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ABSTRACT

In all phases of hydrologic modeling, including calibration.
design, and watershed evaluation, analyses on all except the
smallest watersheds involve watershed subdivision, or
discretization. In spite of the frequency in which subdivision is
necessary and the lack of guidelines for proper discretization,
little attention has been paid to the effect of this practice on
the accuracy of model results. Due to the sparse rainfall-runoff
data typically awvailable at a watershed, it may be questionable
whether the subdivision of the catchment into subareas, when there
is no data to calibrate subarea hydrologic model parameters, is a
"better" approach to modeling the catchment response. In this
paper, the subject of catchment discretization is examined. It is
noted that for a linear hydrologic model based on unit hydrographs
(for wvarious levels of discretization dinto subareas) and
translation for channel routing, a discretized model is equivalent
to a simple one-subarea model, and calibration of the simple model
accounts for the wvariation of effective rainfall over the
watershed that is not accounted for by the discretized model.

Key Words: Catchment discretization, calibration and variance of
Hydrologic Model
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INTRODUCTION

The typical procedure for using a unit hydrograph (UH)
type model, such as TR-20 and HEC-1, is to subdivide a watershed
into subareas that are linked by channel or detention basin
routing. Parameters (e.g., losses, timing, etc.) are then
assigned to the several UH subarea submodels and the routing
models. Even though the catchment is virtually homogeneous. it is
often discretized into several subareas that are linked by routing
elements. For example. it d1s not uncommon for a nearly
homogeneous (almost uniform development, drainage patterns, etc.)
1 or 2-square mile catchment te be subdivided inre one or two
dozen (or more) subareas.

The questions arise as to whether (1) such subdivision
practices results in "better" models, and (2) such highly
discretized models are more accurate for use in design than the
simpler models based on a minimum number of subareas, perhaps even
without subdivision. In this paper the UH modeling approach is
used to examine the effects of subdivision, or discretization. of
a watershed where a degign or evaluation is required.

The first step of this study is to derive mathematical
relationships for the simple (single area) and complex (multi-
subarea) models. By using only a few modeling simplifications.
Voltera integral equations for the runoff hydrograph are derived
for the simple and complex models. It is then shown that the
parameters -of the simple model account for the important variation
in effective rainfall over the catchment as correlated to the
available rain gauge data; however. the complex model reduces to a
simple UH model and neglects this important consideration. Using
the derived integral equations. the effect of model calibration
and watershed discretization can be examined in detail.

THE EFFECT OF DISCRETIZATION ON MODEL CUTPUT VARIANCE

In order to develop a mathematical analysis of the model
discretization process, the considersd modeling approach for the
digcretized representation of the catchment is to use m gubareas
linked together by a channel routing process which 1is pure
translation. Thus subarea runoff hydrographs are developed.
combined at confluence points, and then routed by translation to
the next downstream subarea confluence peint.

Let a catchment bhe divided into m subareas, where the
discharge from the j-th subarea at time t is gqj(t) = qj(t,Pj;. Pj
denoting the vector parameters., The discharge q;j{t.P;) is a random
variable with respect to the parameter values P and their
associated probabilities.

Let qe(t) = q.(t.,P) be the discharge from the catchment at
time t, considered as a “"complex" model, which is composed of m

discharges from the individual subareas. It is an informative
simplification to approximate <the effects of routing by
translation. i.e., subarea discharges are added and channel
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routing is modeled as translation in time by the amount Ty for gj.
In this case

Qe (t.P) = z Qj(t"tj.?j) . (1)
The maximum discharge M;, is defined by
Me = max gc(t,P) (2}

ig atrained at a peint t' which may vary with P: however t' does
not generally vary much and so belongs to one of only a few unit
intervals (or timesteps) tp, where subscript p satisfies ml<p<m2.
and where (mZ-ml} is small. Then

var (Mc) = var(max{qc(tp,P): ml<p<m2)] (3)

The variance of the peak discharge is thus seen to depend on only
a small number of the variances var{q.{(t,.P)) and these variances
will now be analyzed.

By the independence of the q;(t'-t;,F),

var qc{tp.B) = Xvar gy(t'-15,P). (4)

The discharge of the catchment when modeled as a simple model with
only c¢ne subarea will be denoted by gqs(t,P). The maximum
discharges., which will be used for statistical analysis purposes,
are given by

Me = max qs{t.P)

(5)
My = max qj(t.Pj)

where Mg is the maximum discharge for the simple model, Mj is the
maximum discharge from subarea j. and both Mg and M; are random
variables in P. When P is taken to have the design values Py (such
as determined from the policy/hydrology manual). the design
estimates for the maximum discharge are obtained:

Hg = max qg (t.Pgq)
(6)
By = max qj (t.Pg).

In our discussion it is assumed that there is only a single
rain gauge and stream gauge for data analysis. Consequently. the
modeling parameters developed from the data are typically assumed
to apply not only to the whole catchment, but to subareas. That
is, it is implicitly assumed that the random variables ¥; = M/

and Y = Mg/Mg have approximately the same distribution. And in
fact, a similar assumption is necessary if one wants to make
statistical inferences about the subarea when only the statistics
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of the entire catchments are known. That ¥ and Y; have the same
distribution implies. of course, that var(¥) = var(Yj), or
equivalently,

var(M;/p;) = var(Mg/pg). (7)

The random variable qj(t’'-%;,Pj) occurring in Eq. (4) has a

variance that can be expressed as a proportion, lj, of the var(Mj)
when t'= t, by

Var(qj(tp“tj.Pj)) = R.j var(Mj) (8)
Combining Eqs. (4) and (8) gives

var qcltp,P) = X var qj{t;.Pj)

= var(Y) l-'-sz EKJ (“-J/!-ls)z

= var{Ms) Elj(uj/us)z (9)

and
var (M) = var(Mg) Z?\.j(uj/us)z (10)
Twe extreme cases of Eg. (10) help point out the

implications. First, consider the case of paraliel subareas, all
with the same discharge q;j and adding together (with the same lag)
to produce q.. In this case Aj = 1 and my; = Hg for j = 1,.... m;
and the maximum occurs at a point t' where all of the qj have their
maxima. Thus. it follows that

var(M.) = (1/m} var(Mg) (11)

More generally., it will foilow that the variance of M; is smaller
than the variance of Mg if the following conditions hold: (1) if
the mcdel schematic has a "large somewhat parallel component” in
the sense that many qj's contribute to the max ge so that the H;/us

is small; (2) under the assumptions that Eq. (8) holds and that Aj
is not too large. and (3) the maximum of g. onrly occurs in a few
intervals.

Second consider the case where subareas are routed together
in a linear series, all with the same dischatge q = qj and with the
lags chosen so that the second area contributes only after the
first area is completely discharged. the third contributes only
after the second has completely discharged, and so on. In this
case var{M;) = var{Mg) with no reduction in variance. (Here the

value given by Eq. (10) is too large. unless the scale factors dj
are considered to be functions of t' with one of them 1 while all
the others are 0, or a slightly different deviation is followed.)
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The final formulation includes the effect of the peak flow

rate occurring in (m2-ml) unit intervals, and Aj not varying for
mi<ps<m2,

var(Me) = (mZ-ml) var(Mg} ZAj{pj/ps)? (12}

The Wj/Hs are the design peak flow rate values computed for
each subarea and the single area (simple) model, respectively,
using the appropriate single design parameter get Py. Then it is
seen that generally var(M.)#var(Mg). In fact, for a "smgll”
watershed it is noted that var (Mc} <<var(Mg) as the number of

subareas increase, whereas for a "large" watershed where Bi2Hg.
var{Mc) >>var(Mg) . But the var(Mg) reflects the true variation in
peak Q estimates at the single stream gauge based on the single
rain gauge information; hence, the var(M;) departing from var{(M)
must indicate a form of modeling error introduced by the watershed
discretization process which can only be removed by a supply of
runoff data for each subarea used in the complex model.

That dis. stream gauge data must be available for each
subarea, j. in order to develop best fit parameter sets (for each
subarea) to correlate individual subarea runoff data to the
available {(single) rain gauge data. Thus a best fit parameter set
for a m-subarea complex model would be composed of m optimized
parameter sets, one set for each subarea. This "ultimate" best
fit parameter set would correlate the stream gauge measured runcff
hydrograph to the available rain gauge data obtained from the
considered rain gauge. for the specific storm event reconstituted.
Given a set of such ultimate best fit parameter sets for gc(t) and
the corresponding best fit parameters for qg(t), then var(M.) =
var{Ms) . Sheuld rain gauge data not be supplied in each subarea
used for qe(t), then the subarea model parameter correlations cculd
be based on subarea data rather than the single rain gauge,
resulting in a true drop in the var(M.) as a result of a better
correlation between rainfall-runoff data.

SINGLE AREA AND DISCRETIZED UH MODEL
VOLTERA INTEGRAL REPRESENTATIONS

Insight into the hydrologic modeling process can be gained by
considering the linear unit hydrograph method with translation for

channel routing. That is, as in the derivation above., subarea
hydrographs are added directly at confluences and channel routing
is modeled as a simple translation in time. (Should peak

attenuation be considered, the relationship of Eq. (12) still
applied butr the Aj typically are closer to unity in value.)

For a single area model of a free-draining, near homogenecus
catchment without significant flow detention effects (e.g..
detention basins, exceptionally wide channels. etc.), having unit
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hydrograph wy(t), the simple runoff hydrograph is given by qg(t)
where

t
s “J. eg (t-s) wis) ds
=0 (13)

where eg"(t) is a "representative" effective rainfall distribution
used for calibration purposes. Typically, only one rain gauge and
one stream gauge are available for calibration.

As an alternative to the model in which the watershed is not
subdivided, let the catchment be subdivided into m subareas with
areas Aj(j=1,2,...,m), each with an area-centered (rain gauge
measured) effective rainfall distribution ej(t). 1In considering
the discretized model. a filter function U; can be defined for each
subarea Aj by

1, te2 T
Uy () = (14)
0, ¢ < ’Ej

Assuming subarea Aj has an associated unit hydrograph $;(t) . then
the effect of channel routing (assuming az uniform translation time
of 7; and no hydrograph peak attenuatiocn) results in m-subarea
runoff hydrograph complex model q.(t) given by

qe(t) = D ejle-s) Ujls-15) @;(s-14) ds
b (15)

The product Uj(s-tj) ¢j(s-13) gives the unit hydrograph response
from subarea A; with respect to the stream gauge location. and
includes the effect of translation channel routing with a time
offset of 75. Thus. zero flow contribution from subarea Aj occurs
at the stream gauge until model time tj, when the subarea unit
hydrégraph $j(s) dinitiates. The above qc(t) represents (i) a
distributed effective rainfall, ej(t), based on measured rainfall
for each subarea j; (ii} translation channel routing with travel
time T:; assigned to subarea j as the translation time of the
hydrograph to the stream gauge: and (iii) a unique unit hydrogragh
9;(s) for each subarea j.

In most calibration studies, only one rain gauge is available
for study purpeses, resulting in a "representative" effective
rainfall distribution eg"(t), which 1s used to correlate model
parameters to the measured runoff hydrograph data from the stream
gauge. Note that eg(t} is the actual point effective rainfall
distribution whereas eg"(t) is a representative effective rainfall
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distribution determined by calibration of the model parameters
from a calibration study. It will also be assumed that there are
constants ¢j, such that the individual subarea effective rainfalls
e;(t) can be related to the single effective rainfall distribution
eg(t), which is based on rainfall data measured at a single gauge,

by
e;(t) = cj eglt) ' (16)

Then the convolution model for the complex model is

m et
gelt) = Z cj eglt-s) Uj(s-t5) ¢;(s-1;) ds
j=1 Js=0

(17)
t m
*J eg(t-s) 2 CjUj(S‘Tj)@j(S"Ej)ds
s=0 j=1
T m
=J‘ (W eg(t-s))(z ¢ Uj(s-Tj)tbj(s-Tj)/W) ds
s=0 j=1
where W = X cj Aj/Z Aj.
Medel Comparisons
In comparing gg(t) and gqc(t) and since
J. Yis)ds= 1 unit-area,the following equality is necessary:
Q
m
wis) = ¥ cjUjls-1)) ¢j(s-t5)/W
i=1 (18)

The cj are unknown in the calibration process because there is‘only
a single rain gauge. Additionally, the several ¢;(s) are unknown

and. even if the ¢j(s) functions were known. the scale factors c;
cannot be determined using only a single gauge and stream gauge
pair for rainfall-runoff data. In comparison, the simple model
qs{t) of Egq. (13) enables the direct calibration of its single area
UH, y(s). One consequence of the calibration of the single area
model UH is the development of a "probable" runoff distribution UH
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that includes not only the variability in the individual subarea

UH, ¢;(s). and the effects of channel routing, Uj. but alsc the
variation in the unknown rainfall distribution (represented in
this discussion by the m constants. cj).

By definition

Gy o m
f w(s) ds = J (:g c;U;(s-7) %(s-tj)/W) ds = 1 unit-area
s=0 s70 \j=1 - (19)
and, therefore, the final discrepance in runoff yield and other
losses between the true distribution of effective rainfall at the
rain gauge site, eg{t). and the modeled distribution of effective
rainfall must be absorbed in the representative effective
rainfall. Hence. when correlating the available runoff hydrograph
information with the available rain gauge information for model
calibration purposes, it is possible to find that yields greater
than unity and even negative loss rates gives the best fit with
the available rainfall-runoff data.

An example of the importance of the rainfall factors cj is
given in the recent paper by Schilling and Fuchs (1986). They
show that the variation in recorded precipitaticn over an 1800-
acre catchment as obtained with a nine rain-gauge system when
compared with a single centered rain gauge resulted in variations
in runcff volumes and peak flows "...well above 10C-percent over
the entire range of storm, implying that the spatial resoluticn of
a rainfall has a dominant influence on the reliability of computed
runoff." They also noted that "errors in the rainfall input are
amplified by the rainfall-runoff transformatiomn..." so that "...a
rainfall depth error of 30-percent results in a volume error of
60-percent and peak flow error of 80-percent." These conclusions
of Schilling and Fuchs point out the significance of the error due
to the assumed precipitation distributioen over a catchment, which
has been correlated by other studies such as Hornberger et al.
(1985) . and Garen and Burges (1981).

Application

A demonstration of the above Voltera integral model is given
by the example problem shown in Fig. L. In this example, the
effective rainfall, e;(t), for each of the nine subareas are
assumed related to the gauged site effective rainfall, eg(t). by
the effective rainfall ratios, c¢j, given in Table 1. Individual
subarea unit hydrographs are all assumed as "exactly"” known. In
this example, five of the nine subareas' runoff hydrographs are
offset in arrival time, tj, at the stream gauge by 3-hours due to
translation channel routing which forces a double peak Q. Figure
2 shows the eg(t) effective rainfall distribution and the runoff
hydrograph from the 9-subarea model, gqc(t).
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Figure 3 shows the S-graph for q.(t) developed from the 9-
subarea model with a constant effective rainfall intensity and
with the tabulated parameters and ¢j factors. The weighting factor
for the simple model, W, is calculated from Eq. (19) to be

W= 0.85 - (20)

TABLE 1. 9-SUBAREA PARAMETERS

(Figure 1)
SUBAREA Te t;
NG, {hrs) (hrs) Cj c;
I 0.80 3.7 1.20 (1.20)
2 0.85 3.65 0.90 (0.90)
3 0.90 3.60 0.80 (0.80)
4 0.95 0.05 0.85 {5.00)
3 1.00 0.0 0.80 {5.00)
6 1.00 0.0 0.85 (5.00)
7 0.85 3.65 0.90 (0.90)
8 .90 3.60 .80 {0.80)
5 0.95 D.05 0.80 (5.00)
Notes
1 Tj = translation offset (hrs) to stream gauge
2 ‘¢j = effective rainfall ratio to gauged site eg{t)
3 (¢j) = c¢j values for second test
4 T, = assumed time to concentration for subarea

Using the above S-graph representation of the simple model unit
hydrograph w(s) and alsc the value of W calculated above, the
plots of q¢{t) and qgz{t) are shown in Fig. 2.

A comparison showing the importance of the wvariation in
effective rainfall over the watershed is given by using the second
set of c¢j factors listed in Table 1. With these new ¢y values, W
is now

W= 2.81 _ {(21)

The new S-graph is shown in Fig. 4. A comparison between g.{t) and
gs(t) is shown in Fig. 5. It is noted that the resulting double
peaked runoff hydrograph is of an entirely different shape than
developed in Fig. 2. Also it is noted that in hoth cases. the
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single area model represented the double peaked runoff hydrograph
even though the effective rainfall pattern is single peaked (Figs.
2 and 5).

The above two examples demonstrate the significance of the
roles played in the simple model S-graph (or unit hydrograph,

y(s)) by (i) the individual subarea unit hydrographs, 0;(s); (i1}

the translation routing time increments, T5: and (iii) the
distribution of effective rainfall over the watershed.

0i .

The factors cj for each subarea Aj account for precipitation
effects. For example, should one portion of a catchment have a
high probability for having lower precipitation intensities (cj<1)
while another part of the catchment has a high probability of high
intensities (c;»1), both relative to the one available rain gauge.
the catchment hydraulic response could contain closer or quicker
responses from portions of the catchment that would not be
represented by the usual assumption of uniform effective rainfall
distributrion over the entire catchment. Other wvariations in
precipitation include cffsets in rainfall timing and storm pattern
shape variations.

In addition, the typical procedure in practice is to assume
that the UH for each subarea has the same functional form (when
normalized with respect to lag): wusually. this hydrograph is
agsumed to be described by the total catchment normalized unit
hydrograph as calibrated to the available strezm gauge or similar
regionalized data. From the above egquations., it is seen that such
assumptions are a possible source of error. That is, the UH is
better envisicned as a "probable"™ runoff distribution as
correlated to the identified effective rainfall distribution.
Hence, a portion of the catchment that is less runoff productive
would have a reduced UH (c;<1). Thus, the probable runoff
distribution from a subarea Aj is likely to have different
characteristics than those of the total catchment. Additional
error is also introduced by incorperating routing approximatiocns
(e.g.. timing offsets tj). How the confluences of the stream
network is approximated also introduces error. And as stated in
the above. the factors cj are all set equal to one in the
dilscretized model.

Based on the above discussion, it appears that a highly
discretized medel of a catchment (with the previous assumptions)
loses a portion of the randecmness that is inherent in catchment
hydrology. As shown in the previous section. the discretization
process often results in a significant change ia model output
variance {e.g., variance of the peak flow rate) whereas the true
catchment hydrologic output variance cannot be changed unless
considerably more data are obtained to identiZy the several
unknowns in the hydrologic system such as. <for example,
represented by the ¢ terms which occur in the single area UH but
which are forced to all be 1 in the applicaticn of a highly
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discretized model. As a result, the single area UH, w(s), which
represents the probable runcff distribution as correlated to the
effective rainfall distribution (applied to the total catchment),
includes a gignificant source of uncertainty that is very likely
transferred to the other model variables when the catchment is
discretized. :

SINGLE AREA AND DISCRETIZED UH MCDEL CALIBRATIONS

As discussed in the previous section, let the true runoff
hydrcgraph be given by the complex model representation of Egq.

(15). In calibration, only a single rain gauge is generally
available which is represented by the actual point effective
rainfall distribution eg(t). Using correction factors, cj. the

true runoff hydrecgraph can be rewritten as (see Eq. (16)})

t m
qe(t)= J (W eglt-s)) (Z cjUs(s-14) ¢j(s-‘tj)/W) ds

s=0 j=1

(22}

For calibraticn purposes. the ¢j are unknown and in the complex
model the c¢; are defined by ¢; = 1, j = 1,2,....,m. Thus, the

calibration versicn 9.{t) of g¢{t) is given by

L m
qel(e)= J' eg'*(t-s)fa U;(s-15)05(s-15) ds
' s=0) =1 (23)

where eg"*(t) is the representative effective rainfall
distributien. the parameters of which must be calibrated in the
complex model. For the simple model of Eg. (12), eg*{t-s}
typically differs from eg**(t-s).

The requirements for calibrarion or both 2.(t) and qg(t) to
the assumed exact mocdel with exact parameters, qc{(t). can now be
determined. For a simple mocdel, the representative effective
rainfall, eg*(t-s), must satisfy

eg*{t-s) = (W) eglt-s) (24)

and the unit hydrocgraph., y(s). is directly calibratad by

wig) = Z CjUj(S""Ej)Q)j(S"Tj)/W
it (25)

In contrast, the complex model calibration effort focuses upon the
representative effective rainfall eg**(t-s) which must satisfy
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eg"(t°s):£ cjUj(s-15)05(s-15)
j=1

hy Uj(s-15)¢5(s-13)

i=1

eg " (t-s)=

{26)
= eg"(t-s) w(s)/y**(s)

where W(s) follows from the simple model unit hydrograph, and

w**(s) is the rigid unit hydrograph of the complex model, with all
cj's = 1l:

0
yrels) = X Ujls-15)0;(s-15)
i=1 ’ (27)

Disqussion

The above model c¢alibration requirements dindicate the
hydrologic interplay between the effective rainfall distributiocn
and watershed runcff/hydraulic characteristics on the one hand.
and the ability of the simple model unit hydrograph versus the
complex mecdel link-node schematiec to represent the watershed
runoff tendencies for a specific storm event. For the simple case
considered where each subarea is assumed subject te constant
multiple (or fraction) of the rain gauge measured effective
rainfall, eg{t). (representad by the factors ci in Fig. 6). and
"agquivalent" watershed can be envisiocned where all other subarea
parameters remain in the same, but each subarea size is modified
by its "effective contribution area adjustment" factor. ¢i. Figure
6 illustrates such a construction. For this specific storm.
subarea #1 is reduced in area by 20-percent, subarea #2 and #4 are
reduced in area by 10-percent. and subarea #9 is increzsed in area
by 150-percent.

Calibration of the simple medel. q¢(t), will result in an $-
graph {or unit hydrograph) which represents <tha modified
witershed. Hence, as is commonliy noted in practice. there is a
different optimum unit-hydrograph for each storm considared.

Hence it appears that modeling error is not reduced by
digcretizing the watershed (such as considered herein) beyond the
knowledge of the distribution of rainfall over the watershed.
Obviocusly, if rain gauges were available in each subarea. then the
representation of subareas by "adjusted"” subareas is no longer

needed, and the complex model formulation, ac(t). has all of its ¢y
factors properly defined., as given by qe(t).
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IS DISCRETIZATION BETTER? 4

In order to better explain the interplay between the several
previous discussions, consider the following thought problem: Let
the watershed be essentially homogeneous, nearly free-draining,
with a stream gauge and an offsite rain gauge. (The rain gauge is
assumed offsite to emphasize a point.) Suppose a set of 100
severe storms occur such that the measured rainfall, pi(t), and
measured effective rainfalls, egi(t), at the rain gauge (which has
soil similar to the watershed) is known, for i1 = 1.,2.....100.
Furthermore. suppose the effective rainfall distribution over the
watershed (which is entirely unknown) is related to the measured
data as in Eq. (16). Finally. suppose each pi(t) and egi(t) is
identical and egual to a single pattern, p(t), eg(t), respectively,
for each storm. while the {ej} in Eq. (16) differ for each storm.
Therefore even though each pi{t) and egi(t) are identical, the
runoff hydrograph Qi(c) is different for every i. Let Qi, be the
peak flow rate for each Qi(t). Then from a frequency distriburtion
plot of the Q%, the Var(Qp) can be computed as correlated to the
available rainfall data (at the rain gauge site}. and for the
sample sat of {Q%).

By calibrating the simple model., qg(t). to each Qi(t}, a set
of cptimized parameters P; are developed for each i = 1.2,...,100.
Since the rainfall distribution at the rain gauge, pi(t) = p(t), is
fixed, the var{(Q) from g¢g(t) due to the variation in optimized
parameter sets, (Pi}, approximately equals the var(Qp).

In contrast, when discretizing the catchment, var{Q) produced

by ac{t) typically decreases sgignificantly with the level of
discretization., when mestly parallel routing is used. and when
using the parameters develeped froem the qg(t) calibration. Thus

the 49.(t) model output (of peak flow rate. Q) does not show the
true varilance between the rain gauge and stream gauge
correlations. '

Should the complex %:(t) be supplemented with sufficient
runoff data (e.g., a stream gauge for each subarea) such asg
optimize each subarea UH model and cj factor for each sterm. then

9:(t) is approximately gc(t) as expressed by Eq. (15) which reduces
to the simple model formulation of Egq. (13) undér the conditicns
of Eq. {16). Thus with sufficient rainfall-runoff data in the
watershed., the qc¢(t) produced var(Q) equals the qs(t) produced
var(G) which equals the true var{Q) with respect to the availahle
{single) rain gauge. Therefore, if a criteria for model
comparisen is that the model replicates the var(Qp) with respect to
the available rain gauge data, then gg(t) does this better than the

discretized model of 9.(t). .

An important fact is that, in general, a single stream gauge
and a single rain gauge is used to calibrate the simple UE model.
Far each storm included in the calibration. optimized parameters
are obtained that best "correlatre” the rain gauge and stream gauge
data. This is only a "correlation" because the available rain
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gauge data oftentimes provides only a gross estimate of the actual
rainfall distributions over the entire watershed. As more storms
are analyzed and "best fit" model parameters are developed, a set
of value are obtained for each model parameter set that can be
arranged into a <freguency distribution. This frequency
distribution or parameter sets displays the statistical
correlation between the available rainfall-runoff data, and the
sssumed model. Consequently., the var(Q) due to the variation in
the model parameter sets reflects the vatiation in the correlarion
between the available rainfall-runoff data. However for the
discretized ("complex"} model, the var{Q) decreases {typically) as
the number of subareas increase where now the var(Q) represents
the model variance in the complex model peak flow rate as the
optimized model parameter sets vary independently in each subarea.
This drop in model output variance is usually advocated by
modelers to represent an increase in modeling accuracy, and
beneficial to the calibration of model parameters. But obviously
the knowledge of the effective rainfall distribution over the
watershed does not increase due to an increased model complexity
by adding more subareas. Rather, the decrease in the var(Q) for a
complex model reflects a departure of the modeling results from
the true catchment hydrologiec behavior.
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Figure 1. Test Watershed Schematic of 9-Subarea Link-Node Model
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Figure 3. S-Graph for W = 0.85
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Figure 4. S-Graph for W = 2.81

90

600



DISCRETIZATION OF HYDROLOGIC MODELS

18°2 = N J0J ydeaBoapdll mojpgng g 3dnbyy

(SHNOH) IWIL

e (1=HO010V4 TIV4NITYH)
W e'311s 39Ny vANvY
FAILD3443 0IYNSVIN

NOIYHINIDONOD JO 1NIOd

TINNVHD N340 319NVLIIH —

SHOLOVA TIvdNIvH 3AI1LD3443

{n'ti4 333) vauvens 6

Moy

055y

05"

G 0Of Gl [¢]] S 4]
| 1 m ] 1]
-1 oo0'z
- 000’y
—
v (s19)0 o
-
-1 ooo'9
MOTd 4O NOILI3YIG ——
5]
YILvenNs | —————
aN3o31 " 000®
o, —
NN Ansusgu)
_ / _ Vd
-’ L)
_ ™ vz o ) poocl
1< {sanoy) swi)
1 I~
AL {1Ps *Jujo4 ojog o
§0:27 1M puo'{ ‘osipgng yaoe ..o:o.s_-

so:%

‘uelihgliiig HojuiDy Balde)3




HROMADKA, McCUEh[, WHITLEY, AND YEN

c c C
/ l J 2 / 3
/ yd /
- = % V% LEGEND
/ /s v 4 -Rain Gauge Measured
Y, % / Cq Effective Rainfall,eg(t)
Ve , e 2 e 3 Ve &X-Stream Gauge
yd d / 7 C,-Effective Rainfail
e yd yd /] Factor to eg(t)
/ v 7 e . 1 -Subarea No,
g /A s
£ ndl V4 sl V4 4
v e / v
7 /s e /
// // e
( rd 4 8 4 9)
4 /
y
y 7 e

(0} TRUE DISTRIBUTION OF EFFECTIVE RAINFALL WITH
RESPECT TO THE RAIN-GAUGE SITE

Cl =0.8
CZ" c.9
. C3= 1.0
1 2 3
C4’ i.0
A Cs' 2.5
4 5 6
Id 8
X
)

{b) ADJUSTED AREA REPRESENTATION QF WATERSHED
WITH RESPECT TO THE RAIN GAUGE DATA

Figure 6. Adjusted Subarea Sizes due to Effective Rainfaﬂ Factors, cy
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