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While much has been written about hydrologic modeling and the successes and failures of models,
little detail has been paid to a key practice in watershed runoff hydrologic models — discretization.
Due to the sparse rainfall-runoff data typically available at a watershed, it may be guestionable
whether the subdivision of the catchment into subareas which are linked together by routing
elements, when there is no data to reconstitute subarea hydrologic parameters, is a “‘better”
approach to modeling the catchment response. In this paper, the subject of catchment discretization
is examined in detail. It is noted that for a linear hydrologic model based on unit hydrographs (for
various levels of discretization into subareas) and translation for channel routing, a discretized
model is equivalent to a simple one-subarea model, and this simple model includes the variation of
effective rainfall over the watershed which is not included in the discretized model.

INTRODUCTION

The typical procedure for using a unit hydrograph (UH}
type model such as TR-20 and HEC-1 is to subdivide a
watershed into subareas which are linked together by
channel or detention basin routing. Parameters are then
assigned to the several UH subarea submodels (e.g.
losses, timing, etc.) and the routing models. Oftentimes,
even though the catchment may be essentially
homogeneous, it will also be discretized into several
subareas which are in turn linked together by routing
elements. For example, it is not uncommon for a nearly
homogeneous (almost uniform development, drainage
patterns, etc.} 1 or 2 square mile catchment to be
subdivided into one or two dozen {or more) subareas.

The questions arise as to whether (1) such subdivision
practices result in “better” models; and (2) are such highly
discretized models *“better” for use in design purposes than
simpler models based on a minimum number of subareas?
In this paper the UH modeling approach is examined as to
the above considerations.

First, a single area model (the “simple” model) based
upon a UH, a time parameter (lag), and a simple loss
function based upon a coupled fixed fraction loss (¥) and a
¢-index (Fm) is developed for a catchment. The simple
model is then calibrated to rainfall-runoff data in order to
develop optimized values for the unit hydrograph (*S$”
graph form), timing (lag), and the loss parameters, i.e., Fm
and Y for each reconstitution analysis. Because each storm
considered resulted in different optimized parameters, a
frequency-distribution is determined for the model
parameters.

The next part of this study is to discretize the watershed
into several subarea schematics linked together by channel
routing elements. Three levels of discretization
(“complex” models) are considered; namely, a 3-, 9-, and
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18- subarea model. Each subarea, is assumed to be
described by the same UH model as used in the simple
madel; that is, the S-graph (as a function of lag), Fm and ¥
are assumed to take on values contained in the range of
values developed from the simple model reconstitution
studies. (Details of model parameters are contained in a
subsequent section of this paper.)

The third part of this paper considers the model output
of peak flow rate () for each of the several models
considered. More specifically, the variance of the peak
flow rate or Var{2) as a result of parameter uncertainty is
examined for each of the complex models and also the
simple model. Several variations on this theme are
considered; such as the effects of homogeneity and non-
homogeneity on loss rates in a complex model, the Var(Q)
due to channel routing parameter uncertainty. and the
Var(Q) due to storm magnitude (e.g., 100-year versus 10-
year design storms). An estimator giving a bound on the
Var(Q) is developed. It is shown that, usually, Var(Q)
decreases as the number of subareas increase.

Addressed in this study is the issue that, in general, a
single stream pauge and a single rain gauge is used to
calibrate the simple UH model. For each storm reconsti-
tuted, optimized parameters are obtained which best
“correlate” the rain gauge and stream gauge data. This is
only a “correlation” because the available rain gauge data
oftentimes provides only a gross estimate of the actual
rainfall distributions over the entire watershed. As more
storms are analyzed and “*best fit” model paramelers are
developed, a set of values are obtained for each model
parameter set which can be arranged into a frequency-
distribution. This frequency-distribution or parameter sets
displays the statistical correlation between the available
rainfall-runoff data, and the assumed model. Consequéntly,
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the Var(Q) due to the variation in the model optimized
parameter sets reflects the variation in the correlation
between the available rainfail-runoff data.

However for the discretized (““complex™) model, the
Var((J} decreases (typically) as the number of subareas
increase where now the Var(Q) represents the variance in
the complex model peak flow rate as the optimized model
parameter sets vary independently in each subarea. But
obviously the knowledge of the effective rainfall distribu-
tion over the watershed does not increase due to an
increased model complexity by adding more subareas.
Rather, the decrease in the Var{Q) for a complex modeli
reflects a departure of the modeling results from the true
catchment hydrologic behavior.

1. RUNOFF HYDROGRAPH MODEL

The unit hydrograph (UH) model is based upon several
parameters: namely, two loss rate parameters (a phi index
coupled with a fixed percentage), an S-graph, and catch-
ment lag.

Loss function
The loss function, fi£), used in the model is defined by

Yi(r). for YI(1) < Fm
Suy= (1)

Fm, otherwise

where ¥ is the low loss fraction, J(¢) is rainfall intensity at
time ¢, and Fm is a maximum loss rate.

Figure 1 illustrates the considered loss rate function.
The use of a constant percentage loss rate ¥ in Eq. 1 is
reported in Scully and Bender (1969)'. The use of a phi
(¢-index) method in effective rainfall calculations is also
well-known (e.g., Kibler)?,
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Figure 1. Soil-lass function

For a given storm, the low loss fraction is determined
by

Y=1-Y {2)

where Y is the ratio of {1otal measured effective rainfall)/
(total measured runoff). _

From the above relationships, the low loss fraction, ¥,
acts as a fixed loss rate percentage, whereas Fm serves as
an upper bound to the possible values of f{) = FI(r).
Values for Fp, are developed from the rainfall-runoff
reconstitution studies of several significant storm events for
the watershed under study.

S-graph

The S-graph representation of the unit hydrograph (e.g..
McCuen and Bondelid. 1983°. Chow and Kulandalswamy,
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1982% Mays and Coles, 1980°) can be used to develop
unit hydrographs corresponding to various watershed lag
estimates. The S-graph is developed by rainfall-runoff
reconstitution studies of several storms. Because the loss
parameter Y is readily determined in Eq. (2), the S-graph
and Fm parameters are determined for each storm
considered by trial-and-error until an optimum fit is
developed between the model produced runoff hydrograph
and measured runoff hydrograph (i.e., a reconstitution
analysis).

Lag

Fundamental to any hydrologic model is a catchment
timing parameter. The watershed lag is defined as the time
from the beginning of effective rainfall to that time corres-
ponding to 50-percent of the S-graph ultimate discharge.
Catchment lag is estimated directly from the S-graph
reconstituted from each storm considered.

Runoff hydrograph model

The UH model results in a time distribution of runoff
((#) given by the standard convolution integral representa-
tion of

I
Q= [ elr-s) u(s) ds (3)
[

where Q(f) is the catchment flow rate at the point of
concentration; e(t-s) is the effective rainfall intensity; and
#(s) is the unit hydrograph developed from the particular
S-graph.

Optimized parameter sets and model uncertainty analysis

In a reconstitution study, the ““best fit” between the
model runoff hydrograph Q(t) and the measured (Stream
gauge) runoff hydrograph is determined by trial-and-error.
Typically, ¥ was estimated by Eq. (2) and this estimate
was used in fitting while the S-graph and Fm parameters
were optimized, and then Y was varied and the cycle
repeated, if needed.

Consequently, each storm has an associated set of
parameters, those for the i-th storm being represented by
the vector P; which correlate (by the model) the available
rainfall and runoff data. A different storm would have
ancther optimum parameter set. Indeed, it is possible for
the available rain gauge data to indicate nearly identical
storm events and yet the measured runoff hydrographs to
be so dissimilar that the two sets of “best-fit"" parameters
are quite different.

Ideally, hundreds of significant storm events would be
available for the study watershed so that hundreds of
optimized parameter sets could be determined. Then, the
universe spanned by these parameter sets could be
analyzed in order to develop a frequency-distribution for
the parameter sets. Then for design purposes, the variation
in the design output can be analyzed by evaluating the
entire universe of parameter sets. However due to limited
data, only a few storms are available for developing the
optimized parameter sets and additional data is required in -
order to analyze the model uncertainty.

To supplement the available data. additiona! informa-,
tion can be obtained from neighboring watersheds
considered ““hydrologically” similar. Thus, several water-;
sheds are grouped together in order to obtain a larger



popuiation of optimized parameter sets. But when even
several watersheds considered together, the universe of
optimum parameter sets is still small.

Another consumption which can be used to facilitate the
model uncertainty analysis is to assume the individual
parameters (e.g., the S-graph and loss rate parameters) to
be statistically independent. That is, each optimum
parameter set is composed of individual parameter values
which have their own respective frequency-distributions,
and the probability of occurrence of a particular optimum
parameter set is equal to the product of the several
parameter probability of occurrences. In this fashion. the
universe of possible “optimum™ parameter sets grows
enormously, and a model uncertainty analysis becomes
more tractable,

It is noted that although the model uncertainty analysis
is a key concern, this study focuses more on the differences
in decision making resuiting from the use of simpler UH
models using a few subareas as compared to UH models
using a highly discretized subarea schematic. Consequently,
it is assumed that the conclusions drawn between use of the
two levels of model discretization by use of the expanding
universe of parameter sets are similar to the conclusions
drawn by use of a frequency-distribution of optimized
parameter sets, had this frequency distribution been of
sufficient sample size.

Rainfall-runoff data

Considerable rainfall-runoff calibration data has been
prepared by the Corps of Engineers {COE) for use in their
flood control design and planning studies. Much of this
information has been prepared during the course of routine
flood control studies in Orange County and Los Angeles
County, but additional information has been compiled in pre-
liminary form for ongoing COE studies for the massive Santa
Ana River project { Los Angeles County Drainage Area, or
LACDA). The watershed information available includes
rainfall-runoff reconstitution studies for three or more
significant storms for each watershed, developing optimized
estimates for the S-graph, lag, and peak loss rate at the peak
rainfall intensities. Although the COE used a more rational
Horton type loss function which decreases with time, only the
foss rate that occurred during the peak storm rainfalls was
used in the calibration effort reported herein.

A total of 12 watersheds were considered in detail for our
study. Seven of the watersheds are located in Los Angeles
County while the other five catchments are in Orange County
{Figure 2). Several other local watersheds were also
considered in light of previous COE studies that resulted in
additional estimates of loss rates, S-graphs, and lag values.
Table 1 provides an itemization of data obtained from the
COE studies, and watershed data assumed for catchments
considered hydrologically similar to the COE study
catchments.

Peak loss rate, F, P

From Table 1, several peak rainfall loss rates are tabulated
which include, when appropriate, two loss rates for double-
peak storms. The range of values for all Fp estimates lie
between 0.30 and 0.65 inch/hour with the highest value
occurring in Verdugo Wash which has substantial open space
in foothill areas. Except for Verdugo Wash, 0.20 < F, )i
< 0.60 which is a variation in values of the order noted for
Alhambra Wash alone. Figure 3 shows a histogram of Fp
values for the several watersheds. It is evident fromthe figures
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that 88 percent of Fp values are between 0.20 and 0.45 inch/
hour, with 77 percent of the values falling between (.20 and
0.40 inch/hour. Consequently, a regional mean value of F,
equal to 0,30 inch/hour approximates nearly 80 percent of
the Fp values, for all watersheds. for all storms, within
0.10 inch/hour.

e
Verdugo ("/
Y :?r
!
LOS ANGI A é%r
readia
ELES Rubio a N
Alhambra A & A g’t
Eaton ~

Ac::mpcon(lzo th) |cn£ﬁss co.
-

-
Compton {Greenisof}
a R“

i !

)
El Modena |itvine
a
SANTA

Eoat Qarden Grove Wintersburg A

ANA Son Diege
Santad Ang Dalhi &

F-]
4
C/
~
‘c
rroye Trabuce &
T

9 -] 1O miles
|

Figure 2. Location of Drainage Basins

v
L 4

N QN 0 2]
NRMmIed R

Fp(inch/hour}
Figure 3. Frequency-distribution for Fp

S-graph

Each of the watersheds listed in Table 1 has
S-graphs developed for each of the storms where peak loss
rate values were developed. For example, Figure 4 shows
the several S-graphs developed for Alhambra Wash. By
averaging the several S-graph ordinates {developed from
rainfail-runoff data), an average S-graph was obtained. By
combining the several watershed average S-graphs (Figure 5}
into asingle plot, an average of averaged S-graphs is obtained.
This regionalized S-graph(Urban S-graph in Figure 5) can be
proposed as a regionalized S-graph for the several water-
sheds. Indeed, the variation in S-graphs for a single watershed
for different storms (see Figure 4} is of the order of magnitude
of variation seen between the several catchment averaged
S-graphs. ’

In order to quantify the effects of variations in the S-graph
due to variations in storms and in watersheds, the scaling of
Figure 6 was used where the variable X" signifies the
average value of an arbitrary S-graph as a linear combination
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Table 1. Waiershed Characreristics

Watershed Geometry

Calibration Results

Length of Percent
. Area Length Centroid Slope Impervious Tc Storm  Peak Fp Lag  Basin
Watershed Name (mi?)  (mi) (mi) (ft/mi) (%) (Hrs} Date (inch/hr) (hrs) factor
Alhambra Wash! 13.67 8.62 4.17 R2.4 45 0.8 Feb. 78 0.59,0.24 0.62 0.015
Mar. 78 0.35,0.29
Feb. 80 0.24
Compton 2! 24.66 12.69 6.63 13.8 55 2.22 Feb. 78 0.36 0.94 0.015
Mar. 78 0.29
Feb. 80 0.44
Verdugo Wash! 26.8 10.98 5.49 316.9 20 — Feb. 78 0.65 0.64 0.0i6
Limekitn! 10.3 1.77 3.41 295.7 25 —  Feb. 78 0.27 0.73 0.026
Feb. 80 0.27
San Jose? 83.4  23.00 8.5 60.0 18 Feb.78  0.20 1.66 0020
Feb. 80 0.39 )
Sepulveda? 152.0 19.0 9.0 143.0 24 — Feb. 78 0.22,0.21 1.12 0017
Mar. 78 0.32
Feb. 80 0.42
Eaton Wash! 11.02¢4  8.14 341 90.9 40 1.05 — — — 00157
{57%)
Rubio Wash! 12.20° 947 5.11 125.7 40 0.68 — - — 00157
(3%)
Arcadia Wash! 7.70%  5.87 3.03 156.7 45 0.60 — — — 00158
(14%)
Compton 1! 15.08 9.47 379 14.3 55 1.92 — — — 00158
Dominguez! © 3730 1136 4.92 7.9 60 2.08 - — —  0.0158
Santa Ana Delhi? 17.6 8.71 4.17 16.0 40 1.73 — — — 0,053
0.04010
Westminster? 6.7 5.65 1.39 13 40 — — — 0.079°
0.04010
El Modena-Irvine? 11.9 6.34 2.69 52 40 0.78 — — —  0.028°
Garden Grove-
Wintersberg! 20.8 11.74 4,73 10.6 64 1.98 — — — —
San Diego Creek! 368 142 8.52 95.0 20 1.39 — — — —_
Notes

: Watershed Geometry based on COE LACDA 5Study.

: Area reduced 3% due to debris basin.
: Area reduced 14% due to several debris basins.

TN 20 = L I L B e

: COE recommended basin factor for flood flows.

of the steepest and flattest S-graphs obtained. That is. all the
S-graphs (all storms. all catchments) lie between the Feb.
1978 storm Alhambra S-graph (X = 1) and the San Jose
S-graph (X = 0). To approximale a particular S-graph of the
sample set,

SX)=XS5, +(1-X}8, {4)

where S(X)istheS-graphas afuncticnof X.and .S and§, are
the Alhambra (Feb. 1978 storm) and San Jose S-graphs,
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: Watershed Geometry based on review of quadrangle maps and LACFCD storm drain maps.

: Watershed Geometry based on COE Reconstitution Study for Santa Ana Delhi and Westminster Channels (June, 1983).
: Area reduced 57% due to several debris basins and Eaton Wash Dam reservoir, and groundwater recharge ponds.

: 0.013 basin factor reported by COE (subarea characteristics, June, 1984).
: 0.015 basin factor assumed due to similar watershed values of 0.0135,
: Average basin factor computed from reconstitution studies.

respectively. Figure 7 shows the population distribution of !
where each watershed is weighted equally in the total distrid
tion (i.e.. each watershed is represented by an equal num?
of X entries). Table 2 lists the X values obtained from
Figure 6 scalings of each catchment $-graph. In the table,
“upper” and “lower™ X-value that corresponds to the X
ordinate at 80 percent and 20 percent of ultimate discha!
values, respectively. is listed.
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Table 2. Catchment S-Graph X-Values
Watershed Name Storm X (Upper) X (Lower) X (Avg)
Alhambra Feb. 78 1.00 1.00 1.60
Feb. 80 0.95 .60 0.78
Mar. 78 0.70 .80 0.75
Limekiln Feb. 78 0.50 0.80 0.65
Feb. 80 0.80 .00 0.90(2}
Sepulveda AVG. 0.90 0.80 0.85(3)
Compton AVG. 0.90 1.00 0.95(3)
Westminster AVG. 0.60 0.60 0.60(3)
Santa Ana Delhi AVG. 0.80 1.00 0.90(3}
Urban AVG. 0.90 0.80 0.85

In Table 2, the numbers in parenthesis indicate a weighting of the average
X value. That is, due to only the average S-graph (previously derived by
the COE) being available, it is weighted so thatall catchments are equally
represented in the sample set.
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Figure 7. Frequency-Distribution for S-Graph “X™'

Catchment lag

From the S-graph reconstituted for each storm, alag value
is determined by the definition. Because each storm analyzed
resulted in a different optimum S-graph, the corresponding
lag also varied. Based on the several storms considered for all
the watersheds, the variation in lag is represented by the
frequency-distribution shown in Figure 8.
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Figure 8. Frequency-Distribution for Lag

Low-loss fraction, ¥

The several reconstituted ¥ parameters closely followed
the relationship of Eq. (2). Consequently, there was only a
small level of variation between the initial estimate of ¥ from
Eq. {2}, and the optimized (reconstituted) value. The
uncertainty in measured rain gauge precipitation depths and
the noted Y variations are modeled by the frequency-
distribution for ¥ as shown in Figure 9, '

0.60

0.20 0.20

i 1 M
0 Q67 1.0 033 20
Y /(MEAN-T)
Figure 9. Frequency-Distribution for ¥

Evaluating UH model certainty

The UH model parameter frequency-distributions of
Figures 3, 7, 8, 9 can be used to develop a universe of
parameter sets, P;, for evaluating the model output variance
due to the variations in model parameters. From the figures it
is seen that there are (6) x (B) x (3) x (3) = 432 possible
parameter sets as a combination of all parameter values, each
with a probability of occurrence equal to the product of the
individual parameter probability of occurrences.

It is recalled from a previous discussion, however, that
this universe of parameter sets is an expansion of the true
optimized parameter sets obtained from reconstitution studies
of rainfall-runoff data. Furthermore, it is assumed in this
study that the variations in parameters (from the expanded
universe of parameter sets) is equal to the variance in model
output due to the random selection of elemenits in the universe
of optimized parameter sets, had a sufficient number of
elements been available for study purposes.



2. TEST WATERSHEDS

Four watershed schematics are considered in this study in
order to evaluate the effects of discretization. The *"simple™
model represents the entire catchment of 4500-acres as a
single subarea. The remaining three “complex™ models are
based upon 3-. 9-. and 18- subareas linked together by
channel routing links as shown in Figures 10, 11 and 12.

Each subarea has an associated runoff hydrograph rep-
resentation given by Eq. (3). Subarea model parameters of
Fm, ¥, X, and lag are chosen for the particular application
problem considered.

Parameter identification

The usual procedure in using UH hydrologic models is to
utilize regionalized model parameters of loss rates and the
UH for subareas and to develop a link-node model schematic.
The issue is whether the discretized (link-node) schematic is
necessarily a*'better” model than a simple single area model.

Assuming the variations in subarea parameters are identi-
calto the variations in the regionalized parameters, the model
uncertainty in estimated  can be developed by varying all
subarea parameters independently, resulting in a distribution
of possible () values. To evaluate modeling uncertainty, it is
assumed in this study that all subarea selected design
parameter estimates (Pq) are the mean values, and that the
frequency-distributions of the parameters in the individual
subarcas are given by the simple 3-value distribution plots
shown in Figure 13.

In all cases, the loss rate parameters are chosen for all 3
complex models so that the area-average of the subarea ¥ and
Fm mean values equals the simple model mean value for ¥
and Fm. Additicnally, the subarea X mean values (S-graph)
are arbitrarily assigned and channel routing increments
defined so that the complex model lag time equals the lag time
of the single model.

It is noted that although the distribution of  from each
model is of interest, the focus of this study is on the Var(Q) as
developed from each mode} schematic.

3. THE EFFECTS OF DISCRETIZATION
ON VAR(Q)

For the simple model, a Q is developed for each choice of
parameter sets determined by the respective frequency-
distributions. Consequently, using the frequency-distributions
of Figure 13 indicates that 3*= 81 runs are needed to exhaust
the possible parameters sets. For each parameter set, Pj, the
Prob(P;) equals the product of the individual parameter value
frequencies. A frequency-distribution of Q values is developed
by using all parameter sets.

In all cases, the rainfall input is a design storm pattern
composed of nested, identical return-frequency rainfalls
(without depth-area adjustment) such as described in HEC
Training Document #15 (1982).

Figure 14 shows the O frequency-distribution from the
simple model for a 100-year storm. Shown in the figure are the
estimated means and their standard deviations for an
exhaustion analysis and three Monte Carlo studies. The plots
indicate that a Monte Carlo method with a 1000 or 5000
number of simulations can achieve the same accuracy as the
exhaustion model can. The use of Monte Carlo method is
hecessary due to the large number of elements composing the
sample universe for the discretized models.
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Discretization in parallel

Assuming the watershed can be subdivided in parallel
subareas (Figure 15), and every subarea has identical para-
meters, it is seen that the Var(Q) drops significantly. Other
variations in this problem are to let the subarea sizes vary,
include parameter nonhomogeneity, and increase the number
of subareas. Table 3 summarizes the modeling results. From
Table 3. Va((J) decreases as the number of subareas
increase. Also parameter nonhomogeneity did not signifi-
cantly impact the Var((Q).
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Figure 10. Test Watershed Schematic of 3-Subarea
Link-Node Model

Table 3. Discretization in Parallel Model Resulits

Test Subarea Subarea Lag
No. No. (acres} (hrs) Fm ¥
1

X on gn
4500 10 020 025 070 4826 784

1
2 1 2250 1.0 020 025 0.70

2 2250 1.0 020 0253 070 4724 354
3 I 3000 10 020 025 070

2 1500 1.0 020 025 070 4735 575
4 1 3000 1.0 0225 0.275 0.675

2 1500 045 0.150 0.200 0.750 35410 707
5 I-6 750 10 020 023 070 4669 302
Notes:

' is the mean peak flow rate {3}
o is the standard deviation of Q
* 5000-run Monte Carlo simulations used
4 100-year design storm used for all studies
However for homogeneous subareas of equal size, the
Var(Q) is empirically estimated by

Vaim(Q) = ;:;Var.(Q) (5)

where m is the number of subareas. and Var (Q) is the Var(())
for the single area model. Hence from Eq. (3), Var,,(Q) —0
as m—=,
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Discretization in series

Subdivision of the catchment in series and linking the
subareas together by channel routing is the generai modeling
situation, Using convex channel routing, which operates on a
single reproducible parameter €. and assuming a frequency-
distribution as shown in Figure 13, an analysis of the Var(Q)
can be prepared.

Figure 16 shows the two subareas schematic and channe|
information. Both a steep (fast flow) and mild (slow fiow)
channel are considered. Also shown are Var{(Q) results with
and without variations in the convex routing parameter C.
Table 4 summarizes the Var{ Q) modeling results for a variety
of conditions, using the schematics shown in Figures 10. 11,
12, and 16.

Magnirude of storm

Another variant of the above analysis is to consider a
10-year design storm rather than a 100-year design storm.
As expected., the mean () values decreased from the Table 4
values, but the Var(Q) decreased only slightly. However, it
was still true that Var( Q) decreased as the numberof subareas
increased.

4, 18 DISCRETIZATION BETTER?

In order to better explain the interplay between the several
previous discussions: consider the following thought
problem: Let the watershed be essentially homogeneous,
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nearly free-draining, with a stream gauge and an off-site rain
gauge. (The rain gauge is assumed off-site to emphasize a
point.)

Suppose a set of 100 severe storms occur such that the
measured rainfall, p (r) and measured effective rainfalls,
e‘(f) at the rain gauge {which has soil similar to the
watershed} is known, for ¢ = 1,2, . . ., 100. Furthermore,
suppose each p'(¢) and ef(¢) is identical and equal to a single
pattern, p(f}, eg(¢), respectively, for each storm, while the
rainfalls over the catchment differ for each storm. Therefore
even though each i) and eg(t) is identical, the runoff
hydrograph Q’ t) is different for every i. Let Qﬁ be the peak

flow rate for each Qf(z).
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Figure 16. Two Subareas Mode! Q Freguency-
Distribution (100-vear Storm)

Then from a frequency-distribution plot of the (), th
Var((Jp} canbe computed as correlated to the available ram»
fall data { at the rain gauge site), and for the sample set of {Q“D

By calibrating the simple model, g.(1), to each o, a
set of optimized parameters P; are developed for each
i=12,...,100. Since the rainfall distribution at the rain
gauge, p'(¢) = p(r), is fixed, the Van(@) from g(¢} due to the
variation in optimized parameter sets, | i, approximately
equals the Var{Qp).

In contrast, when discretizing the cawchment, Var(Q)
produced by the discretized model essentially decreases
significantly with the level of discretization, when mastly
parallel routing is used. when using the parameters developed
from the g ¢(t) calibration. Thus the complex model output (of
peak flow rate, Q) does not show the true natural variance
hetween the rain gauge and stream gauge correlations.

However with a stream gauge in each subarea, each
subarea’s mode! parameters can be optimized for each storm
such that the complex modei produced Var((Q)) equals the
simple model produced var(Q} which equals the true Yar((Q}
with respect to the available (single) rain gauge.

Therefore, if a criteria for model comparison is that the
model replicates the Var((Jp) with respect to the available
rain gauge data, then the simple model does this better than
the highly discretized model.
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Table 4. Discretization in Series Modeling Results

Test Subarea Area Lag

No. No.  (acres) (hrs) Fm Y X flowh O gid) oid
1 1.2 2250 1.0 020 0.25 0.70 fast  no 4717 514
2 1.2 2250 1.0 0.20 0.25 0.70 fast yes 4706 514
3 1.2 2250 1.0 0.20 025 070 slow no 4674 514
4 1.2 225¢ 1.0 Q.20 0.25 070 slow  vyes 4661 537
5 1 2250 0.83 0.20 0.25 0.70 slow no 4977 547

2 2250 1.0 0.20 025 0.70  slow yes 4962 572
69 1 1500 0.85 0.075 0.30 0.475

2 750 L0 015 0.15 0.85

3 2250 1.0 0.30 0.25 0.80 fast no 4977 528
7 fast  yes 4963 550
8 slow no 5009 529
9 slow ves 4988 549
10 ) 400 .85 0.20 0.20 0.65

2 600 .85 0.10 0.15 0.80

3 550 .90 0.20 0.20 0.75

4 350 .95 0.30 Q.35 Q.70

5 450 1.0 0.20 0.30 0.85

6 650 1.0 0.30 0.35 0.70

7 500 .80 0.20 (.30 0.60

8 360 .80 0.30 0.25 0.63

[ 640 .90 0.20 025 060 slow no 4887 290
11 slow  ves 4992 294
1200 (1-18) ---- hgmogeneous --------——-—---  slow no 5961 274
13 slow  ves 5945 277
Notes:

flow: “'fast™ = steep channel. 'slow™ = mild channei

i

2 = convex routing C parameter variation

} Q= mean

4 ¢ = standard deviation in @

5 3 = subarea schematic {Figure 10)

6 g = subarea schematic {Figure 11}

7 18 = subarea schematic (Figure 12)

8 100-year design storm used in all studies

¥ 5000-run Monte Carlo simulations used
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