a brute force computer-generated nodal

distribytion on T, saves considerably on computational requirements.
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Figure 6 shows the first attempt at modeling the domain of Fig. 5.
Because of the nature of the approximative boundary concept, the boundary
condition values of constant ¢ {or y) stepwise along T are of no real
consequence, However, for the reader's convenience, the boundary conditions
are alsc shown in Fig, 5,

Figure 7 shows the overlay of I and ? for the nodal distribution used
in Fig. 6. The modeler locates additional nodes for subsequent tries based
on the largest departure between T and ?. After four attempts, the CVBEM
modeling error {s represented by F as shown in Fig, 8, It is noted that in
Fig. B, departure is magnified ten-fold for visibility. As discussed
previously, if the ; is acceptable for construction purposes then the associated
w{z} 15 the exact solution of the boundary value problem with I' transformed

into F.

SOFTWARE PACKAGE DESIGN
Both minicomputer and microcomputer versions of the discussed CVBEM
technique are available. Consequently, the software structure for an Apple I]
E 64K microcomputer will be presented only.
The reported CYBEM computer interaction program is subdivided finto 3
Targe legs where each leg contains the main driver program.
The program package is composed of
(i} CVBEM approximation program (to determine nodal estimates)
{17} CVBEM approximator evaluation program {to evaluate any &fz})
(111} Approximative boundary determination program to determine (x,y)
coordinates where &{2) equals the boundary condition level curves
{iv] 1line drawing graphics program to plot (x,y) pairs for hoth I and T
onto CRT (or plotter)
(v} MNod2} point {x,y) data entry routine

The microcomputer programming is structured as shown in Fig. 9. From the
figure, disc storage is used to store ; related (x,y) pairs, otherwise,

computer memory 1s used for nodal point coordinates.
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IDEAL FLUID FLOW ANALYSIS

The use of the CVBEM to develop approximations of two-dimensional ideal
fluid flow is documented in Hromadka (1984a). Figures 10 through i3
i1lustrate ideal flyid flow problems, and the approximation error developed

by the CYBEM along the problem boundary.

CONCLUSIONS

The CVBEM has been used to develop highly accurate sclutions for two-
dimensional potential problems. In order to achfeve 2 high degree of accuracy,
a computer interactive graphics technique fs reported which utilizes the
approximative boundary technique to display the CVBEM modeling error as &
result of the nodal polnt distribution selected by the analyst, Subsequent
nodal point locations can be added (or deleted) by direct interaction with
the computer program via the CRT. The only programming requirements needed
to implement this easy-to-use analysis approach with the CVBEM 15 2 standard
CRT Tine-drawing graphics package, and a "Jocating a2 point to the closest

contour® program routine,
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Fig. 3. Linear Basis Function

Fig., 4. Example Problem Geometry

Fig. 6.
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Fig. 5, Simplified Problem Geometry

CVBEM Nodal Distribution for Example Problem
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Fig. 7. Approximative Boundary (Dashed Line)
First Attempt Using CVBEM

Fig. B. Approximative Boundary (Dashad Line) After Four
Attempts Using CVBEM. ({Departures between I and

P are Magnified Tenfold)
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Fig. 9. CVBEM Computer-Interaction Program
Structure Schematlc
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Fig. 1la. Problem Geometry for we* I + 2!
{ideal fluid flow over a cylinder}
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