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TECHNICAL NOTE

A TEST FOR ACCURACY OF NUMERICAL SOLUTIONS
OF STEADY-STATE HEAT TRANSFER PROBLEMS
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While the number of techniques for numericaily approximating steady-state heat transfer
problems continues to grow (e.g., domain methods and variants such as finite dif-
ferences and finite elements, boundary integral methods, and collocation metheds),
there still is a need for a procedure that develops exact solutions to simplified domain
configurations to provide a family of test problems for use in evaluating the merits
of a particular technique. In this paper an analytic solution to a family of mixed
boundary value problems of the two-dimensional Laplace equation over the unit square
is developed. Associated with this family of solutions is an error bound based on a-
lemma by Hopf, The mathematical development enables the numerical analyst fo test
the accuracy of other numerical techniques and evaluate the merits of a particular
new development or variant of the base method.

INTRODUCTION

Mixed boundary value problems for the Laplacian often arise in engineering
problems such as sieady-state heat transfer, particularly in the form where the so-
lution u to be found must be harmonic in the interior of a domain, must be a given
function on one part of the boundary, and must have normal derivative zero on the
remaining part of the boundary. See, for example, [1] for its ability to easily handle
such mixed problems. While the number of techniques for numerically approximat-
ing steady-state heat transfer problems continues to grow (e.¢., domain methods and
variants such as finite differences and finite elements, boundary integral methods,
and collocation methods), there still is a need for a procedure that develops exact
solutions to simplified domain configurations to provide a family of test problems
for use in evaluating the merits of a particular technique. That is, it is useful to have
sample problems, with computable solutions with precise error bounds, that can be
used to test and compare different numerical methods. Such a problem is discussed
in the following text. It can casily be solved by the classical method of separation
of variables and the explicitly given solution can be computed to a given degree of
accuracy. By rotating the domain or interchanging the variables x and y, solutions
can be computed for a set of related test problems.

MATHEMATICAL DISCUSSION
The problem is to find u(x,y) so that
Vu=0 0O<x<l,0<y<l (n
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NOMENCLATURE
a.b, series constants u potential
du/dn  normal derivative of u Ve Laplacian of u

gy specified boundary condition of # on
unit square at x = 1

uG,yy=10 0<y<1 (2)
ux, 1) =0 0<x<] (3)
u(l, y) = g(» 0<y<i 4
du
— =0 y=0,0<x<I1 (5
dn

where du/dn denotes the normal derivative of u.
By the method of separation of variables the functions

T
sinh(X,x) cos(A,v) A, =(2n+ 1) —2—, n=40,1, ...

are found that satisfy conditions (1), (2), (3), and (5). These four conditions will
also be satisfied by the series

> b, sinh(A,x) cos(\,y) 6)

under certain mild hypotheses, and condition (4) will also be satisfied if the Fourier
cosing series

> b, sinh(r,) cos(\,) 7

converges to g(y). In this case

1

a, = b, sinh(),) = 2f g(y) cos(h,y) dy (8)

0

If we suppose that g(¥) is continuous with g{0) = g(1) = 0 and that g has a
derivative g’, except possibly at a finite number of peints, with [ile' (0T dx finite,
then the series (6) with coefficients given by (8) converges to the true solution uni-
formly on the unit square and its boundary. This is established by an argument sim-
ilar to that given in [2, pp. 81-98], but instead of the maximum principle [2, p. 97}
a lemma due to Hopf [3], which applies to the mixed boundary value problem, is
needed. The conditions g(0) = g(1) = 0 are involved in the proof of the uniform
convergence of the series to u on all of the square, and this uniform convergence
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makes it possible to give uniform error bounds for the approximation of the solution
by a partial sum of the series.

One theoretical bound on the difference between the true solution # and the
solution uy obtained by summing up the first N terms of the series above is [2, p. 97]

|uCx, ¥) = un(x, ¥)| = AB

where

N

A*=2 J [P dy — > M
]

0

and

2 N
4 w 1
T 6 o (2n+ 1)
Both A and B go to zero as N tends to infinity. This bound establishes the uniform

convergence of uy to . A more practical bound, which follows from Hopf’s lemma,
is

|“ - uNi = max{'“N(l- b7 g(y)| 0<y<1} 9)

One advantage of the explicit representation of « given by the series (6) with
coefficients given by (8) is that various error computations are simplified. For ex-
ample, in computing uy(x, y) for x < 1, the bound given in Eq. (9) is too large.
For a function g bounded in absolute value by M, the nth term in the series (6) is
bounded by 2M sinh(\,s)/sinh(),) and this is approximated closely by

2M exp[—A, (1 = x)] (10}

for x bounded away from 0 and »n not too small. Seven of the eight functions given
in the program below are bounded by M = 1 and the other is bounded by M =
¢ — 1; a comparison with the geometric series with terms in Eg. (10) shows that on
the grid x, y = 0.1(0.1)0.9 thirty terms will give three decimal accuracy. The Fourier
series convergence of u,(1, ¥) to g(y) on the boundary x = 1, 0 < y < 1, is generally
much slower than this geometric convergence in the interior.

PROGRAMMING DISCUSSION

A computer program (FORTRAN) was prepared to implement the above de-
velopment on a personal computer. A copy of the code listing can be obtained from
the first author.

The program begins by calling the subroutine “chooseG,” which displays eight
different choices for the function g{y) to be prescribed on x = 1, 0 <y < 1. The
number of the equation chosen is passed to common as the variable NoG. These
functions can easily be changed by changing the character variable ge(i), which dis-
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plays the ith equation, and changing the actual equation for the ith g given in the
function “g.”

Note that g{y) = cos(A,y), which is included only once in the program list of
eight functions, for n = 0, gives a series (6) with only one term; for large n this
provides an interesting test for any numerical method.

In the subroutine “coefficients” 10 terms in the series (6) are obtained by cal-
culating the Fourier cosine coefficients of g, given by Eq. (8), by means of a Simp-
son’s rule integration, which is done in the functions “simpson” and “sumf.” In
order to use Simpson'’s rule in the form given, which is for a function of one variable,
for the integrand g(y) cos(A,¥), which is a function of both v and A,, the function
“geos” uses the function “g” and the value of A, that is passed through common.

The error bound of Eq. (9) is estimated by computing, in the function “error-
bound,” the maximum of the values |uy(1, ¥) — g(3)| for y = 0.01(0.01)0.99. With
this information, as well as the size of the last Fourier cosine coefficient, the user
can decide whether or not to add 10 more terms to the sum of uy. As the commenis
in the function “u” indicate, in computing u,, the factor sinh(h,x)/sinh(x,) will cause
overflow unless some care is taken,

The subroutine “output™ prints out a comparison of uy(1, v) with g(y), v =
0.1(0.1)0.9, as well as a matrix of the values of u(x, v) for x, y = 0.1(0. D09, It
is also possible to compute the value of uy(x, y) for input values of x and y.

This program was compiied on an IBM personal computer using the Lahey
Computer System's F77L compiler, which, as an extension to FORTRAN 77, allows
31 character variable names.

APPLICATION
Mixed Boundary Value Problem on the Unit Square

A

The function u is harmonic in the interior; is zero on the sides x = 0, 0
y<landy = 1,0 < x < 1; and has zero normal derivative on the side y =
0,0 < x<1.0Onthesidex=1,0 <y <1, uis the given function g(y) =
min(exp(2y} — 1, exp (2(1 — y)) — 1).

Comparison of g with xonx = 1,0 <y < 1

g(y) = 0221 0492 0.822 1.226 1.718 1.226 0.822 0.492 0.221
u(l,y) = 0.221 0.492 0.822 1.226 1.682 1.226 0.822 0.492 0.221
y = 01 02 03 04 05 06 07 08 09

The error in approximating the true solution of u is less than 0.367E-01. In the series
30 terms were used.
The values of u are given below on the grid x, y = 0.1(C.1)0.9:

y =101 0.060 0.121 0.182 0.243 0.302 0.354 0.392 . 0.399 0.352
y =02 0.060 0.120 0.182 0.246 0.311 0.376 0.437 0.487 0,511
y=03 0.059 0.118 0.181 0.248 0.32] 0.402 0.493 0.598 0.716
y =04 0.056 0.114 0.175 0.244 0.322 0.416 0.535 0.695 0.922
y =05 0.051 0.105 0.163 0.230 0.309 0.408 0.539 0.725 1.023
y =06 0045 0.092 0.144 0.204 0.276 0.368 0.4%0 0.659 0.902



A TEST FOR ACCURACY OF NUMERICAL SOLUTIONS 509

y =07 0.036 0.074 0.116 0.165 0.225 0.300 0.397 0.521 0.672
y=0.8 0025 0.052 0.081 0.116 0.158 0.210 0.275 0.351 0.431
y =09 0.013 0.027 0.042 0.060 0.082 0.108 0.140 0.175 0.208

x=01 x=02 x=03 x=04 x=05 x=06 x=0.7 x=08 x=09

CONCLUSIONS

An analytic solution to a family of mixed boundary value problems for the
Laplace equation in two dimensions for a unit square domain is developed. The
boundary conditions include zero flux along one side, zero potential (temperature)
along two sides, and an arbitrarily specified function for potential along the last side.
Because the last side’s boundary condition is arbitrary, an infinity of test problems
can be developed to test other numerical solutions for the accuracy of the method.
Also included 1s an error bound calculation procedure based on a lemma by Hopf.
A computer code listing and program documentation can be obtained from the first
author.
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