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INTRODLUCTION

Numerical solutions of two-dimensional linear and non-
linear partial differential equations such as occur in the
theory of advection-diffusion processes are generally
liimited tc solution by the finite difference or Galerkin
finite element methods. Finite difference approximations.
such as described by Spaiding®, can be derived for regular
and irregular rectangular two-dimensional subdomains.
The Galerkin finite element approach® can also be applied
1o irregular rectangular domains. Both numerical
methods are oiten compared to each other for numerical
“efficiency’ or other descriptions of superiority'.

Recently, Hromadka and Guymon-” ~® have developed
a new numerical approach called the nodal domain
integration method which has been applied to one-
dimensionai linear and non-linear problems. From this
numerical model, the finite difference, subdomain, and
Galerkin finite element methods are included in a single
numerical statement.

In this note. the nodal doman integration method is
applied to a two-dimensional irregular rectangular
element domain. As special cases, the Galerkin finite
element. subdomain. and finite difference numerical
models are determined by the appropriate specification of
a single parameter in the resulting nodal domain
integration numerical statement.

The first objective of this note is to present a basic
description of the nodal domain integration procedure as
applied to the class of partial differential equations
generally encountered in the theory of advection-
diffusion processes. Detailed mathematical derivations
and applications of this numerical approach for a one-
dimensional problem are contained in other papers® ¢,
The theoretical foundations of this numerical method are
based on the well-known subdomain technique of the
finite element weighted residuals approach.

The second objective is to develop a simple numerical
statement which can represent the finite element Gailerkin
statement. subdomain numerical statement. finite
difference integrated control volume statement. and the
nodal domain integration numerical statement. by the
specification of a single parameter in the resulting nodal
domain integration numerical approximation.

Hromadka and Guvmon® used the nodal domain
integration approach to numerically approximate the
one-dimensional advection—diffusion process:
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where D and U are the diffusion and advection parameters
respectively: ¢ is the state variable: x, t are spatial and
temporal coordinates: and € is the spatial domain of
definition. For constant parameters, equation (1) can be
rewritten into the linear form:
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Discretizing the spatial doman € by m nodal points into
m subdomains. R, Hromadka und Guymon® use the
subdomain version of the weighted residuals method to
develop a one-dimensional numerical statement for each
nodal point value:
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where nodal value 0% = (l{x = x, r = kAz). It was shown that
the # term in equation (3) can vary between R; and with
respect 1o time 1n order to approximate a higher order or
more compiex trial function for the state vaniable. 0. [t was
also shown that for a linear polynomiul trial function for
¢ and a Crank-Nicolson time advancement
approximation. equation (3) represents the Galerkin finite
element, subdomain integraton. and finite difference
numerical approximations for constant # values of (2,3,%)
respectively.

In the following, the one-dimensional numerical
statement of equation {3) wili be extended to the case of a
two-dimensional ircegular rectangular subdomain. The
problem domain, €2, is descretized into a set of nodal
domains. ;. defined by the intersection of a finite clement
covet. .. and subdomain cover. R, of €. Integrating the
governing partial differential equations with respect to
both space and time on each nodal domain resulis in a
numericai contribution which can be combined with
other nodal domain contributions to form a finite
difference statement or a finite element matrix system.
Similar to the one-dimensional case. the resuiting nodai
domain integration numerical statement will be shown to
also represent the Galerkin finite element, subdomain
integration. and finite difference numerical statements by
the appropriate specification of a single parameter.
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Consider the parual differentiul operation:
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with i?oundary condition types of Dirichlet or Neumann
specified on boundary . A m-nodal point distribution
can be defined in Q with arbitrary density (Fig. 1)such that
an approximation ¢ {or ¢ is defined in Q byv:
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where Nix.,y) are linearly independent global shape
functions and @;are assumed values of the state variable.
w. at nodal point j. In equation {35) it is assumed that:
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A closed connected spatial subset R; is defined for each
nodal point j such that:

Q=UR (7)

with supplementary conditions of:
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where (x;,);} are the spatiai coordinates of node f and B; is
the boundary of R;. It is assumed that every subdomain is
disjoint except along shared boundaries, i.c.

R,NR, = B,NB, (10)

The subdomain method of the finite element weighted

Figure 1. Distribution of nodal points in two-dimensional
domain Q with boundary U
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residuals approach approximates equation 14) by solving
the m equations:

J(A(q))—j]n'}. dAd =0 (11}
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A second cover of € is defined by the finie element
method with:

0=uQ, (13)

where £, is the closure of finite element domain Q, and its

boundary F..
Let S, be the set of nodal points defined by:

S.= JiIQ.NR, = (o)) (14)

Then a set of nodal domains €; is defined for each finite
element domain £, by:

Q,=Q.NR, jes, {15}

The subdomain method of weighted residuals as
expressed by equation { L 1) can be rewritten in terms of the
subdomain cover of Q by:

j{A(w) —f;dA= J(A{w) -f)d4 (16)
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With respect to the finite element discretization of Q.
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where for each finite element domain Q,:
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From the above subset definitions and set covers of €},
application of the usuali subdomain method to the
governing partial differential operation of equation (4) is
accomplished by an integration of the governing
equations over the nodal domains interior of each finite
element, resulting in a finite eilement matrix system similar
1o that determined by the Galerkin finite element method.
The spatial definition of ¢ach nodal domain ; depends
on the definition of both the finite element and subdomain
covers of Q, and is therefore somewhat arbitrary. A
convenient criterion is to define the nodal domains such
that the resulting finite element matrix system is
symmetric. This symmetry property is used for the
definition of finite element nodal domains in the following
model development of a two-dimensional advection-
diffusion process.
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NODAL DOMAIN INTEGRATION PROCEDURE

A two-dimensional advection -diffusion process similar to
equation (1) is given by:
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where Qs a two-dimensional rectangular spatial domain
of definition: (£.".W) are advection parameters in the (x.2)
directions respectively; and D= Dix.z).

An operator relationship for the two-dimensional
advection—diffusion process of equation (19} is defined by:
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Substituting equation 120) into equation (18) gives the
finite element matrix system for Q (Fig. 3).
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Expanding equauon (21} gives:
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where the first term of equation (22} cancels due to flux
contributions form neighbouring finite elements (Fig. 4)
or satisfies zero-flux nawural boundary conditions on T,
and where (n.s) are outward normal and tangential vector
components on B, ['; and ['.. and U is an advection
parameter notation for (U W)in .

The finite element discretization of Q is assumed to be
composed of rectangles with vertex-located nodal points
associated to each finite element domain &, (Fig. 2).
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Figure 2. Finite element Q, with vertex located nodal
points
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Integration of the governing flow equation on each Q;
involves the definition and integration of non- linear
parameters D and . Hromadka and Guymon®* expand
the non-linear parameters by Taylor series and integrate
the expanded infinite series expression resulting in an
equivalent numerical approximation as a function of the
assumed trial function nodal pomt values. Another
approach to handling the non-linearity problem is o
approximately linearize the governing flow equation by
assuming the non-linear parameters to be uniform in the
finite element” for small durations of time. Ar. Some
methods of determining quasi-constant values for non-
linear parameters are examined for a one-dimensional
problem in Hromadka and Guymon®’. Using quasi-
constant values of D'*, Ue) for the non-linear parameters
of the governing flow equation for a small time step At
simplifies the finite element matrix system of equation (22}
to:
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The nodal domatn integration method solves cquatlon
{23) for each ©, by defining functions for a At timestep™
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where fith.) s o function of ume and hnite elemem
domain £2, assocued nodal points: correction factor ¢ 40
is o function of time: und 0 1s a linear trial function tor in
€. The above Tunction definitions are extensions of a
similar s¢1 of function defimitions determined for a one-
dimensional flow problem®". In the study ol one-
dimensional problems. it was concluded that the fit,.n
functions had a far greater effect on model accuracy than
did the ¢ tunctions and that the simplifving definition
could be made:

cy=1 {26)

for many problems, This conclusion is vaiid for both first
and second order polynomial trial functions where the
finite clement discreuzation 15 composed of nodal
domains satisfying the matrix symmetry criterion.

For the uwssumed rectangular finite  element
discretization of £, a definition of nodal domains Q; is
required in order to evaluate the {0, 1) functions. Using
matrix symmetry as a criterton, ¢lement nodal domains
are defined by the intersection of perpendicular bisectors
(Fig. 3) partitioning the rectangle into four equal areas.
The definition of f11),,r} used for each nodal domain £, 15

given by extending the one-dimensional function
definitions to obtain;
TEpr )4
o= 2 — |- y.kes, (27
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where 4" is the area of rectangle Q. In order to provide
element matrix symmetry,

SAO =1 AL, U0 GRIES, (28)
where 1,41 is the average of the g0 in finite element Q,
given by:
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NODAL DOMAIN INTEGRATION NUMERICAL
MODEL

For constant advection-diffusion parameters. cquation
(19} reduces to the lincur partial differential equation:
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where (D, U . W) are constant throughout Q. Pinder and
Gray® develop a Galerkin fintte element analogue for
equation (301 Also. equation (30) s readily approximated
by the well known finite difference method®. und the
subdomain version of the weighted residuals method.

A compurison of the Gulerkin finite element (lineur trial
function), finite difference. and subdomain integration
numerical statements 1o the nodal domain integration
numerical statement indicates that the nodal domain
integration analogue cun represent each of the above
methods.

For the x-direction diffusion term Dy(*i:cx?)L the
Galerkin. subdomain integration. and finite difference
modeling statement (for a linear polynomiai triai
function) are given by:
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and the nodul domain integration statement is:
DoAZ [{tyy =ty D4y =0 1,__‘) .
2An-+1) k BAX AX
o Ulr)"“nu U(m"”—m\ ,
% Ul*l"”f}l—-_]_ﬂ”ﬂ*l“H-l—l) (34}
pAX AX

where equations (311, (32) and (33} are the numerical
statements determined by the Galerkin {inite element.
subdomain integration. and finite difference methods,
respectively. The nodal domain integration model of
cquation {34) is an equivalent statement for the three
models considered for #=1(2.3. % ). respectively.

The x-direction advection term L o({é ¢x) numerical
statements are given by:
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where equations (33, (36) and (37} are determined from
the Galerkin finite element. subdemain integration. and
finite difference methods. respectively. The nodal domain
integration model of equation {39) is an equivalent
statement for equations (35 (36) and (37) for n=(2.3. 2.

Finally. the capacitance ttime derivativel term 0 7t
numertcal statements are;
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where equations (39), (40) and (41) are determined from
the Galerkin finite clement, subdomain integration, and
finite difference methods. respectively. The nodal domain
integration model ol equation (42) is an equivalent
statement for equations (39), {40) and (41) for y=(2,3, %}

The remaining --direction terms can be determined
similar to the above. The resulting nodal domain
integration numerical statement for equation (30 on Qg
(Fig. 2)is given by:
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where the Gualerkin linite element. nodal domain
integration. and finite difference methods are given by
n=1(2.3.x) respectively. Equation (43} can be directly
compared to the Galerkin finite element results in Pinder
and Gray®. (Table 1V.2).

Other constant values of i in equation (43} represent
other numerical approximations. For example, p=11
represents an approximation based on the subdomain
method of weighted residuals for a second order
poiynomial trial function?. Additionaily. by use of the
function definitions of equattons (24)and {25). a variable g
between subdomains (or linite elemcnt matricest and with
respect to time cun be obtained.

CONCLUSIONS

The nodal domain integration numerical approach has
been used to determine a numerical analogue which
incorporates the Galerkin finite element. subdomain. and
integrated finite difference methods as special cases. The
resulting numerical statement involves the same
computational requirements as does the Galerkin finite
element procedure. Thus, a computer program may be
prepared based on the nodal domain integration
numerical approximation which inherently contains the
Galerkin finite element, subdomain integration. and finite
difference numerical approximations lor the considered
class of partial differential equations.
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