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Nodal Domam Integratlon Model of Unsaturatcd Two-D1men51onal
Soil-Water Flow:
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The nodal domain integration method is applied to a two-dimensional upsaturated soil water flow
problem where the solution domain is discretized into irregular triangular elements and the state variable .
is approximated by a spatial linear trial function within each triangular element. The resulting element
matrices incorporate the well-known Galerkin finite element, subdomain, and integrated finite dlﬂ'erenoe
numerical statements as special cases of the nodal domain integration numerical statement.

INTRODUCTION

Numerical solutions of two-dimensiopal nonlinear partial
differential equations such as those that occur in the theory of
unsaturated ground water flow are generally limited to solu-
tion by the finite difference or finite element methods. Finite
difference approximations, such as those described by Spald-
ing [1972], can be derived for rectangular and also for irregu-
lar two-dimensional domains. Finite element methods [Pinder
and Gray, 1977} can also be applied to irregular two-dimen-
sional domains. Both methods are often compared to each
other for numerical ‘efficiency’ or other descriptions of superi-
ority-[Hayhoe, 1978).

Recently, Hromadka and Guymon [1980a, b, c] have devel-
oped a new numerical approach called the nodal domain in-
tegration method, which has been applied to one-dimensional
linear and nonlinear problems. From this numerical model,
the finite difference, subdomain, and Galerkin finite element
methods are included in a single numerical statement.

"In this paper, the nodal domain integration method is ap-
plied to the two-dimensional triangular finite element. As spe-
cial cases, the Galerkin finite element, subdomain, and finite
difference numerical models are determined by the appropri-
ate specification of a single parameter in the resulting nodal
domain integration numerical statement, Thus all three nu-
merical approaches are included in one numerical statement
similar 10 the nsual Galerkin finite element mairix system.

The purpose of this paper is twofold, The first objective is to
present a basic description of the nodal domain integration

" procedure as applied to the class of partial differential equa-
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tions generally encountered in the theory of umsaturated
groundwater flow.. Detailed mathematical derivations and ap-
plications of this numerical approach for a one-dimensional
problem are contained in other papers [Hromadka and Guy-
mon, 19805, c]. The theoretical foundations of this numerical
method are based on the well-known subdomain technique of
the finite element weighted residuals approach. The second
objective is to develop a numerical statement which represents
the finite element Galerkin statement, subdomain numerical
statement, finite difference integrated control volume state-
ment, and the nodal domain integration statement by the
specification of a single parameter in the resulting triangle ele-
raent matrix system.

‘Copyright © 1981 Sy'"the American Geophysical Union.

GOVERNING EQUATIONS

Two-dimensional unsaturated Darcian soil water flow in a
nondeformable homogeneous porous media is assumed de-
scribed by the partial differential equation

Ol 30\, 9l o8} o8 :
xl B o Tyl = ®NED M
Kh = K,,(J(, » ‘:b: t) o (2)

where K, are anisotropic hydraulic conductivity values in the
{(x, y) directions, respectively, ¢ is the total hydraulic energy
head (¢ = + y), {is the soil water pore pressure head, and 8
is the volumetric water content. In (1), water content is as-
sumed to be a single valued function of soil water pore pres-
sure accordmg to the ushal soil drymg curve with hysterisis ef-
fects neglected. Thus

g = 8(y) tP <0

@=8 ¢=0
where 8, is assumed constant. A volumetric water content to
pore pressure gradient is defined by

R
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For the above assumptibns, (Dis rewritten as
B3|, 3[g 3] i
ax [K" a_x} T3 [K” ay} 4 ot (eDER )

NODAL DOMAIN DISCRETIZATION QF SOLUTION DOMAIN
Consider the partial differential operation

AP =f (xpPeER Q=0uT {6)

with boundary condition types of Dirichlet or Neumann spec-

ified on boundary I. An m-nodal point distribution can be
defined in Q with arbitrary density (Figure 1) such that an ap-
proximation é for ¢ is 'defined in § by -
¢= X (%)) EDR
o .

Nix, vy ™
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Fig. 1. Distribution of nodal points in two-dimensional domain @
with boundary I,

where N(x, y) are linearly independent global shape functions
and ¢, are assumed values of the state variable ¢ at nodal
point /. In (7) it is assumed that

lim ¢ =

m—os

lim ¢
max|izay) ey )0

=¢ (nYEY ®

The nodal domain integration approach uses the topology
of sets resulting from the discretization procedure associated
with the well known finite element and integrated finite differ-
ence methods. Generally, the global domain € is discretized
into finite elements or control volumes and subdomains, de-
pending on whether the finite element or integrated finite dif-
ference approach is used. These two discretizations share a
common nodal domain discretization of £, consequently, the
resulting numerical approximations form the various numeri-
cal methods which can be defined by a single unifying analog,
In the following a subdomain R, and a finite element £,, a dis-
cretization of the global domain £, is defined. From these two
set covers of & a unifying nodal domain cover of £ is defined.
A closed connected spatial subset R, is defined for each nodal
point j such that

Q=UR, ®)

=t

with supplementary conditions of
(x»P}ER,  (xpy) &R Sk (10)
R, =R,UB, an)

where (x,, ¥;) are the spatial coordinates of node j and B, is the
. boundary of R, It is assumed that every subdomain is disjoint
" except along shared boundaries, i.e.,

R,NR,=B,NB, (12)

The subdomain method of the finite element weighted residu-
als approach approximates (6) by solving the m equations

[a@-pwaa=0 13
where
=] L V) E R
Wy x, ») 7 (14)
W, = 0, (x’ }’) & RJ
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A second cover of { is defined by the finite element method
with

Q=UQ, (15)

where £, is the closure of finite element domain &, and its
boundary I"..
Let S, be the set of nodal points defined by

S.= (i N R, # (0}} (16)

Thes a set of nodal domains ; is defined for each finite ele-
ment domain &, by

=QnR jES, an
The subdomain method of weighted residuals as expressed
by (13) can be rewritten in terms of the subdomain cover of &

by

[a@-pwai=[w-na  a
With respect to the finite element discretization of £,
f(A(¢)-DdA=f _ (A(¢) — f)dA (19)
L3 RO,

where for each finite element domain €,

[ a@-pat=[uw-pa  ses oo
Ry L
From the above subset definitions and set covers of &, appli-
cation of the usual subdomain method to the governing par-
tial differential operation of (6) is accomplished by an in-
tegration of the governing equations over the nodal domains
interior of each finite element, resulting in a finite element
matrix system similar to that determined by the Galerkin fi-
nite element method. The spatial definition of each nodal do-
main §, depends on the definition of both the finite element
and subdomain covers of & and is therefore somewhat arbi-
trary. A convenient criterion is to define the nodal domains
such that the resulting finite element matrix system is symme-
tric. This symmetry property is used for the definition of finite
element nodal domains in the following model development
of two-dimensional unsaturated soil water fow,

NoODAL DOMAIN INTEGRATION MODEL

The operator relationship for the two-dimensional unsatu-
rated soil water flow model of (5) is

LI . B -2 B 3
A(¢)_f_axl:x"ax}+ay[x"ay} >

Substituting (21) inte (20) gives the finite element matrix sys-
tem for §, (Figure 3)

AP AR AP AR A
{/‘;}(5; l:K,,'a‘:! + 5[.’(,,‘5;] - # at dA} = {0}
JES. (22)

21

Expanding (22) gives

VAL U RST AN S
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Fig. 2. Subdomain R, as the union of all nodal domains associated
to nodal point j.

where the first term of (23) cancels due to flux contributions
from neighboring finite elements (Figure 2) or satisfies zero-
flux natural boundary conditions on I" and where (n, s) are
normal and tangential vector components on B, I, and T',.
The finite element discretization of £ is assumed to be com-
posed of triangles with three vertex-located nodal points asso-
ciated to each finite element domain £, {Figure 3).

Integration of the governing flow equation on each £, in-
volves the definition and integration of nonlinear parameters
K, and #*. Hromadka and Guymon [1980c] expand the non-
linear parameters by Taylor series and integrate the expanded
infinite series expression resulting in an equivalent numerical
approximation as a fanction of the assumed trial function
nodal point values. Another approach to handling the nonlin-
earity problem is to approximately linearize the governing
flow equation by assuming the nonlinear parameters to be
uniform in the finite element [Myers, 1971] for small durations
of time, A, Some methods of determining quasiconstant val-
ues for nonlinear parameters are examined for the one-dimen-
sional unsaturated soil water flow problem by Hromadka and
Guymon [19804]. Using quasiconstant values of (K., 6*(e))
for the nonlinear parameters of the governing fiow equation
for a small time step Ar simplifies the finite element matrix
system of (23) to

Uyl
T-r,nr,

The nodal domain integration method solves (24) for each £,
by defining functions for a At timestep:

#)-{r3 [ ou o
’ 0<t<A jJES.

dd
an

f odd = /; fibutdd G kES) 25)
3¢ ,
- 3 2
f o, (an r,ds (D rﬂp&( o r,ds JES, (26)

where /{4, 1) is a function of time and finite element domain
€2, associated nodal points; correction factor c,(t) is a function
of time; and ¢ is a linear trial function for ¢ in .. The above
function definitions are extensions of a similar set of function
definitions determined for a one-dimensional soil water flow
problem [Hremadka and Guymon, 1981]. In the study of one-
dimensional problems it was concluded that the f (g, #) fanc-
tions had a far greater effect on model accuracy than did the
cA?) fiinctions and that the simplifying definition

el =1 @7
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could be made for many problems. This conclusion is valid
for both first- and second-order polynomial trial functions
where the finite element discretization is composed of nodal
domains satisfying the matrix symmetry criterion.

For the assumed triangular finite element discretization of
8, a definition of nodal domains £, is required in order to
evaluate the f{¢,, ©) functions. Using maitix symmetry as a
criterion, element nodal domains are defined by the inter-
section of triangle finite element medians (Figure 4) partition-
ing the triangle into three equal areas. The definition of f{¢,
z) used for each nodal domain &, is

[ 1) = [Mj‘

A®

5 GRES @8

2+ Mt)
where A® is the area of triangle Q.. In order to provide ele-
ment matrix symmetry,

flde O =D, &) (G, k) ES. 29

where

- 1 .
WW=3ZuH JES. (30)
For finite element domain £, the above gives the element ca-
pacitance P*¢ matrix approximation

0*(e)4® a1 L .
PO} = eo+n| M@ ) én
1 %)

For ¢(f) = 1, the element conduction matrix K for £, is de-
termined from (24) and (26). From (26) the state variable flux
term 8p/dn is approximated on (T, — T, N I',) by assuming ¢
to be described in Q, by a linear trial function.

In order to evaluate the spatially integrated flux terms of
(26) for each nodal domain of a triangular finite element, the
triangle geometry is defined by a system of vectors as shown
in Figure 5. For the assumed linear trial function variation of
the state variable ¢ in the finite element triangle, the spatially
integrated fiux term contribution to nodal domain £, is geo-
metrically determined by Figure 6. Flux must contribute to £,
through the boundaries of £, and can be calculated by the
flux vector through state variable ¢ values ¢, (at node 1) and
¢’ as shown in the figure where

# = 1 (bl + nd) 32
The integration of the spatial boundary of 2, normal to the
considered flux vector is £/2 as shown in Figure 6. From

3

1
Fig. 3. Finite eiement f&, with three vertex-located nodal points.
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Darcy’s Law, the efftux for a linear polynomial function ap-
proximation is

. an['ﬁz(dl/ L) + %(dz/ L) - ¢'|]
h

(33
and the integrated efflux (discharge) contribution from £, is

K®©
= Shp AL + 6L — L] 34

which is obtained by multiplying L/2 with (33). From Figure
5 the geometric constants in (34) are

L2 =5 = x5° + 3s° (3%

d\L = FisFp = X5%23 + Y13V (36)

(37)

where x;; = x, — x,. Using matrix notation, (34) may be writ-
ten as follows;

oL = —F P = —(¥12%2 + Y1a¥n)

-0
K.@®
‘4__;?,‘;‘ [xas® + y2s®), —(x13%23 + y1a¥n)s (i2¥2s + Y1yl ‘l $2 }
&
(38)

Combining the finite element nodal domain equations, the
element conduction matrix K® for &, is

. Kh(e)
K@= 44©®
(2% + ¥as®hy  —(X0aXn F yim)y (X + Yiaps)
{(symmetric) (s + y1s®), —(X12X13 ¥ Vi2V1s)
(x 2 + yi%)
(39)

The approximation of (24) by the nodal domain integration
element matrix system for £, is

K%, + P[] ;= (0} jES, (40)

where ¢, and ¢, are the vector of nodal point values and time
derivative of nodal point values associated to finite element
domain £,.

Fig. 4. Finite ¢lement partitioned into nodal domains.

2

Fig. 5. Vector description of triangle finite element geometry.

SIMILARITY OF NODAL DOMAIN INTEGRATION MODEL
TO OTHER NUMERICAL MODELS

In this section the finite element subdomain and Galerkin
techniques of the weighted residuals method [Pinder and
Gray, 1977] and the integrated finite difference method as de-
veloped by Spalding [1972] will be applied to the assumed lin-
earized soil water flow equation. The models derived from
these numerical approaches will be compared to the nodal do-
main integration model and ar appropriate #(¢) determined
such that the element matrix sysiem of (40) also represents
these other various modeling approaches.

Integrared Finite Difference Method

By using a control volume defined by the union of all nodal
domains associated to a particular nodal point (Figure 2), the
integrated finite difference approach can be derived. The con-
trol volume CV, is defined by '

CV, =g, 1)

The integrated influx to the control volume along the bound-
ary is the sum of influx contributions from each interior nodal
domain £, The nodal domain §J; efftux contribution from CV,
(by means of the boundary I') is determined from (38). The
total integrated efflux from C¥, would be row j of the assem-
bled global conduction matrix derived by the usnal sum of
element conduction matrices of (39).

The integrated finite difference model assumes that ¢ is
constant-valued in C¥,. Consequently,

pdd=¢, | d4 (42)

cv, c¥;

LS
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efflux
9, . vegror figld

Fig. 6. Geometric solution of flux distribution (for nodal dormain ;)
for assumed linear trizl function distribution of state variable.

Holding ¢ constant in each {; gives

A
Jpres [ a=0 T
, &

The elemeni capacitance matrix of (31) includes the in-
tegrated finite difference statement of (43) by

{43)

L1 0 o
tim Popig) = 247 6 0] @9
Wiy 0 0 1

Therefore the integrated finite difference model for the linear-
ized soil water flow problem is

lim (K“ ¢, + PR ¢, = {0})
fit)yvoe

JES, {45)

Subdomain Method of Weighted Residuals

A subdomain model for the assumed linearized soil water
flow problem can be derived from the nodal domain in-
tegration model by prescribing the trial function & to be linear
in each finite ¢lement domain Q. Using a linear trial function
4 in §, allows a direct integration of ¢ in each £, (Figure 7).
Therefore a subdomain approximation in £, is

(e
f $dA = -‘:—a-)w [22¢, + T, + T3} (46)
%, g

By comiparison to the integrated finite difference model,

R,=CV, @n
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Therefore the element capacitance matrix POJ5(1)] includes a
subdomain model

2 7 7
(634
peo [ 3,-?-] ~TL )y m g @8)
7 7 2

The integrated effiux from subdomain R; through boundary B,
is given by the jth row of the assembled global conduction
matrix. Therefore a subdomain model for the lineasized soil
water flow problem is

(x«» sero Rlo-0) ses @

Galeridin Method of Weighted Residuals

The Galerkin finite element approach applied 1o the linear-
ized soil water low problem for triangular elements and a lin-
car trial fuaction {Myers, 1971} is included in the nodal do-
main integration model by

(K%, + PO2) g, = {0}) jE8§, (50)

Nodal Domain Integration Method

From the above the nodal domain integration model in-
cludes the integrated finite difference, subdomain, and Galer-
kin finite element models for constant values of 7{f) = (2, 22/
7, o). Consequently, a computer model based on the nodal
domain integration element matrix systems also inclades the
above numerical models by the specification of a single con-
stant for 7(f). These results can be compared io the one-di-

3
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Fig. 7. Lineazrly distributed state variable values in nodal domain
partition ;.
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mensional nodel domain integration model [Hromadka and
Guymon, 1980a] which represerits the finite element, sub-
domain, and finite difference models for n = (2, 3, v¢), respec-
tively.

CONCLUSIONS

The nodal domain integration numerical approach has
been used to determine a nuimerical analog which incorpo-
rates the Galerkin finite element, subdomain, and integrated
finite difference methods as special cases. The resulting nu-
merical statement involves the same computational require-
ments as does the Galerkin finite element procedure. Thus
computer programs may be prepared based on the nodal do-
main integration procedure which inherently contains the Ga-
lerkin finite element, sebdomain, and finite difference tech-
niques, A powerful method of comparing the accuracy of
various numerical techniques is provided which eliminates
uncertainty of effects between codes used for comparison.

Theoretically, the so-called ‘nodal domain integration’
method contains all numerical subsets in addition to those de-
rived; ie., finite element, finite difference, and subdomain
methods, For instance, this method would include linear basis
function approximations of higher order basis functions. The
method proposed here can be extended to include the case
where a single computational problem can be allowed to se-
lect a spatially and temporarily varying » function to achieve
optimat spatial accuracy.
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N :

' 80IL 'WATER FLOW

Acknowledgments. This work was supported by .the U.S. Army

Reseaich Office (Research Grant DAAG24-79-C-0080). The second
author was on sabbatical leave at the U.S. Army Cold Regions Re-
search and Engineering Laboratory, Hanover, N. H. during the prép-
aration of this paper. ‘

REFERENCES

Hayhoe, H. N., Study of relative efficiency of finite difference and Ga-
lerkin techniques for modeling soil-water transfer, Water Resour.
Res., 14(1), 97-102, 1978, .

Hromadka, T. V., I, and G. L. Guymon, Sonie effects of lincarizing
the unsaturated soil moisture transfer diffusion model, Water Re-
sour. Res., 16(4), 643-650 1980a.

Hromadka, T. V., II, and G. L. Guymon, Numerical mass balance for
soil-moisture transfer problems, Advan. Water Resour., 3, 107,
19805,

Hromadka, T. V., I, and G. L. Guymon, Note on time integration of
soil moisture transport, Advan. Water Resour., 3, 181-186, 1980c.
Hromadka, T. V., I, and G, L. Guymon, Improved linear shape
function model of soil moisture transport, Water Resour. Res.,

17(3), 504-512, 1981.

Myers, G. E., Analytical Methods in Conduction Heat Transfer,
McGraw-Hill, New York, 1971.

Pinder, G. F., and W. G. Gray, Finite Element Simulation in Surface
and Subsurface Hydrology, Academic, New York, 1977.

Spalding, D. B., A novel finite-difference formulation for differential
expressions invelving both first and second derivations, Int. J. Nu-
mer, Methods Eng., 4, 551, 1972, .

{Received November 24, 1980,
revised April 27, 1981;
accepted May 5, 1981.)

-

i e,



