UNIT HYDROGRAPHS AS A MULTIVARIATE NORMAL DISTRIBUTION
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ABSTRACT

The use of a given effective rainfall and a stochastic integral equation
formulation of the well-known unit hydrograph method gives criterion design
variables, such as volume or maximum discharge, which are random variables
depending on the stochastic variation in the unit hydrographs. This variation can
be probabilistically modeled by means of a multivariate normal distribution.
With this approach, the total runoff volume is normally distributed and
confidence intervals for this design variable can then be directly obtained. A
computer simulation can be used to obtain confidence intervals for the maximum
discharge estimate. Similarly, probabilistic simulation can be used to develop

confidence intervals for other criterion variables.
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DISCUSSION OF THE MODEL (STOCHASTIC INTEGRAL EQUATION METHOD)
The unit hydrograph method is a widely used rainfall-runoff modeling
technique. In this paper, we consider how to include uncertainty in the
predietions of runoff obtained by this modeling approach. We consider a variant
of the unit hydrograph method which relates the effective rainfall e() (i.e.,
rainfall less losses) and the discharge Q{-) via the stochastic integral equation,
t
Q(t) = | e(t-s) n(s) ds (1)
0
where n(+) is a realization of a stochastic process distributed as [n(-)].
Our analysis begins by dividing the study time interval [0,T] into N equal
subintervals I, = (t,_1, ty), with Ty = nT/N for n = 0,1,...,N, and approximate el+)
by a step funection with the constant value en on the interval Iy. Letting X(g b)

be the characteristic function of the interval (a,b) defined by

l,ifa<t<b
x(a,b)(t) =
0, otherwise
e(*) can be written:
N
ety = | ep X fth (2)
n=1

In the same fashion, approximate the realization n(-) from [n{)] by a function
with constant value Tip on the interval I. Substituting these approximations for

e(:) and n(*) into Eg. (1) gives

N
Q)= ¥ eqLSlt-ayq) - S(t-ap) ] (3)
n=1



where S(t) is the S-graph

S(t) = J n(s) ds.

Thus Q(t) can be seen to be continuous and piecewise linear, with the derivative
Q'(t) taking on a constant value, say ', on the interval Ip.
To determine the values {q'y!, differentiate Eq. {3) and choose t to be a

peoint in I, for n = 1,2,...,N, giving N equations:

qtl = el (ﬂl - no)

q'2 =e1 (ng - n1) +eg (N1 -np) (4)
gN =e1 (N - NN-1) + eg (NN-1 = MN=2) + =+ ey (N - Np)

where Ng = § is used in the formulas for symmetry. These equations ean also be
rewritten in the form:
q'1 ={e1-eo) m

q'g =(e2 -ep) ny +(e1 - eg) N3 (5)

g'n = (en -en-1) M + (e - en-2) Ngt+ (e1 - ex) Ny
with eg = 0.
The problem of modeling the statistical variation in each of the parameter
sets {q'1,.q'n}y (NN}, and {el,...,eN}, can be considered for various
cases; the one which we will consider here is where e(*) is a future storm event;

e.g., it is a given design storm effective rainfall. Even for an idealized set of



effective rainfall events with identical pétterns and magnitudes, there would
still be variations in the effective rainfall over the catehment, which would yield
observed variations in the associated Q(-), and thereby variations in n(").
Consequently, there would be an unique realization, n{-), for each data pair of
{e("), Q('}}. Because of the random variations in the effective rainfall over the
catchment, and the many random processes oceurring in any hydrologie rainfall-
runoff model, n{*) is a stochastic process.

Each value ny of n(*) on the interval I is itself a random variable and so
the vector E = (ny,..., "N} is a multivariate random variable. Moreover for small
time intervals, say unit periods of five minutes, there will be some dependence
between the unit values of N(-). This important mutually dependency in the set
of components of E makes the problem of probabilistic modeling much more
difficult. With no strong evidence to the contrary, an appeal to the central limit
theorem for multivariate random variables (Brieman, 1968, chap. 11; Billingsley,
1986, page 398) suggests that E can be modeled with a multivariate normal
distribution. And, in faet, this distribution is one of the few multivariate
distributions which is simple enough to allow basic calculations to be made and
yet whieh allows dependence between components.

As Eq. (5) indicates, q', is a linear combination of components of E. By a
known property of multivariate normal distributions, this implies that Q' =
(Q'1y..-»G'N) is also a multivariate normal {Kendall and Stuart, 1977, page 375).
Conversely by solving Eq. (5), if Q' is a multivariate normal then so is E.

A useful fact is that a multivariate normal distribution X = (xq,...,xN) is
completely determiﬁed by its means and its covariance matrix Yij = E[(xi - uj)
(xj - uj)], where 1j = E(xj). In fact, in the (usual) simplest case where the

covariance matrix ' = [Yij] has an inverse A = [ai]’], the density function of X



is

N
[(2m)N det(T)]-% exp [—0.5 _ Z ajjlxi - uj) (xj - 4y } (6)
i,j=1
Consequently this density can be estimated by estimating the covariances.

Thus under the model assumptions that either E or Q is multinormal, the
other is also multinormal, and therefore one distribution can be estimated, by
using Eq. (5) and estimating the covariance matrix for the other distribution.

We will use this technique to study the statistical properties of predicted
Q(*), which are a consequence of the statistical properties of E, and the choice of
design storm effective rainfall e(*), and so will be able to study some of the
statistics of the stochastic integral equation representation of the unit
hydrograph model under assumptions which allow realistic dependencies between

random components of the processes.

CRITERION VARIABLES
As an example of a runoff criterion variable, consider the total volume of
runoff, V. The trapezoidal rule with partition points to,t1,...,tN, is exact for the

piecewise linear @ and gives
N
V= kzl (Qlte-q + Qlty))/2. (7)

Since

k
Qlty) = (52/2) _Zl a', (8)
J:



where § is the width T/N of the intervals, j, V is seen to be a linear combination
of d'1, g'9,...,a'N, and so therefore is normally distributed. Hence to find
confidence intervals for design values of V (which is a prediction of the random
variable V given a future effective rainfall), the ardinary statistical methods for
a normally distributed random variable apply.

Note that the variation in V, which is characterized as normal is that
produced by a fixed given design storm and a variable set of n(‘} used in the
stochastic integral equation formulation of the unit hydrograph method. This is
distinet from the variation in V which would be found in runoff volume data from
a gspecific catchment, {should such data be used direetly); rather, this observed
variation is, to a large extent, due to the variation in the effective rainfall over
the catechment with respeet to the assumed effective rainfall, among other
factors. (As in many applications of the normal distribution, this model is not
perfect in that it prediets disecharge with negative volumes, but this is only with
insignificant probability.)

A criterion design variable of great interest is the peak flow rate. Unlike
the case of the total volume of runoff, for the peak flow rate there is no simple
derivation of its distribution. To analyze a specific case requires a statistical
simulation.

Consider a set of n(*), each approximated by constants on the time
intervals 1, as was done following Eg. (2). On each interval I, the values ny, are
normally distributed, but that information alone is not enough to determine the
joint distribution of the n{*) because of the dependence between values on
different intervals. The values {Q(t;)}, among which the peak flow rate is to be

found, are each a linear combination of n1, n2,...,NN since, as was noted in



Eq. (4), they are linear combinations of q'y,...,q'y whieh, from Eq. (5), are in turn

linear combinations of ny,..., Nys
N
Qlty) = 'zl bij N (9)
J:

The Ny,...,y will now be regarded as random variables, and we note that E(Q(t;))
N
= jgl bjjE(M;), so that if we subtract the expectation from each nj this will

subtract the expectation from each Q(t;) and

N
Qlty) - E(Q(t;)) = .Zl bij(nj = E(1y) (10)
J:
Consider the random variables

X; = Q(ty) - B(Q(ty) (11)

These have a multivariate normal distribution and each has zero expectation.

The covariance matrix C for these X1 .., X\,
C = [eov(X;, Xj)] {(12)

is symmetric end semidefinite. If positive definite, it has a Cholesky

factorization into

c=1LLT (13)



where L is lower triangular and LT is the transpose of L; and it also has this
factorization after the appropriate interchanges, which we will suppose to have
been done, if only semidefinite (Wilkinson, 1978, pgs. 229-231).

If we take ZI,Zg,...,ZN to be independent normal N(0,1) random variables,
and Z to be the column vector (Zy,,Zy), then it is easy to compute the
covariance matrix of LZ and show that it is the matrix C. (This well-known fact
is the basis for the characterization of zero mean multivariate normal
distributions as being those whose components are linear combinations of
independent N(0,1) normals (Breiman, 1968, pg. 238).) Since the multivariate
distribution of X1,...,XN is determined by its covariance matrix, the X's can be
simulated, if we know their covariance matrix, by simulating the Z's.

For the set of n(*) discussed below it was found that the peak flow rate
occurs in only a few unit intervals, and from hydrological and statistical
considerations it is unlikely that the maximum falls too far outside these few
time intervals in general. So only a small number Xpm, Xm+1srsXm+r 0f X's

need be considered, which considerably reduces the complexity of the model.

EXAMPLE: COMPUTER SIMULATION FOR PEAK FLOWRATE

In the example case study considered, 12 samples n(*) were obtained from
catchment rainfall-runoff data (see Table 1), each consisting of 25 unit values of
fiow rate, (based on the 5 minute time interval). These values of flow rate are
assumed to be samples from a multivariate normal distribution. Additionally, all
the n(*) were obtained from storms which are considered of similar severity (i.e.,
in the same storm class; see Hromadka and Whitley, 1988). The unit flow rates
were visually compared with simulated values from a multivariate normal

distribution as a rough check; because there are so few sample points, a more



diseriminating test is not feasible.

The design (i.e., future) storm effective

rainfall was taken to be linear increasing from 0 to 5 inches/hour at 1.5 hours,

and then linear back down to zero at 3 hours, and this storm was approximated as

piece-wise constant in consecutive 5 minute time intervals.

The eriterion

variable of interest is the peak flow rate anticipated from the assumed design

storm effective rainfall.

e

10

11

12

TABLE 1. n(-) SAMPLES USING MODEL OF EQ. (1)
(5-minute unit periods of flow rate, cfs)

nig)

10,30,50,185,320,450,750,900,950,1000,1200,1100,950,900,650,600,550,
500,450,400,320,240,160,80,0

10,85,160,230,300,400,550,850,1200,1500,1100,1080,650,400,250,200,170,
140,120,100,80,60,40,20,0

10,40,70,100,310,320,490,1600,1400,1550,1600,1480,759,600,350,300,270,
245,210,175,140,105,70,35,0 -

10,40,70,100,145,290,850,1200,1700,1400,1500,1260,1100,950,650,390,320,
285,245,205,165,125,85,45,5

10,105,205,300,550,800,870,935,1000,1200,1400,1290,1100,1000,950,300,
275,250,215,180,145,110,75,40,5

10,35,60,80,100,250,400,1000,1850,1700,1550,1400,1300,1200,1070,935,800,
670,535,400,325,245,165,85,5

10,75,140,200,390,695,1000,1175,1350,1525,1700,1500,1370,1235,1100,
850,600,350,315,280,240,200,135,70,5

10,105,200,400,600,750,900,1050,1200,1400,1600,1850,1900,1450,1200,
1050,900,750,600,450,300,225,150,75,0

10,90,170,250,350,450,625,800,1000,1200,1400,1700,1550,1400.1350,1130,
915,700,570,435,300,230,160,85,10

10,105,200,400,600,725,850,1025,1200,1500,1400,1250,1000,650,590,530,
470,410,350,300,245,185,125,65,5

10,55,100,200,400,600,690,780,870,950,1150,13060,1100,950,650,500,450,
400,350,300,245,185,125,65,5

10,150,300,500,700,735,770,800,950,1100,980,1350,1200,850,800,800,400,
335,270,200,165,125,85,45,5



From a calculation of the unit flow rate values for each n(), it can be seen
that the peak flow rate falls into one of the three unit time intervals [135,140],
[140,145], and [145,150], time given in minutes.

The computer simulation procedure continues, as discussed above, in that
the covariance matrix of the Q(tj)'s is computed. Then a subset of the Xj is
chosen; for example, the subset {Xgg, X2g, X3¢} corresponds to the three
intervals in which the peak flow rate oecurs. Then the covariance matrix for
this subset of X's is factored into a product of a lower triangular matrix L and its
transpose. It is now only necessary to generate some independent N(0,1) random
variables, use L, and add on the estimated means of each X, in order to develop
one vector of flow rate values for the time intervals chosen. From the veetor of
flow rate (Q) values, the maximum value of Q is obtained, resulting in one
sample point in the simulation of maximum Q's. The program does this
repeatedly, and keeps track of the empirieal distribution of the maximum @ (i.e.,
the eriterion variable). As a final result, one obtains an estimated distribution of
percentiles 5%(5%)95% for the maximum Q based on the subset of unit time
intervals chosen.

For the given data set, this caleculation was performed for the single unit
value X328, for {Xa7, X2g, X991}, and on up to {X94,...,X34}. The outcome was
that all the percentiles were the same for these different subsets of X's to within

a few efs (see Table 2).



TABLE 2. PEAK FLOW RATE PERCENTILE ESTIMATES
FOR VARIOUS UNIT PERIOD SETS

Unit Period #29

Unit Period 28-30

Unit Period 27-31

Unit Period 24-34

percentile max. Q

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

299.66
323.41
339.77
352.68
364.69
374.81
384.21
393.20
401.69
410.50
419.52
428.26
437.20
446.64
457.00
467.99
481.56
498.22
522.11

percentile max. Q

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

302.51
325.00
339.83
353.80
365.16
375.17
384.45
393.79
402.98
411.40
419.89
428.58
438.17
447.74
458.44
470.73
484.81
501.35
526.59

percentile max.Q

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

301.37
324.66
339,92
353.25
364.03
374.32
383.86
392.84
401.73
410,28
418.05
427.92
436.55
445.97
456.41
467.01
480.73
496.99
522.59

percentile Max.Q

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

300.70
323.78
341.29
354.36
365.34
375.89
385.36
394.44
403.70
412.25
420.45
429.59
438.05
448.12
458.21
469.53
483.07
498,99
525.46

There are two reasons for this simple outcome. The first reason is that, as

a cursory inspection of the data shown, the maxima tend to fall in a narrow

range of time intervals and for those intervals the Q values have approximately

the same means and standard deviations.

The second reason depends on a less

obvious property of the multinormal Q distribution, namely that when the

covariance matrix is factored into LLT, L puts most of its weight into one Z

variable.

For example, Table 3 provides the factorization for the subset

{X97y...,X371 .



TABLE 3. LOWER TRIANGULAR MATRIX L
(COVARIANCE MATRIX C = LLT)
FOR TIME INTERVALS 27,28,29,30,31

Row 1 61.6

Row 2 65.1 2.6

Row 3 68.1 3.3 0.6

Row 4 70.5 8.4 1.4 0.3

Row 5 72.0 11.2 2.1 0.8 0.2

The significance of this result is that, for this data, satisfactory confidence
intervals for peak flow rate can be obtained merely by choosing the most
common interval in which the twelve data peak flow rates occur, and then

supposing that data to come from a (single) normal distribution.

DISCUSSION

The previous example problem focused upon the runoff eriterion variable of
peak flow rate. The above methodology can be applied to any criterion variable,
A, to develop the probability distribution of [A] by [A] = A[QP()] where
[QD()] is the stochastic process of realizations of possible runoff hydrographs,
QD('), for the assumed design storm effective rainfall, and A is a funetional
which operates on each sampled runoff hydrograph realization to develop a

sample point of A.



The multivariate normal distribution, as applied to the sampled n(-)
obtained from rainfall-runoff data using the model of Eq. (1), provides an
estimate of the underlying probabilistic distribution of that stochastie process,
which is distributed as [ n{)]. Consequently, even though only 12 samples
(realizations) of the n are obtained by data analysis using Eq. (1), the distribution
of the stochastic process, [n(-)], can be estimated using the multivariate
normal distribution analogous to fitting a probability distribution function to 12
sample points of a random variable. As a result, a continuous probability
distribution of the runoff criterion variable, [A], can be obtained rather than
developing only a frequeney-distribution of m sample points of A, where m is the

number of sample realizations developed from [ ne)].

CONCLUSIONS AND FURTHER RESEARCH NEEDS

A stochastic integral equation (S.I.E.M.) formulation of the well-known unit
hydrograph method is used to develop confidence intervals for runoff eriterion
variables {e.g., peak flow rate-, volume, pipe size, ete.). The multivariate normal
distribution is used with the S.LE.M. to provide a continuous probability
distribution of the selected criterion variable. Example applications to
estimating a peak flow rate associated to a future effective rainfall event is
considered using measured rainfall-runoff data to develop the underlying
probabilistic distributions of the associated stochastic processes. Any runoff
eriterion variable can be evaluated for confidence interval estimates using the
procedures discussed. Extension of the above probabilistic techniques to other
rainfall-runoff modeling approaches can be readily achieved by analyzing the
rainfall-runoff modeling error as a stochastic pbocess (see Hromadka and

Whitley, 1988).



Further research is needed in the important topic of developing
regionalized multivariate normal distributions of rainfall-runoff modeling error.
Regionalization would provide an estimate of the means and variances in the
multivariate normal distribution estimation of modeling error, which could then
be transferred to ungauged catchments where the rainfall-runoff model is to be
applied. In this fashion, confidence intervals could be estimated for runoff
eriterion variables of interest, in order to make better design and planning

decisions whieh include uncertainty issues and risk.
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