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Improved Linear Trial Function Finite Element Model
of Soil Moisture Transport

T. V. HRoMADKA II AND G, L. GUYMON

School of Engineering, University of California, Irvine, California 92717

Two methods of modeling a higher-order approximation function of soil moisture transport by an im-
proved linear 1rial function approximation are presented. The first approach considered is based upon
use of the alternation theorem and a finite element capacitance matrix that incorporates the Galerkin fi-
nite elemnent, subdomain, finite difference, and proposed nodal domain integration methods. The second
approach extends the first approach by developing a temporal relationship for e_lement matrices such ‘that
a higher-order approximation function can be modeled by a linear approximation function. Compa_nson
of mode! results produced from a nodal domain integration model incorporaling these improvgd l_mear
trial function approximations to the finite element, subdomain, and fnite difference methods indicates
that this approach may lead to a generalized modeling method for soil moisture transpor problems.

INTRODUCTION

The study of numerical methods for the approximation of
linear and nonlinear soil moisture transport in a one-dimen-
sional domain has received some recent atiention. Hayvhoe
[1978] compared the numerical effectiveness between the fi-
nite element and finite difference numerical methods in mod-
eling a sharp wetting front scil infiltration problem. A special
finite difference analog was advanced as the besi numerical
approach to the problem siudied. Hromadka and Guymon
[1980a} further studied the sharp wetting front problem and
developed a modification to the finite element method which
resulted in an increase in model accuracy for a linear soil wa-
ter diffusivity problem. For a nonlinear diffusivity problem
the traditional finite element formulation gave comparable re-
sults to Hayhoe's [1978] finite difference approach when the fi-
nite element analog used constant element diffusivity values
as determined by a spatial estimation procedure. A procedure
to determine which numerical (domain) method to use for
simulation of all moisture transport problems, however, is not
advanced.

In this paper, two approaches for increasing numerical
model accuracy by modeling a higher-order or a more com-
plex family of trial functions by linear trial functions are pre-
sented. Such modeling procedures would benefit from the
lower computational effort associated with smaller matrix ar-
rays and yet incorporate sorne of the increase in numerical ac-
curacy usually provided by higher-order trial function ap-
proximation sets.

By use of the alternation theorem for determining a ‘best’
approximation of a lower-order polynomial estimator to a
higher-order polynomial or function, an adjustment error dis-
tribution is determined which is a function of the discretized
domain nodal point set. Use of this error distribution function
in a subdomain integration procedure aids in incorporating
some benefits of a higher-order approximation function set
into a lower-order approximation function set.

Another possibility is 10 define appropriate correction fac-
tors {as a function of time) which equate the various soil mois-
ture transport terms as modeled by a family of higher-order
trial functions to the first-order trial function model approxi-
mations. Like the alternation theorem approach, the resulting
numerical model has the reduced matrix computer memory
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requirements but incotporates some of the benefits of a
higher-order trial function approximation set.

We call this extension of the subdomain version of the finite
element weighted residuals method the ‘nodal domain in-
tegration method.’ For the class of problems considered, the
resulting element matrix system determined from the nodal
domain integration procedure is a function of a single param-
eter #, which may be variable with respect to both space and
time. Thus n may vary between finite elements and also
change as the numerical simulation progresses in time. As spe-
cial cases of the nodal domain integration element matrix sys-
tem, specified constant values of i correspond to the Galerkin
finite element, subdemain, and finite difference approxima-
tions. Consequently, a computer algorithm based on the re-
sulting element matrix system derived from the nodal domain
integration method will also represent these other specified
numerical approaches for certain specified values of the pa-
rameter 7.

MATHEMATICAL DEVELOPMENT

The one-dimensional horizontal soil moeisture transport
model for an unsaturated soil column is
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where 8 is the volumetric water content (@ less than the soil's
porosity), x is the spatial coordinate, ¢ is time, D is the soil wa-
ter diffusivity and is a function of soil water content, and £ is
the spatial domain of definition.

The domain § can be discretized by » nodal points into #
disjoint subdomains:

8 = (x0=x = (x + x3)/2}

Q, = {x](x, + ,1/2 < x = (x, + x:)/2} (2}

i

Q

I

n {x|(xXpy + X, )/ 2 < x=x,= L}

where x, is the spatial coordinate associated to nodal point
value §, and

a=Ug, &)

=i
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Equation (1) must be satisfied on each 1. Therefore n equa-
tions are generated by solving

ad af
;~D . } n xeg, )
where
D = D)
)
=001
Integrating (4) with respect to space gives
ag [}
{Da} a:f 8dx xeQ, ©6)

where I, is the spatial boundary of region &, Integrating (6)
with respect to time gives
-[ ] «
q, r

(k+L)ar
f {D ﬂ} dr
kel ax r,

where I, is the limits of temporal integration between time
steps kAt and (k + 1)As, Equation (7) can be simplified by us-
ing the linear transformation

™

1=kt +e
O0=ex< At {8}
Thus
f {D(kAr +e) M} de = / 9l ©
0 ax ) %, r

The soil water diffusivity function can be expressed with re-
spect to time by the Taylor series

)

fm)

DP(x = x4, kA€

] (10)

Di{x=x, kit +¢) =

where (i) is the ith order temporal partial differential operator,
and x, is a specified spatial coordinate. Combining (9) and

{10) gives
de = /
iy ,

i
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For a spatial local coordinate system defined by

(kAL + €)
ax }

Y

y={xl0=y=l} x e
dy = dx (12)
L= (xn —x)/2
(11} can be expanded as
= Dy =1, ki) ad(kar + €)
El 7 e } - de
U
2 ¥ o (y 0 kAr) f 88kt +£)} e
1= 9x y—0
= / {6} ] dx {133
8, r,

The soil water content function is approximated spatially and
temporally by
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Bx, 1y = O(x, 1)
fx.p= 3 Nx) Z M.(1)8, } (14)

where N, and M, are the linearly independent spatial and
temporal shape functions and

6m=f(x = x,, 1 = mAi) (15)

where the 8,” are known values for time steps m = {0, 1, -,
k} and x, is the spatial coordinate of node r. The spatial gradi-
ent of the soil water content function is approximated by

_aé -

A+

¥ M. 8"

m=0

anv,

ox (16}

Substitting (14) and (16) into (13) gives the numerical ap-
proximation of the governing flow equation in &

= D‘”(y—l kAr) $ N (K

E) r—l ax (z M )} -a.de
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The unknown values of nodal points 8**' can be solved by
equating

o Dy=1, kit
3 (=1, kan

= i
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m=0 LlA -

APPROXIMATION IMPROVEMENT BY USE OF
ALTERNATION THEQOREM (NODAL DOMAIN
INTEGRATION METHOD)

The space-time surface approximated by (14) can be sim-
plified by assuming that the functional surface #(x, ¢} can be
described by sets of piecewise continuous functions. For a
first-order polynomial spatial trial function approximation §
for ¢ between nodal point values (8., 6, 8.,.),

@
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!
f Ody= 161 +68+ 6] (19
)

where for discussion purposes it is assumed that in (19),
Xy =X, =X~ x,, =1
dx = dy

A major problem in the linear spatial approximation of @
between neighboring nodal points is that @ curvature is not
modeled. Thus a higher-order polynomial approximation or a
more complex family of trial functions may be useful. How-
ever, additional computer memory is usually required due to
the increase in the resulting matrix bandwidth incorporating
additional nodal points (degrees of freedom) in the higher-or-
der approximation. Another possibility is 10 approximate the
more complex or higher-order trial function approximations §
for 4 with linear trial functions §. That is, determine the best
linear approximation § to 8 between consecutive nodal poinis,
For example, let

(O = 4) . L%,

pI

where a local coordinate Z is defined by
0= Xx,=x= X
D=z0=2Z2=ys (21)
and
I=x,, ~x,
az=l

(22)

The best iincar approximation § for 4 on £ is given from the
alternation theorem [Cheney, 1966, p. 75] by setting

#0) - d(0) = +e (23a)
d(p) — fp)y = ~e (235
&y — By = +e {23¢)
where e equals a constant error and
HZy=xZ+ 0=Z=v (24)
O<p=</t
Solution of condition (23a) gives
00y — 60) =B - 8,= +e (25)
Solution of condition (23¢) gives
N =8y =N +p8-4,, = +e (26)
From (25) and (26),
a(z)=£‘i+_'r;":lz+e,+e zed an
Solving for e, (23b) is differentiated and set to zero:
d .
d—z(a(z) -0Zy=0 ZeQ (28)
giving
Wa | 2asin(7/2a)
p 5 008 L—-————W J 29
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Combining (235) and (29) gives

- (6., —8) {('71'2 — 4o sin? (m/2a)}?
27 sin {m/2a)
9 51 )
o [Temern )y

In (30), a = 1 corresponds to a quarter cycle of the general si-
nusoidal curve, whereas a — oo corresponds to a Zero-curva-
ture approximation (straight line). For a given value of o = q,

e(gp 3_,-+|, o) = 3(9,., 9;-1-1) (31)
Therefore for Z € §

H(Z) = (0)'-'-1 =~ % +4,+ e, b1} 62

Comparison of (32) to (19) indicates that the spatial gradient
terms remain similar, but the integration of § differs from that
of 4 in (19) due to the e term. Thus anagolous to (19),

aff

I =81

af

ax e (88371 (33)

! X, !
j Jdy = f §dy + Gay
Y el oy,

The selection of the approximation in (20) is arbitrary. An-
other possibility is to fit a polynomial to all nodal values in 2
and solve for ¢(8, 6,,.,) for each At time step.

TIME INTEGRATION APPROXIMATION

For Ar time steps a linear polynomial function approxima-
tion may be used to model the time variation of d(x, 1) be-
tween time steps (k, k + 1), where (k + 1) is the time step to be
evaluated; thus

| AL—€ . €
8,{kAz+e)=(3f“)(T + (8 ““')Er- (34)
kKAr=sr=s(k+bH O=se=Ar

Combining (33) and (34), the spatial gradient approximation
during the time step A¢ is given by

af
T =~ 82+ e/l + (8. — 81
i
[ (35)
ad } 2 1 ] 1 1 t
x| D=(9} 0 =8 2+ 8. "e/lAr+ (8 ~8_ "1
=

where superscripts | and 2 refer to time steps kAr and (k +
1)A¢, respectively. Combining (13), (33), and (35) gives

honcd 1£}] - A il
¥ M£ {(gmz . - 8248 €
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=[{9}de

The temporal integration of (36) is evaluated by isolating the
time integrable functions as

S Doy=D) [0ut= 6D = 0u’ = 6D [* .
X =y [ = Al }L € de
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Rearranging terms, the nodal point water content values can
be isolated by

o Ny =

8.2 -
(60" 8 & mMNAr o

(36)

=0

37
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a r,

Carrying out the indicated integration in (38) gives

o D(.') = A i+l
;+| - 1] E) ?;I ) Ei__?_i')"_lafz_grizl
D=0 BT, § DD

(i+2) 16,1 = 61 ;n Y]

o) fih)

) (At)i+l _ _ o D(l’)(y = 0) (At)wi
i+ (i +2) 16/ = 6,1 ,..20 al (i+ (i +2)
!
= f {6 l dy (39
0 Lr“
In a simplified notation, (39) can be rewritten as
Di6,.* — 87) — D6} - 6,7 =
it
—Dig.' =81+ Dyl8' — 8"+ f (40)
]
where
s 2 D0=9 @
D= ) et e =0,/
A N+ D) l ¢ @)
. ol D[UO,= D(AI)H'I_ _
De= & = =01

For the At duration space-time surface assumed linear with re-

spect to time the temporal differentials of soil water diffusivity
in (41) are given by

D(N)

N ~
a'D BD[ ) @)

v

where N denotes the order of the differential operator.

MODEL APPLICATIONS {ALTERNATION THEOREM)

The normalized moisture transport problem for constant
diffusivity [Hremadka and Guymen, 1980a, b] is given by

&8 a8

= €9 (43)
where
Q={x0=x=1j
G(x,t=0)= xel (44)

f(x=01t>0=0

The problem domain £ is assumed discretized into two finite
elements (8, ) of equal length by three nodal values (8, 8.,
4,) where (x,, X3, x3) = (0, 0.5, L.). Because of the boundary
conditions of (44) the resulting system of modeled linear
equations reduces to a single equation of one unknown, 8,. In
order 1o evaluate the effectiveness of using the alternation the-
orem approach to modeling (43} and (44) the finite element,
finite difference, and nodal domain integration solutions witl
also be determined for comparison purposes.

The Galerkin version of the weighted residual process can
be used to approximate (1) and (43) by the finite element
method. The solution domain is discretized into the union of
(n — 1) finite elements (21} by

ro=]

Q=%

f=1

(45)

The water content is utilized as the state variable and is ap-
proximated within each finite element by

B =3 N b0

sl

(46)

where N, is the appropriate linearly independent shape func-
tions and &, is the state variabie values at element-nodal points
designated by the general summation index j.

The Galerkin technique utilizes the set of shape functions
as the weighting functions, which indicates that the corre-
sponding finite element representation for the mfiltration
process is

8 f a8 a8
f{ax o) E} az} N,dx=0 @n
Integration by parts expands (47) into the form
a@ aN af
=@ - s =
ECES f LD(@ Biew, }dx} 0
(48)

where S, represents the external end points of the one-dimen-
sional finite element £, The first term within the braces sums
1o zero for interior elements and also satisfies the usual speci-
fied (flux) boundary conditions of the problem for exterior fi-
nite elements. The remaining integral term is solved by sub-
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stituting the appropriate element approximations and shape
functions into the integrand and solving by numerical in-
tegration. A convenient approach for dealing with the nonlin-
earity of (48) is to assume the diffusivity function to be con-
stant within each finite element during a finite time interval As
in order to carry out the integration [Guymon and Luthin,
1974). Hromadka and Guymon [1980a] examined some ap-
proaches in determining appropriate values of diffusivity for
use in this method of linearizing. The Crank-Nicolson time
advancement approximation has been widely used [Hayhoe,
1974; Desai, 1979] to perform the time integration of (1) and
43

The Crank-Nicolson formulation reduces (48), where val-
ues of soil water diffusivity are assumed constant within each
finite element, into a systemn of linear equations expressed in
matrix form as

ar o [p_ At
{P+2S}8“ —{P Zs}o*

where P is 2 symmetrical capacitance matrix and is a function
of element nodal global coordinates, § is a symmetrical stiff-
ness matrix and is a function of element nodal global coordi-
nates and constant finite element diffusivity coefficients (dur-
ing timestep Af), At is the finite time step increment, and 8" is
the vector of nodal state variable approximations (volumetric
water content) at time step &.

For a linear polynomial trial function the element matrices
determined from (48) are given by

s(heefot-2
SIENIE

where D, is the quasi-constant diffusivity within element i, §
and P are element stiffness and capacitance matrices, respec-
tively, and (8, 8) and (8, 4) refer to the element nodal and
time derivative of nodal moisture content values, respectively,
for an element of length .

For the linear temporal trial function the nodal domain in-
tegration approximation of (40) and (41) can be written analo-
gously to (49) and (50) as

P+8) ¢ = (P-8) & (51

where the element matrices composing the global 8 matrices
of (51) are given by

{49)

(9

-1 lj
fr =t 2)
§=D, I
Iy
and for o — oo
pot[? 1] 53

Hromadka and Guymon [1980a] rewrite the capacitance ma-

trix P in (50) as
! L
Pin)= D) [ | J : (54)
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where the Galerkin approximation in (49) leads to

Ir2 1
p(2)=5[1 2}

The nodal integration approximation with a — oo leads to a
type of subdomain approximation

(35)

ir3 1 ]
P3)=:
(3) 8 L 3] (56)
The finite difference approach is given by
1rl 0
tim P(n) = 5 [ 57
lmPm=7|, || 7

Application of the alternation theorem to the sinusoidal es-
timate of (20) for & in the normalized problem of (43) is made
for & == 1, where

f=0,sinmx O=<x=1l (58)

The best linear approximation # for 6 in subdomain Q, is
found from (32). For 0 < p < 0.5 and x € £, solution of (29)
gives (for o = 1)

= lcos“ 7—2-_% =028 (59)
- 7

i
Thus the maximum error e in the linear approximation § for ¢
on £, oceurs at x = (0, g, +). This error is evaluated from (235)
as

e =@, (} sin mu — p) = 0.1058, (60}
Thus the best linear approximaticn # for § on (Q,, &} is
f(x) = 28,x + 0.1058, =x€ &,
6

Bx) = 26,(1 — x) + 01058, xe€,

Selection of other values of « in (20) would result in a differ-
ent linear approximation § in (61).
From (19), solution of (43) and (44) gives

of
ax |r, = —46, (62)
g e, 39 LY
by j; # dx [2+ 8] = 04275 = (63)

where the e term in {63) serves as a type of weighting factor to
the 8, nodal point approximation in the nodal integration for-
mulation of (19).

For the study problem of (43} and (44) the presented do-
main numerical solutions result in the expression [Hromadka
and Guymon, 1980a, ]

t} =0 (64)

|

lim 8,(1) = exp {_—8

Ar—0

7+ 1
n

where 7 is the entry in the capacitance matrix P(n) of (54). So-
lution of (62) and (63} gives

—48,(1y = 0.4275 aa—ﬁ:z {65)

therefore

G(1) = exp [(~9.357)] =0 (66)



HrROMADKA AND GUYMON: SOIL MOISTURE MODELING

TABLE 1. Domain Solution n Values for Test Problem
Approximation Equation Equivalent 5*

Nodal integration-linear

shape function {56) 3
Galerkin-linear shape

function (55) 2
Finite difference (57 oo
Linear approximation to

parabola {72) 7
Linear approximation 10

sinusoidal estimate (66) 5.9

Reference text equations (43) and (44).
*Reference text equation (54).

As a second selection for the § approximation, a second-order

polynomial for & on £ in the solution of (43) and (44) is
Bx) = db(x — x?) x €8 67

Analogous to the sinusoidal approximation, the best linear ap-
proximation for the parabola & function on {, is

fxy=20+e xef (6%}
where ¢ and e are
p=13 )
e=08,/8

The maximutn & error 1o the parabola & in £, occurs at x =
(0, }, 4). Therefore

509

the alternation theorem to approximate a higher-order trial
function approximation # for & increases numerical model ac-
curacy (for the problem studied) in comparison to the stan-
dard Galerkin finite element and linear nodal domain in-
tegration approaches. The finite difference numerical
approximation, however, gives the best numerical estimates
for # during the initial test problem solution. After normalized
time ¢ = 0.12, howevet, the finite difference approximation in-
creasingly overestimates the analytic solution for 8.

The above results suggest that the parameter 7 of the ele-
ment capacitance matrix in (54) should vary as a function of
time in order to obtain a more accurate numerical approxima-
tion. The following section develops such a numerical model

-which determines n as a function of time for cach finite ele-

ment.

APPROXIMATION IMPROVEMENT BY USE OF ADJUSTED
LINEAR MODEL (NODAL DOMAIN INTEGRATION
METHOD)

In this section a second method of modeling a higher-order
ot more complex family of trial functions by a linear trial
function approximation is presented. For the one-dimensional
soil water transport problem studied, this approach assumes
that the matrix diagonal entry % (54) is a function of time and
that the spatial integration and gradient evaluation of a
higher-order approximation 4 of ¢ can be equated on £, to an
approximation based on an adjusted linear trial function sys-
tem &.

Let § be an approximation function of a higher-order ap-
proximation § of 8, where the spatial gradients of fonT, are

8
8(x) = 20.x + ?2 xefl defined by
(70)
8, {ﬁ}l _0.=8) _(6,-6.) 73
ﬂ(x) = 282(1 - .x) + ? x € 92 ax IrJ I}-' Ij_|'
o : here I/ is the length of finite element j.
Combination of (6) and (70) gives w Z X ) 1 ‘
om © e A spatial gradient adjustment function c(x, ) is defined by
7 a6,
- = 2 71 e(x, 1) = (38/ax)/(38/9 0<c¢<oo
48,(1) 6 o (1) (x, 1) = (86/0x)/{88/3x) (14
_ ) ex, H=1 otherwise
. _ 641 1 -
if'_ﬂ Gy =exp| |- T ‘J' 1280 (72)  Therefore it is assumed that
Table 1 summarizes computed or equivalent values of 5 corre- D ﬁ = De 4 75)
sponding to (64) for the various domain approximations of a ax
(43) and (44). Table 2 gives values of the tested domain solu-  where
tions for comparison to the analtytical solution of the example |
= ad aly
problem at x = 0.50. {D —} {Dc - (76
From Table 2 it can be seen that a numerical model using axJ ir, ax |r,
TABLE 2. Numerical Solution of Normalized Soil Moisture Transport Problem
Time n=2 =3 n=259 n=1 n=oco Exact
0.0! 0.887 0.889 0.911 0913 0.923 0.999
0.02 0.787 0.808 0.529 0.833 0.852 0.975
0.03 0.698 0.726 0.755 0.760 0,787 0918
0.04 0.619 0.653 0.688 0.694 0.726 0.846
0.05 0.549 0.587 0.626 0.633 0.670 0.772
0.10 0.30} 0.344 0.392 0.401 0.449 0.474
0.15 0.165 0.202 G.246 0.254 0.301 0.290
.20 0.091 0.118 0.154 0.161 0.202 0.177
0.25 0.050 0.069 0.096 0.102 0.135 0.108
0.30 0.027 0.041 £2.060 0.064 0.091 0.066

One variable nodal point.



510 HROMADKA AND GUYMON:

On I, define
De = A{1) kAt = t =< (k + DAt an
such that
A(kAr + €) = 5_: A"’(km) - O=se=& (78)

jm=0

where (/) represents the ith order temporal partial differential
operator. Then

o ® €
= 79
{Dax} {E)A(km)l }r, (9)
A function 5(¢) is defined by
!
[ SN ;
[ tax= iy e+ 004 0 0
where for modeling purposes n(r) is restricted 1o values
() = 2 (81)

The value of 3 in (81) corresponds to a first-order polynomial
subdomain approximation for 8, whereas »(f) = 2 cortesponds
to a finite element (Galerkin) approach, and «(f) — oo corre-
sponds to a finite difference approximation.

The § approximator is also defined to have the property

fadxaf Bdx  wey=2
nl nl

as defined by (80).

(82a)

Ledxag[a,_.+6@+a,+,] mMH<2  (82h)

Substituting (79) and (82) into (36) gives the nodal domain in-
tegration statement

[{5 oo £,

- HO + 28 kAt + A+ 8,,]
2[n(kar + An + 1}

416+ 20, kAn + 6,,1]

2[n(kAn + 1] 3
where
kAL + €) = f (kAL % 0=e= Ar (34)
=0 L4
Analogous to the development leading to (41),
- &, @an!
AR =7 X A E=(0)
TLATHY (55)
ORI SR (103) A

where for modeling purposes it is assumed that second-order
{(and higher) temporal differentials are negligible and

Ag = {eDia
D a8 o
Al_[CE§-31-+DEka (86)
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i

and for smali Az, (829/612) = (ac*/ar’) = 0. Thus analogous to
(51), (52), and (53),

, 3D 3
ar 9@ o

o=l 7‘
|
|
-
} (87
L7

-
|
|

ﬁK“ULIJ

where 7 = n(kAr + Ar) and 1§ = n(kAr).

From the above the soil water transport problem may be
modeled by an appropriately defined linear trial function ap-
proximation set which incorporates some of the benefits of a
higher-order family of approximations. Thus additional nu-
merical accuracy may be achieved while retaining the symme-
tric matrix formulation characteristic of a linear polynomial
approximation of 8.

any
Il
F—j —
- .—

2(n+ 1.

MODEL APPLICATIONS
{LINEAR APPROXIMATION ADJUSTMENT)

The normalized transport problem of (43) and (44) is reana-
lyzed using a five nodal point discretization of Q with (x,, x,
X3, X X5) = {0, 3, §, §, 1). A Galerkin finite element or finite
difference numerical approximation model for this problem
follows from the preceding sections.

For # assumed to be described by a second-order poly-
nomial such that

d=N8_ + NG + N,
then from {(74) and (82)

xE€Q (88)
oty =1
() = 11

As another example of a higher-order approximation # of 8
on §, a fourth-order polynomial approximation of # is given

by

(89)

xe {90)
For the fourth-order approximation, (87} is determined for
each Ar time step by solving (74), (80), and (82). For a normal-
ized time step of At = 0.01, n(¢) and o(r) were modeled as a
constant during each time step, ignoring the time variation of
both adjustment terms.

Computer simuiation results for numerical models based on ~

the Galerkin finite element method (# = 2), linear subdomain
method (n = 3), finite difference method (n = o), nodal do-
main integration using (89) {y = 1l), nodal domain in-
tegration using an adjusted linear approximation of a fourth-
order polynomial approximation, and a fourth-order poly-
nomial subdomain approximation for the test problem are
given in Table 3. From Table 3 the true fourth-order sub-
domain approximation gave the most accurate results, but the

”~



Numerical Solution of Normalized Moisture Transport Problem

TABLE 3.

Analytic

x=1025

Adjusted Linear}:

x={.25

Fourth Ordert

x =025

n=11%

7 =3}

0.25
0.823
0.716

n=2*

x=105

x =105

0.5

1.003

0.961

x=0.5
098¢

0.25

x=
0.861

x=0.25 x=05

x=05
1.017

x=

x=(.5

x =025
0.802
0.704

Time

0.923 0.999

1.013
0.967

0.864

0.761

0.864
0.760

0.676

0.989

0.851

0.04
0.02
0.03
0.04
0.05
0.10
0.15
0.20
0.25
030

0.975
0918
0.846
0.772

0.78¢9
0.690

0.615

0.830

0.502

0.678
0.608
0.548

0.898
0.828

0.606

0.933
0.873
0.807

0.755
0.671
0.602
0.543
0.335
0.209
0.131

0.941
0.876
0.807

0.743
0.660
0.592
0.533

0.960
0.882
0.802

0.727

0.637
0.572

1.041
0.970
0.881
0.796

0.627
0.564
0.508
0.302
0.179
0.107
0.063

0.038
Three variable nodal points.

[

0.474
0.250
0.177
0.018
0.066

0.553
0.336
0.205
0.125
0.076
0.047

0.759
0.468
0285
0.174
0.106
0.064

0.331
0.201
0.123
0.075
0.046

0.469
0.287
0.175
0.107
0.065

0.758

0.546
0.331
0.202
0.123
0.075
0.046

0.743
0472
0.295
0.185
0116
0.072

0.082
0.051

0.73%
0.461
0.285
0.176
0.10¢
0.067

0.202
0.125
0.077
0.048

0.327

0439
0.264
0.159
0.096
0.058

0.515
0.310
0.187
0.113
0.068
0.041

0.718
0.427
0.254
0.151
0.09¢
0.053

*Galerkin finite element analog.
fSubdomain approximation.
}Nodal domain integration method.
§Finite difference method.
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nodal domain integration model closely matched these results.
Thus the numerical accuracy produced by a fourth-order ap-
proximation is closely matched by a first-order approxima-
tion, significantly reducing computer memory requirements.
Additionally, the computer computation requirements in solv-
ing (74) and (82) are offset by the reduction in a higher-order
approximation matrix computational effort, Values of 5(1) and
c(f) computed for the (fourth order) linear adjusted model
were approximately 10.5 and 1.0, respectively. This may ex-
plain the good results obtained by the linear adjusted model
using (88) and (89).

APPLICATION OF LINEAR APPROXIMATION
ADJUSTMENT APPROACH TO
A NONLINEAR PROBLEM

The numerical model given by (83}, (87), and (89) was ap-
plied to a sharp wetting front problem of soil water infiltration
into an air dry horizontal column {Hayhoe, 1978, Hromadka
and Guymon, 1980c]. The analytical value of soil water diffus-
ivity for Hanford sandy loam [Reichardt et al., 1972] was se-
lected in order to provide a sharp wetting front through the
soil column, causing the numerical analysis of moisture flow
in the soil to be difficult. The guasi-analytic solution advanced
by Philip and Knight [1974] and utilized by Hayhoe [1978] was
used for this study.

Equation (1) was solved subject to the initial condition

Hx, ) =0 =0 O0=xsL 91)
and the boundary conditions
80, n=1 &L, 6)=10 >0 92)
where the soil water diffusivity (cm? min~") is given by
Dg)y=09x 10 exp (8B.366) #>0

(93)
Dl =09%x107" =0

and & is the volumetric water content.

Because of the nature of the soil water diffusivity function
of (93) the temperal variation of diffusivity is extremely im-
pertant during the Ar time step. Table 4 contains various val-
ues of time step magnitudes Az (in minutes) and time series ex-
pansion terms in the numerical model of (1) by (83) at time ¢
= 16.5 min. For the numerical model a spatial discretization
of 0.5 cm was used where the total column length was set at
5.0 cm to correspond to the model results of Hayhee [1978].

CONCLUSIONS

Two techniques of modeling a higher-order trial function
approximation of soil moisture transport using an improved
linear trial function approximation set have been developed.
Both techniques retain the smaller symmetrical matrix sys-
tems associated with numerical models of soil moisture trans-
port based on a linear polynomial trial function but increase
the numerical accuracy of the model by incorporating some of
the benefits of a higher-order approximation.

Because the various numerical methods considered (finite
difference, Galerkin finite element, subdomain method) are
available in the proposed model, it is concluded that the pro-
posed numerical approach may lead to a generalized mod-
eling method for all soil moisture transport problems. The
computer code used for each simulation is identical except for
a varation in the capacilance matrix entry 7. Therefore a
comparison of numerical efficiency between the finite differ-
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TABLE 4. Comparison of Numerical Model Results at Time ¢ = 16.5 Minutes

Ar=19.t min, Ar = 0.1 min, Ar=0,1 min, At = 0.3 min, At = 0.3 min, At = 0.3 min,
x,cm Analytic* i=0 i=2 i=35 i=0 - i=2 i=5
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.99 0.99 0.99 0.99 0.98 0.99 .99
L0 0.97 0.97 0.97 0.97 0.97 0.97 0.97
1.5 0.95 0.95 0.95 0.95 0.94 0.95 0.95
20 0.92 0.93 0.92 0.92 0.92 0.93 0.93
25 0.88 0.90 0.89 0.89 0.88 0.90 0.90
3.0 0.84 0.87 0.85 0.85 0.84 0.87 0.86
35 0.78 0.82 0.78 . 0.78 0.82 0.82 0.82
4.0 0.67 0.39 0.63 0.64 0.05 0.37 0.40
45 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Values of water content. The / is the number of temporal Taylor series terms (diffusivity function) included, and At is the time step magni-

tude.
*Results from Hayhoe [1978].

ence, Galerkin finite clement, subdomain method, and the
proposed nodal domain integration approach is provided.

NOTATION

flux adjustment factor.

sinusoidal curve trial function adjustment factor.
soil water diffusivity.

coefficients of & linear function approximation for 4.
gradient adjustment factor.

local ume coordinate 0 < € = At.

alternation theorem error of  approximation for 4.
point of relative maximum error of § approximation
for §in @,

(i) partial differential operator {(order).

k time step increment number,

L length of one-dimensional domain.

length of nodal dornain j.

¥ length of finite element spatial domain.

{ length of nodal domain for constant element dis-
cretization.

temporal shape function.

spatial shape function.

number of nodal points in £,

integration adjustment factor as a function of time.
unsaturated volumetric water content.

value of ¢ at node J.

trial function approximation for &.

fx = x,. t = mAr).

linear polynomial approximation for 6.

element capacitance matrix diagonal entry.

spatial coordinate of node j.

time step (constant}.

time.

limits of time step integration.

local spatial coordinate in finite element spatial do-
main.

domain of problem definition.

=

3

s Z

=

—_
-

—

X

N:_‘t-‘ E\k =5 %|‘5 T @

2

{; nodal domain j
!, finite element domain
I', boundary of &,
P global capacitance matrix.
P fnite element capacitance matrix.
P nodal domain capacitance matrix.
P() finite element capacitance mailtix as a function of 7.
S global stiffness matrix,
S finite element stiffness matrix.
8, S nodal domain stiffness matrices.
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