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ABSTRACT

A computer program is developed which calculates
the location of the freezing front in a two-dimensional
s0il system where steady-state temperature boundary
conditions are assumed, The mathematical model is based
on a new approach to modeling problems which is based
upon & generalized Fourier Series for linear operator
problems. By using basis functions which satisfy the
governing equations for steady-state heat flow (the
Poisson or the Laplace equation) with sources or sinks,
the solution of the operator relationship over the pro-
blem domain is exact; however, the boundary conditions
are approximated in the least-squares sense using a
newly defined norm which is subsequently minimized to
obtian the best approximation. The resulting numerical
method is a boundary integral formuTation with the
atded advantage that the error in approximating the
oundary conditions is easily seen as a displacement of
the true problem boundary. By adding additional basis
functiens to the approximator or weighting the inner-
roduct (narm) at locations where the problem boundary
is highly displaced from the specified position, the
boundary condition error of approximation is reduced.
Msselfs inequality is used to quantify the error of
aPproximation.

HOMENCLATURE

& Domain, region

Complex variable, j.e., z =x+iy

Norm

Intersection; A B, intersection of A and B
Union; A UB, union of A and B

(H{a)  Closed domain or region

' Boundary

L Linear operator

% Operator

R'  m-dimensional real space
W) Inner product of u and A . A
w(z) Complex function, i.e., w(z) =$Ez; +iP{z)}
${z)  Real part of complex function i{z) _
V(Zi Imaginary part of complex function w(z)
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INTRODUCTION

In this paper, the mathematical development of the
approximation procedure and the application of the
technique to a heat transfer problem are presented.

A detailed derivation of the technique and the appli-
cation to several simple problems are given in
Hromadka et al.{6,7). Because this technique shows
considerable promise in many engineering applications,
the greater computational effort involved over that
needed with a finite element or finite difference method
solution may be offset by the mathematical attractive-
ness of a convergence of (in L2 sense) which can be
Tirearly programmed.

INNER PRODUCTS FOR THE SOLUTION OF LINEAR OPERATCR
EQUATIONS

The general setting for solving a linear operator
equation with boundary values by means of an inner pro-
duct is as follows: Let q be a region in RM with
boundary T and denote the closure of g by c1(a).
Consider the Hilbert space L%1(q), du), which has inner
product (f,g) = [fadu. (This is a real Hilbert space.
For the complex versicn, use the complex conjugate of
the function g in the integral.) The way to construct
the necessary inner product for the development of a
generalized Fourier Series is to choose the measyre u
correctly, that is, let p be one measure B, on Q and
another measure p, on I'. One natural choice for a plane
region would be for u, to be the usual two dimensional
Lebesgue measure dV on £ and for u, to be the usual arc
Tength measure ds on . Then an ifiner product is given
by {Birkhoff and Lynch (9})

{f,q) = I fg d¥ + (1)

1 fg ds.
Q

Consider a boundary value problem consisting of an
operator L defined on domain D(L) contained in L3(3) and
mapping inta L*(Q), and a boundary condition operator B
defined on a domain D(B} in L2(r) and mapping it into
L3(I'). The domains of L and B have to be choosen so at
teast for f in D(L), Lf is in L%(R), and for f in D{B),



Bf is in L3(I'). For example we could have Lf =v*f, and
Bf(s) equal the almost everywhere {a.e.) radial 1imit of
f at the point s on T, with appropriate domains.

The next step is to construct an operator T mapping
its domain D(T) = D(L) aD(B) inte L*(c1(R)) by (for
example, Davis and Rabinowitz(8))

TF(x) = Lf(x) for x in 0

(2)
Tf{s) = Bf({s) for s on T.

From (2}, there exists a single operator T on the
Hilbert space .L2(c1{a}) which incorporates both the
operator L and the boundary conditions B, and which is
linear if both L and B are linear. An application of
this procedure using the Complex Variable Boundary
Element Method (CVBEM) is given in Hromadka, et al(5).
In that study, Lf = ¥°f and Bf is the radial limit of f
on I'. Other appiications are contained in Hromadka,
et al.(6,7).

Consider the inhomogeneous eguation Lf = g, with the
inhomogeneous boundary conditions Bf = g,. Then define
a function g on ¢1{Q) by

g=4g, ong
g=4g,onr

Then if the solution exists for the operator equation
Tf=¢

the solution f satisfies V’f =g onQ, and f=g, onT
in the usual sense of meaning that the radial 1imit of
f is g, onrT. One way to attempt to solve the equation
Tf = g”is to look at a subspace D, of dimension n, which
is contained in D(T), and to try to minimize {|Th - g}
over all the h in 0, such as developed in Hromadka,

et al.{6,7).

Definition of Inner-Product and Norm
Given a Tinear operator relationship

{3}

defined on the problem domain Q with auxilliary condi-
tions of ¢ = ¢, on the boundary I' (see Fig. 1). Here @
may represent Both time and space, and ¢, may be both
initial and boundary conditions. It is assumed that the
working space is sufficiently restricted (see following)
sucr(l ;.hat ¢ is a unique almost everywhere (ae) solution
to (3).

L¢=fonﬂ,¢=¢sbon1‘

Fig. 1. Definition of Problem Domain, @, and

Boundary, T.
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Choose a set of m linearly independent functiopg™
<F5M (e.g., <laXax2,ov, 5™ 5}, and let 5™ be the "
diensional space spanned by the elements of <feom 7
Here, the elements of <fs>M will be assumed to Be fune.
tions of the independent®variables appearing in (3),

An inner-product is defined for elements of SMy
(u,¥) where for u,vy ™ :

(u,v) = I uvdl + f LuLvdp
T Q

[0

It is seen that {u,v) is indeed an inner-product,
because for elements u,v,w in ST

(3 u,v) = {v,u)
(i ku,v) = kgu.v}. for L a linear operator
(iii utvyw) = {u,w) + (v,w) for L a linear
aperator
{iv) (usu) = [ (u)*dr + [ {Lu)*dn 20
T Q
(v} {u,u} =0=u=0aeonT, and Lu = 0 ze

over {

The above restrictions on the operator L imply that L
is linear (see (i) and {ii{i) in the above definition};
if Lu = 0 ae over  and u = 0 ae on T, this must imply
that the solution u = [0], where [0} is the zero elemen
over Q UT; and for the inner-product to exist, the
integrals must exist. For the inner-praduct of (4) to
exist, the integrands must be finite. Additfonally,
each element ueS™ must satisfy [ u?dr <= . ‘

-

f .
For the above restrictions of L and the space §%,
the inner-product is defined and a norm "{| ||" .=

.

immediately follows,
[ul] = (uv)®

The generalized Fourier series approach can now be ysed
to obtain the "best" approximation ¢ eS™ of the func-
tion ¢ using the newly defined inner-product and corres
pording norm presented in (4) and (5). 5

The next step in developing a generalized Fourier
series is to construct a new set of functions 95 ¥
which are the orthonormal representation of the <fj> .

LM
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Orthonormalization Process e
The functions <g{>" can be obtained by the well- '
known Gramm-Schmidt Procedure (Kantorovich and Krylov(ld

using the newly defined norm of (5). That is, e
iz

ém = [fm = (fm’gl)gl_-on_.(fm’gmnl)gm‘].]/ ReY s,
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118, = (F08, 08,7~ (F G 1)y |

Hence, the elements of <gj>'" satisfy the convenient
properties that )

0, if jfk ]
: ihml

i
[

(gj:gk) =
1, if j=k

In a subseguent section, a simple one-dimensinnﬂﬂf
problem illustrates the orthonormalization pmu:edurg!i
6). 3
(6) The elements <gi>™ also form a basis for S™ buts’
because of (7), can"be directly used in the development
of a generalized Fourier series where the computed o
coefficients do not change as the dimension m of <95



.qcreases. That is, as the number of orthonormalized
Jjements increases in the approximation effort, the

“reviously computed coefficients do not change. Each
Siement ¢ €5M can now be written as
T m
‘Pm = J'Zl ngj ’ ¢m £$ {8}

were v; are unique real constants.

-neralized Fourier Series

“—<he ultimate objective is to find the element
. .s" such that }{¢ -¢[] is a minimum. That is, we
.ot |16y -¢[|* to be a minimum, where
, m 2
T
n 2
+ J[L[ ) Y.g.] —L¢] dq ()
j=p 33
Q

.emembering that L is a l1inear operator, and L¢ = f by
+ra problem definition, of {3) we have that (9) can be
reqritten as

== [ 1 el ] ’
G = [[ ¥:Q: -0 ] dar +J{ vs Lg. -f] dfy
" A A R

(10)

Tnus, minimizing ||, -¢]|? is equivalent to minimizing
the error or approximating the boundary conditions and
the error of approximating the governing operator re-
lationship in a least-square {or L?) sense. Because
the <gs>™ are orthonormalized and the inner-product
is we]{-defined, the coefficients y; of (B) are
immediately determined by the gener§1ized Fourier con-
stants, Y}: where

*

¥

[

(gj'¢)s j=L2,~,m (11)

s

oomo m
¢m = le 'ngj -'Zl (gj”“gj (12)

15 the "best" approximation of ¢, in the space sm,
Because the generalized Fourier series approach is

.sed, several advantages over a matrix solution (for

he generalized Fourier series coefficients} are

fatained:

<« Elimination of the need for solving large, fully
populated, matrices such as occurs when solving

. the normal system equations.

¢ Elimination of the instability which typically

arises in a matrix solution for Fourier coefficients

(E-E-, higher powers of the expansion basis func-

tions assumed).

The generalized Fourier series coefficients do not

change as additional functions are added {i.e., as

the dimension m of the space SM is increased).

Generalized Fourier series theory applies; hence,

error analysis can be conducted using Bessel's

nequality as discussed in the next section.
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Approximation Error Evaluation
Due to the generalized Fourier series approach and
the definition of the inner-product, Bessel's inequality

applies. That is, for any dimension m
60) 2 1 (go0)t = T y*
Y g = . 14
£ 9 jzl Y (14)
where
(0,0) =[ (01207 + [(Lo)2d0 = [ g2ar +] 240 (15)
r 2 r Q

Equation (15) s readily evaluated and forms an upper
bound to the sum of (g4,6)> as the dimension m increases.
Consequently, one may interact with the approximation
effort by carefully adding functions to the <fi>W in
order to best reduce the difference computed bﬂ Bessel's
inequalitv. The technique of reducing Bessel's in-
equality can be Tinearly programmed by choosing addi-
tijonal basis functions which provide the greatest reduc-
tion in (14} from the set of basis function available.

APPLICATION TO SLOW MOVING INTERFACE PHASE PROBLEMS

Many freezing/thawing phase change sityations fall
into the category of heat transfer problems where the
heat flux along the phase change boundary is adequately
estimated by assuming that the Laplace equation applies.
For example, in soil-water phase change in freezing
501715, Hromadka and Guymon(l) successfully used the
Laplace equation to compute heat flux quantities along
a freezing front in order to propagate the front due to
soil-water phase change freezing soil cotumn. In
ancther application, Hromadka{4) used the Complex
Variable Boundary Element Method or CVBEM to extend the
soil-water phase change solution to two-dimensions. A
distinet advantage afforded by the CVBEM solution is
the error analysis by use of the "approximate boundary”
technique (see Hromadka(2)).

In this paper, the CVBEM trial functions a used in
order to eliminate the second integral in the inner-
product of (4). Thus,

(u,v,) = I uvdr (16)

r

becomes the inmner-product for the generalized Fourier
series development.

Modeling Approach

The modeling approach (the governing equations and
modeling assumptions are given in Hromadka(3)) starts
by developing a CVBEM approximator (Hromadka,(3))
oglz) and mt%z) for the frozen and thawed doamins,
respectively. The numerical technique determines the
analytic function w(z)} which satisfies the boundary con-
ditions of either normal flux or temperature specified
at nodal_points located on the problem boundary, T'.
Becauze w(z) is analytic throughout the interior domain
@ which is encloged by I' then the real and imaginary
parts of &{z){= 9(z) + 1{(z), where z =x +iy) both
exactly satisfy the lLaplace equation over Q.

For the quasi-steady state approximation, the govern-
ing heat flow eguations reduce to the Laplace equations.
Consequently, w(z) determined for both the frozen and
thawed regions satisfy the Laplace equations exactly,
lTeaving only errors in satisfying the boundary conditions.
To develop a CVBEM steady state solution, an &(z) is
developed for each of the separate regions.




Initially, both we(z) and at{z) are defined by

(:)f(Z) = a;.-a zZefl
(17)

Gt(z) = !B.{.'I zefl

where & = §y Qe 1s the global domain, and the first
order CYBEM approximators are based on the entire
domain. This procedure results in simpiy estimating
the G°C isotherm location for the homogenecus problem
of & being entirely frozen or thawed. let ¢' be the
contour corresponding to this 0°C isotherm.

The second iteration step begins by defining 2§ and
f based on the mutual boundary of C'. CVBEM approxi-
mators 4} dnd 4} are then defined for 0} and qf,
respectively. " R

Examining the stream functions y$ and §, estimates
of the discrepancy in matching the flux rates along_the
interface between Qy and Q¢ can be evaluated. The w}
function is now useg to determ1ne the next location of
the 0°C isotherm. This is accomplished by determining
a new f with the stream function values of o {and
modified by conductivity) superimposed at the nodal
values of C!'. Next, a new 0°C jsotherm C* is located
for Gf. The next estimated location for the 0°C
isotherm, C2, is located by averaging the y-coordinates
of the nodal points between C! and C*. Figure 2
illustrates this procedure.

Fig. 2. Iterative Estimation of Freezing Front

Location

The third iteration step proceeds by defining 0f and
0f based on the mutual boundary of C* and the above
procedure 1s repeated.

The iteration process continues until the fimal
estimates of Qf and iy are determined with corresponding
we and wy approximators such that

|keddp/ds - kodpsds| < 8, zeC (18)

Using the Approximate Boundary

As discussed previously, the subject problem reduces
to finding a solution to the Laplace equation in ff and
¢ coincide along the steady state freezing front
location, C. The CVBEM develops approximators uy and
wt which satisfy the the Laplace equation over Q anq
24, respectively. Consequently, the oniy approximation
error occurs in matching the boundary conditions con-
tinuously on Igy T4, and C.  The generalized Fourier
series develops the best CVBEM approximation which

minimizes the norm in {15), where, due to use of analytic

functions as basis functions,

(s0) = f s2dr (19)
r

To evaluate the precision ih predicting the freg
front location, an approximate boundary is determing &
for each subproblem domain of Qs Qp. The approxinaty
boundary resuits from plotting {he fevel curves of gy
CVBEM approximator (i.e. g, wy) which corvespand tg ™
boundary conditions of the problem. ¢

Example In Qg the thermal boundary conditions g,
a rga way embankment (Fig. 3} are defined on the Prob]y
T'y by :

® = -10°C, 2z & top surface e
¢ = 0°C, 2 ¢ freezing front .
Yy = 0, 2z cleft side ?synmetry. i.e. zero flux) =
P = constant, z € right side {zero flux) _
rf\ Puai) .
. M BEPARTUN
”-= Sal0em
[
8-
- a '
P » ' L
[p=0) $e0em.
t- L
i = +
IMETERS}

Rl

L

Fig. 3. The Approximate Boundary ?f and the closeness.
of-fit to the Problem Boundary, Ty

After developing an Wg and f from the CVBEM, the
approximate boundary gf is determined by plotting t
prescribed Tevel curves. The figure also includes
superimposed with T's. Because & is analytic within th
are enclosed by the approximate Eoundary and satisf%es
the prescribed boundary conditions on the boundary Ty,
then i 15 the exact solution of the boundary vaiue -
grob]em redefined on ¢ and its interior, ﬁt' Should
¢ completely cover Ty, then iy s the exact solutio
t6 the subject blem. i
Thus, the CVBEM modeling err%r is divectly evalusts
by the closeness-of-fit between Ty and Tg. However i
this application, the approximate boundary concept is
used not only to examine the closeness-of-fit to the
boundary conditions, but possibly more crucial, the
closeness-to-fit of matching the estimated freezing
front location between Qf and Qi along the cgntour, (.
Should Sf and 0y match C continuously, then wg and wp
gguate thermal ilux continuously atong C. :

Applications

Tigure 3 depicts an application of the geothermil
model For a roadway embankment problem and the usé df
the approximate boundary. Figqure 4 illustrates the i
dimensional steady state freezing front location ofd
geothermal problem involving a buried subfreezing 3:
meter diameter pipeline. An examination of the approsh
mate boundaries indicate that a good CVBEM approximatef
was determined by use of a 26-node CVBEM model. The
maximum departure 5 between the approximate boundarle
and the problem boundary T occurred along the top of ¥
pipeline and had a_value of approximately 3.5 cm. »
average departure § is estimated at less than 1 ¢m
freezing front maximum departure {s approximately
and occurred at the problem's right-hand side. AYE“9
departure on C i§ Tess than 2 em. ;

The example problems presented 11lustrate the usé
fulhess of the CVBEM in predicting the quasi-steady
state freezing front location for two-dimensional
problems. Possibly the most important result i$ the
accurate determination of the approximation error ﬁ
yolved in using the CVBEM. The usual procedure 1fi
mating the freezing front is to use a finite e1em9“!g
finite difference numerical analog. A hybrid of




Jomain methods is to include a variable mesh in order
1o petter accommodate the interface. However, none of
yese methods provide the error of approximation. In
comparison, the CVBEM model provides the approximation
grror not only in matching the boundary conditions, but
in predicting the interface location beitween Qp and ﬂ%.
and this error is simple to interpret as an approximate
poundary displacement from the true problem boundary,
and the displacement between Q¢ and Qi along the 0°C
isotherm contour, C.

/ f $e-io AXIMUM DEPARTURE
12 - < Ent0cm,
9= "t
4 Braemq a0 we CONSTAN
-] ﬂf
=3 ®e-20
‘- 50 r
2- *CONSTANT
o oy Py ) ¥
IMETERS} r,) o8
Fig. 4. Application of the CVBEM Geothermal Model

to Predict Steady-State Londitions

Time-stepped Approximate Boundary

By plotting the several CVBEM generated approximate
soundaries, the time evolution of approximation error is
readily seen. From Fig. 5, it is concluded that the
computational effort employed by the CVBEM analysis is
adequate for this case study. The figure shows a varia-
tion in the approximate boundary Tocation as the solution
progresses in time: however. the variation is of Tess
than 1.0 ¢m in magnitude.

MAXIWUM DEVIATION
LESS THAN 1.0 cm.

1L.0f

{TINE (WOURSL]

{EgEND
WODAL POINT
TAUE BOUNDARY
APPROXINATE BOUNDARY

L]
B ]

Fig. 5, Approximate Boundary Evolution for Time-stepped
Problem Solution {see Fig. 4 for Domain
pefinition)
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Conclusions

. In this paper, the CVBEM basis functions are utilized
in a generalized Fourier series which uses the inner-
product of (15} to determine the basis function
coefficients. Because analytic functions are used, the
inner-product reduces to a least-square fit of the
boundary conditions. The CYBEM is used to approximate
a slowly-moving interface between two quasi-potential
problem solutions. The approximate boundary technique
is used to demonstrate the CVBEM modeling error in
achieving the prescribed boundary conditions as the
time-stepped advancement in time i approximated.
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