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ABSTRACT

The use of the Complex Varfable Boundary Element
vethod (CVBEM) is a new numerical approach for two-
gimensional Laplace and Poisson Problems. The CVBEM
can be formulated either by the Cauchy integral theorem
or by the generalized Fourier series analysis. A major
venefit in the use of the CVBEM over other numerical
nethods is the accurate and easy-to-use "approximate
soundary” error evaluation technique. The CVBEM ap-
praoch can be used directly in engineering applications,
or used to provide a wide range of highly accurate ap-
aroximations for two-dimensional phase change problems
‘where the freezing front movement is slow) for check-
ing modeling results produced by other numerical
~ethods.

NTRODUCTION

The use of the Complex Yariable Boundary Element
Yethod (CVBEM) to model soii-water phase change effects
% @ new numerical approach to this class of problems.
N previous work, Hromadka et al.(7) compared the CVBEM
iohnfnn to & domain solution method and prototype data
er the Deadhorse Airport runway at Prudhoe Bay, Alaska,
ind Hramadka and Berg{4) applied the CVBEM to the pro-
Fgm of predicting freezing fronts in two-dimensional
;Oﬂ systems. In another work, the model is further
“ttended to include an approximation of soil-water flow
Hromadka and Guymon(5)}. In contrast to the CVBEM
iDproach, an example in the use of real variable bound-
:;y element methods (Brebbia(l)) in the approximation
: such moving boundary phase thange problems and a
,§Y1ew of the pertinent literature is given in 0'Niell

o Hromaqka and Guymon{6} developed an error estimation
.ene which exactly evaluates the error distribution
N thE.Prob1em boundary with rvesults from the CVBEM
ﬁg;ox1mator matching the known boundary conditions.
:Oimerror determination is used to add boundary nodes
inq iPTOVe accuracy. Thus, the CVBEM permits a direct
.HVO;mned1ate determination of the approximation error
o ved in the solution of an assumed Laplacian system.
* Medeling accyracy is valuated by the determination
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of an approximate boundary upon which the CVBEM provides
an exact solution. Although inhomogeneity (and aniso-
tropy) can be included in the CVBEM model, the resulting
fully-populated matrix system quickly becomes large.
Therefore in this work, the domain is assumed homogeneous
and isotropic except for differences in frozen and thawed
conduction parameters for frozen and thawed regions,
respectively.

Because the numerical technique is a boundary inte-
gral approach, the control volume thermal regime is
modeled with respect to the boundary values and, there-
fore, the data entry requirements are significantly less
than that usually required of domain methods such as
finite-differences or finite-elements. Soil-water phase
change along the freezing front is modeled as a simple
balance between computed heat flux and the evolution of
soil-water volumetric latent heat of fusion.

HEAT FLOW MODEL

For a wide range of s0il freezing {or thawing) pro-
blems, the freezing front movement is sufficiently slow
such that the governing heat flow eguation can be modeled
using a timestepped steady state heat flow approximation.
That is for small durations of time, the heat flux along
the freezing front can be computed assuming the tempera-
distribution within the frozen (or thawed] regions are
potential functions (i.e., the Laplace equation applies).
Figure 1 illustrates a typical two-phase problem defini-
tion where the heat flow mode} solves for heat flux
along the freezing front by solving the Laplace equation
{by use of potential functions) in both the frozen and
thawed regions.

To develop mathematical models of the Lapiace equa-
tion in each region, a CVBEM approximator is generated
which matches specified boundary conditions of either
temperature or flux at nodal point locations on the pro-
blem boundary and freezing front., The CVBEM approximator
exactly satisfies the Laplace equation; consequently
there is no modeling error in solving the governing
LapTace equatfon (heat fiow modei}, there is only error
in matching the boundary conditions continuously.

Figure Z shows an example roadway problem where the
freezing front is initially located some known distance
below the surface. Boundary conditions for the example



FIG. 1, TYPICAL TWO-PHASE PROBLEM DEFINITION

FIG. 2. TYPICAL ROADWAY EMBANKMENT PROBLEM

problem and a nodal point placement scheme are shown in
Figure 3. The usual modeling procedure is to use the
approximate boundary technique to analyze the initial
conditions for model accuracy. After the analyst is
satisfied with the CVBEM approximator and its associ-
ated level of accuracy then the program is executed to
model the freezing front evolution.
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NODAL POINT PLACEMENT AND BOUNDARY
CONDITIONS FOR FIG. 2 PROBLEM

FIG. 3.

PHASE CHANGE MODEL

For each timestep, a CVBEM approximator is generated
on the problem geometry and boundary conditions. Heat
flux is computed along the freezing front using the
CVBEM approximatfon stream function values. The heat
flux estimates are assumed to directly relate to the
freezing front. Consequently, a freezing process for
the example of Fig. 3 results in a downward migration
of thé freezing front such that the product of the time-
step and net heat flux equals the latent heat evolved by
the change in freezing front coordinates.

Two freezing front displacements models are avail-
able:
{a) A1l displacement occurs in the vertical direc-
tion. This simplified model is generally
arrropriate for many roadway problems,

All computed displacement are based on their
outward normal vectors. This model is the most
accurate, but requires additional computational
effort than the vertical displacement model.

{b)
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Figure 4 shows the nodal displacement
outward normal direction.

DIRECTION
FIG. 4. NORMAL VECTOR COORDINATE DISPLACEMENT Mygg

APPLICATION

Example 1: Nodal Density and Timestep Size Sensitiviq
Analysis

A sensitivity analysis is prepared examining diffep.
ent time increments and nodal point densities and the
resulting effects on CVBEM modeling results. Figure §
shaws the different nodal densities and Table 1 shows
the results from the several CVBEM Models. From the
analysis, it appears that a smal) timestep {6-hours) i;
preferred, but a large timestep such as 60 hours resyly
in an error with respect to the one-dimensional Stefan
solution {Carslaw and Jaeger{2)} of only 2-percent.
Additionally, a relatively sparse nodal density of only
30 nodes results im a satisfactory condition.
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FIG. 5. NODAL POINT NUMBER FOR 4 CVBEM MODEL
DENSITIES
Example 2: Comparison to Two-Dimensional Domain

Modeling Results
The CVBEM modeling results for a roadway embankment
problem are compared to results from a Nodal Domain
Integration (KDI) two-dimensional phase change mode!
(Hromadka et al.(7)) in Fig. 6. The NOI model {s based
upon an isothermal soil-water phase change approximation
and uses an apparent heat capacity approach to mode
freszing front evolution in the fixed grid domain NNFL
Figure 7 shows compatible results for both models. ™
o

ChiTled Pipeline Underneath a Roadway
Embankment

Figure 8 depicts three submodels that were used 't
the CVBEM model to simulate the freezing/thawing front
in the roadway embankment with a buried chilled pipeli®

Figure 9 shows the freezing/thawing front after
days of simulation. The approximated freezing front
beneath the ground surface is close to the one-dimﬂ“;mn
signal Stefan solution. The approximated freezing "'
around the chilled pipeline can be improved by addind
more noda) points along the initial circumference:of,
freezing front. 0¥
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sections A-A, 8-8, C-C, B-D are depicted on figure 7a.

e st from orteat Ofpiacoment Jodsl FIG. 9 FREEZING FRONT POSITION AFTER 5-DAYS
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"ALE 1 COMPARISON OF CYBEM MODEL RESULTS IN CONCLUSTON

PREDICTING FREEZING FRONT LOCATION

A major benefit in the use of the CVYBEM ogver other
numerical methods (including real variable boundary
element methods and domain methods such as finite-
differences and finite-elements) is the accurate and
easy-to-use "approximate boundary” error evaluation
technique. Other numerical methods can be evaluated for
modeling error (where exact mathematical solutions do
not exist) by increasing nodal point densities and com-
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! — i paring the resulting changes in predicted nodal values
e lokas bountary pustis of the governing equation's state variable. In contrast,
- the CVBEM approximate boundary error evaluation techni-
P66 E??gséilgggskﬁﬁoRg?ﬁ¥$é EMBQEK¥§NT que is simpiy the process of locating the {(x,y) points
LEMEN where the CVBEM approximate function meets the specified

- boundary condition values. Often, the CVBEM approxima-
ny ® tion analysis is terminated when the approximate
'."_ TRamm e [y ? ? . boundary differs from the true problem boundary to

e

B i within the construction tolerance of the project, re-
T i sulting in an exact CVBEM model of a probable constructed
: version of the engineered plan drawings. Consequently
é b the CVBEM approach can be used directly in engineering
' applications, or used to provide a wide range of highly
T accurate approximations for two-dimensional phase change
& & problems (where the freezing front movement is sTow) for
_ checking modeling results produced by other numerical
16. 7a  INITIAL CONDITIONS AND CROSS SECTION methods.
LOCATIONS Because the numerical technique js a boundary inte-
T el W gral approach, the control volume thermal regime is
R (£F e modeled with respect to the boundary values, ang there~
fore, the data entry requirements are significantly less
than that usually required of domain methods such as
finite-differences or finite-elements.
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