CHECKING FLOOD FREQUENCY CURVES
Using RainrFaLL DAaTa

By T. V. Hromadka II' and R. J. Whitley®

ANALYSIS

A typical procedure for deriving flood frequency information in the United
States is to analyze the annual flood series, without utilizing the available
rainfall data, and follow the guidelines of Water Resources Balletin 17B
(1981). In this way, an estimate of the flood frequency curve is developed
for decision making or policy statements for flood control. There are nu-
merous sources of uncertainty in such an estimation. For example, there is
the uncertainty as 1o whether the log Pearson 111 distribution is the “correct”
distribution from which to extrapolate infrequent floods, as well as the un-
certainty in the distribution parameters chosen which is caused by the un-
certainty in estimates of the mean, standard deviation and skew of the log
Pearson 111 distribution (Stedinger 1983). So it is important to have a pro-
cedure which furnishes a check on the flood frequency analysis results.

This note suggests a simple statistical procedure using rainfall data. Gen-
erally, rainfall data arc much more plentiful than runoff data and are not
subject to questionable adjustments used to account for changing watershed
conditions, for loss of lfow data, for transmission losses, or for variations
in runoff volume data. Also, rainfall data are usually available at scveral
rain pauge stations within a meteorologically homogencous region and these
data can be subjected to a regional statistical analysis. In fact, local gov-
ermment agencies often collect and synthesize both rainfall and stream gauge
data and prepare regional rainfall data summaries which give various esti-
mates of rainfail depth-duration values versus return frequency.

For a watershed with a computed flood frequency curve, one estimate of
*goodness of fit” of this curve is to compare the probabilities computed from
this curve with the probabilities of the rainfall which produced the individual
peak flow rates used in the flow rate annual series. These probabilities from
the curve can be obtained either: (1) By an analysis of the peak rainfall
depth-duration frequency of the storm event which produced the annual peak
flow rate; or (2) by assuming that the return frequency of peak rainfall depth
corresponding to a storm duration approximately equal to the critical dura-
tion of the catchment (which is usually assumed to be the time of concen-
tration) is equal to the maximum recorded depth return frequency for that
year. This analysis in terins of the time of concentration is most appropriate
for smaller watersheds.

As an example of method (2), suppose that the catchment is assumed to
have a critical duration of about one hour. Then the peak one hour depth of
rainfall corresponding to the record annual peak flow rate is determined for
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each data point in the flood annual series. These rainfall depths are then
ranked according to the return frequency as estimated from the regionalized
rainfall data, which is another source of error. The resulting set of T-year
return frequency estimates are then compared (o the ex_pectcd return fre-
quencics by means of the well-known chi-square test. In this way an eslimate
is obtained of how likely, or unlikely, the rainfall occurrences are and there-
fore how likely it is that the flood frequency is correct. Although the record
peak rainfalls typically may not coincide with the runoff pcal.c flow rates,
their use still provides a useful estimate of likelihood for decision making
PUTPOSES.

EXAMPLES

To illustrate the procedure. rainfall data corresponding to the flood peak
annual series are determined and compared for two regions n southern Cal-
ifornia: (a) The valley area of the county of San Bernardino; and (b) the
coastal area of the neighboring Orange county.

We apply method (2) discussed above to one hour storms for area (a),
obtaining number of occurrences (A1), also to two hour storms for area {(a)
to obtain the number of occurrences {(A2), and finally for one hou{ storms
for area (b) obtaining the number of OCCUTTENCES (B). churn penods for
these precipitations were obtained from the tegional data given in (Dcpurt-
ment of Water Resources 1981); these regional data were gencr:alec'l irpm
regionalized parameters under the assumption that the kundcr!ying distribution
is log Pearson Ill. Therefore the chi-squared comparison given below com-
prises a test of the consistency of this assumption with the observed data.
Table | summarizes the results. )

We now want to apply a chi-square test to these data, for which see, for
example, Kendall and Stuart (1979) or Breiman (1973).

The fisst step is to group the data (which have already been _grouped to
some extent) in an attempt to satisfy the rule-of-thumb of h‘avmg at 'Ieast
five occurrences in cach group and as many groups as possible (Breiman
1973); group together the observations for return periods of greater than or
equal to six years in one group for (AD), (AZ), and 6-10 years for (B}

The next step is to compute the theoretical expected pumber of occur-
rences in each group. The definition of a magnitude My with a return period
T is that magnitude such that the probability of sceing an event of size X =
M, is 1/T:

TABLE 1. Number of Occurrences of Hainfall with Glven Return Periods (A1 =
San Bernardino County—One Hour Storms; A2 = San Bernardino County—Two
Hour Storms; and B = Orange County—One Hour Storms)

Return period Al A2 B

1) {2) {3) {4)
| year 22 17 21
2-5 years 9 15 19
6-10 years 3 I 6
1£-20 years | 2 2
=21 years 0 0 2
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TABLE 2. Probabllity of 7-year Flood {Eq. 2)

T= 2 3 4 5 6 7 8 9 10 | =11
MWl@a @& | @ | ®le | o6 | @ o an

0.500 | 0.167 | 0.083 ] 0.050 { 0.033 | 0.024 | 0.018 | 0.014 | 0.011 | 0.009 { 0.091

1
Prob(X = My) = ; ............................................... (1)

(Since the underlying distribution is assumed to be absolutely continuous,
the event {X = M} has the same probability as the event {X > M}, and it
is of no importance whether or not the endpoint M; is included in Eq. 1.)
The usual interpretation of a “T-year event” is that it is one of size X where
X is in the range M, = X < M,,,. In this case,

1 1 1
Pmb(M,sX<M,.,)={i———}—{l——}:— ........... )
T+ ] 1T+

Note that to apply this interpretation of “T-year event” in the computation
of chi-square it is necessary to also apply it when making up the table of
observed values A and B above. Using Eq. 1, the values in Table 2 can be
used to compute the probabilities of the groups into which the data have
been grouped. These probabilities multiplied by the total number of data
points give the expected number of observed events. Table 3 shows the re-
sults for the data from basin A. The value of chi-square is X’ = Z {(observed
— expected)’ /expected} = 2.34, the same value (to three decimals) for both
Al and A2 data. There are 3 data groups and so 3 — | = 2 degrees of
freedom, and so the number 2.34 is to be compared with the tabulated values
of x* for these 2 degrees of freedom. From a table of x?, e.g. Table 2 in
Breiman (1973), x* < 1.39 with probability 0.5 and x* < 2.77 with prob-
ability 0.75. Therefore the value 2.34 is not an unusual value, the observed
numbers of T-year events is consistent with the predicted number of events,
and this data passes this fest. Table 4 shows the resuits for data from basin
B. Then x* = 2.32, and there are 3 degrecs of freedom. Since x* < 2.37
with probability 0.5, we again conclude that the observed number of events
is consistent with the predicted number of events.

It is interesting to see how sensitive this analysis is to the precise definition
of a “T-year event.” Another reasonable definition of a T-year event is one
whose magnitude X lies in the range Mr_ys < X = My0s. If T > 1.5 this
event has probability

TABLE 3. Statistical Comparisons of Observed Data and Expected Results for
A Data (Eq. 2)

Return period Observed A1 Observed A2 Expected
(n {2) (3) {4)
1 year 22 17 17.50
2-5 years 9 15 11.67
=6 years 4 3 5.83
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TABLE 4. Statistical Comparlsons of Observed Data and Expected Resulls for
B Data (Eq. 1)

Return period Observed Expected
{n {2 (3)
25.00
| year 21
2-5 years 19 lgg;
6--10 years 6 4,54
=11 years 4 .

TABLE 5. Probability of T-year Flood {Eqs. 3 and 4)

T=1| 2 3 4 5 6 7 8 9 10 | =11
Mm|l@|e|w| 6 | © | @6l |00 01

0.333 [ 0.267 | 0.114 | 0.064 | 0.040 | 0.028 | 0.02} | 0.016 | 0.012 | 0.010 | 0.095

TABLE 6. A1 Data (Definitlon 2 of a T-year Event)

Return pericd Observed Expected
1) {2) 3)
11.67
1 year 22
2--5 years 9 Iﬁ.gz
=6 years 4 6.
/ USROSy ®
PiMr g5 <X = Mrias) = T Toas

For T < 1.5, since P(X < M,) = 0 the probability of a T-year event is

PIM =X = Mpps) =1~

in particular the probability of a one year flood is 1/3 (see Tal?lF 5): .
These probabilities are numerically close to the ggl{al Qeﬁn:tlon 'If T is
large, but not if T is small. If you use these probablhtlesz; in compuling thg
expected number of T-year events (see Table 6) 2thcn X = 13.76. For X
with 2 degrees of freedom, the probability that x* < 10.6 is 0.995; in this
case the computed value of ¥’ is too large and the FIata are not consistent
with the expected values. The point of this example is that the-def"}mflon to
use is the one used in making up the regional data base, which is 1_ndeed
the first definition. And, with this example in mind, any user of .tl.us test
should aiso use the usual definition of a T-year event when compiling the

data to be tested by chi-square.

CONCLUSIONS

Often only the stream gauge data are used to derive a ﬂood—f_rquency
curve for peak flow rates. It is then of interest to also evaluate the likelihood
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that the resulting flood frequency curve is appropriate for the specific catch-
ment. One such evaluation uses the rainfall for the catchment's critical du-
ration and estimates the probability of the occurrence of the record precip-
itation sequence using the chi-square test.
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