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SuBDOMAIN INTEGRATION MODEL
OF GROUND-WATER FLOW

By T. V. Hromadka II' and G. L. Guymen,’ M. ASCE

INTRODUCTION

Numerical solution of the governing differential equations describing one-
dimensional ground-water flow has received substantial attention since the advent
of modern computers. Generally, numerical models are developed which employ
the well-known finite-difference or Galerkin finite element methods (1,2) to
approximate the governing equations, resulting in a model which can be solved
generally only with computers of at least the minicomputer class. Recently,
the **method-of-lines’” (3) was used to solve the nonlinear unconfined ground-
water flow equations resulting in a numerical model which can be accommodated
by a programmable hand-held calculator. The algorithm used a “‘shooting method’’
which required an iteration process to obtain the desired accuracy. The main
purpose of this paper is to present another approach to solving nonlinear (and
lincar) problems such as ground-water flow processes which also may be
accommodated by programmable caiculators. The numerical approach used is
the subdomain integration version of the weighted residual methods as applied
to solving for spatial coordinates as a function of the ground-water (or piezometric)
surface,

The objectives of this paper are threefold. The first objectives is to present
the subdomain integration numerical method as applied to a specific class of
one-dimensional transport problems. Hromadka and Guymon (6,7,8) developed
this numerical modeling procedure in detail and compare modeling efficiency
to the well known finite difference and Galerkin finite element methods, and
conclude that the subdomain integration procedure leads to a more accurate
numerical model for the various problems tested. Extension of the modeling
method to one-dimensional and two-dimensional linear and nonlinear advection-
diffusion problems are the subject of current papers (9,10,11).

The second objective of this paper is to determine a subdomain integration
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numerical model which solves for spatial coordinates rather than solving for
the governing flow equation’s state variable. This approach somewhat eliminates
nonlinearity (due to state variable dependent parameters) because the nonlinear
parameters are evaluated at a constant value of the state variable along the
boundaries of each subdomain.

The third objective is to simplify the resulting subdomain integration numerical
model] into an approximation which can be accommodated by programmable
calculators. For the specialized problems tested, the simplified subdomain
integration approximation produced good results when compared to available
analytic solutions.

Governing One-Dimensional Grouno-Water FLow EquaTions

One dimensional, unsteady ground-water flow in a confined homogeneous
aquifer of a nearly uniform thickness is generally described by a linear partial
differential equation of the form

subject to appropriate boundary and initial conditions. In Eq. 1, h = a convenient
reference of piezometric head (Fig. 3); x and 1 = spatial and temporai coordinates;
and a = the quotient of transmissivity T, and effective porosity, n. Examples
of approximately one-dimensional ground-water flow include the movement of
water between a stream and the aquifer in response 10 a change in stage, and
aquifer recharge from streams, canals, and irrigation ditches due to a sudden
increase in stage.

The nonlinear partiai differential equation describing one-dimensional uncon-
fined ground-water flow is the well known Boussinesq equation

d ah ok
-—(th—-—)=n——- ............................ (2)
dx ax at

in which K, = the saturated hydraulic conductivity; and 5 = the hydraulic
head. Due to the nonlinearity of Eq. 2, only a few quasianalytical solutions
exist for select probiems (4,5).

Numericar MooeL

The subdomain integration method (6-10) is applied to the governing flow
equation of unconfined (and confined) ground-water flow. The boundary and
initial conditions are assumed defined such that the spatial ccordinate x can
be described as a function of k (Fig. 1). The h-axis domain 0 is discretized
by n nodal points into n subdomains t, such that
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FIG. 1.—Nodal Point Distribution on k-Axis Global Damain 0}

For an interior subdemain {},, ] < j < n, let

TR i- I

1 1
h'=Q nQ‘=?(hf'*l+h1); hﬂ:ﬂfnnjvl-’zz(h;"_h/ﬂ) e

x'=x(hT), XT=x(WY Lo
The integration of the nonlinear Eq. 2 over {1, is modeled by
dh dh d (7 dx’ dx”
K h— -l K h— =n— hdx + nh' —nh"—
Codx /- dx /.. dr .. dt dt

For a linear trial function approximation on subdomain {}, (Fig. 2)

x

in which each £, is constant and x, = x,{¢). Thus

d I”hd Ll 3h (dx" x"')
—— = — N R _———
a )" By Nz ™ a

(h 3h )(d'xn-l dxf):'
-+ N + X e
s N dt dr

dx’ 1 (dx,_, dx}) dx” 1 (dx, dx,,, )
dt 2 dt dt dt 2

Equation 9 can be rewritten as

d ""hd dx, _, ( A, +3h,) dx, (h,‘, ~h, )
-_ X = —_ + ——f ——
dt .. dt 8 dt 8

! 1
K hd’x=;[(xj—xl.Al)(th,+3h,)+(xﬁ_|_x,_)(h‘,+,+3hj)]
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FIG. 2—Linear Trisl Function Approximation on Subdomain 11,

dx,,, {h,, +3h,
+— ( = ) ............................ (ay
dr 8
and A’ dx’ Y dx” - dx, ., (h_r--l +h, ) +dx_f (hJ—’ = A )
dt ds dt 4 d 4
_dx,+| (hj+h;+l ) ............................ (12)
dr 4

From the preceding linear 1rial function approximations, Eq. 7 is rewritten as

d [ dx’ dx" dx;_, {h,_ —h,
=\ hdx+h' - K =

dr dt dr dt 8
+fi’~(3h'“' "3h’*‘) + B (h’_h”' ) ......... (13)
dt 8 dt 8
For the linear trial function approximation for & on 0,
ah h ~h,_
(K,h —) = K_‘,h'(—’mL'-)- ..................... (14)
dx X (xj - x;—l)
ah h . —h,
(K..-h ~—) = Ksh”(—’—”——’—)- ..................... (15)
ox /|- (x,00 — x,)

in which K b’ (h, ~ h,_,) and K 4" (h,,, — h,) are constant for all time
due to the numerical approximation solving for specified spatial coordinates
x, (Fig. 2). Combining Eqs. 7, 13, 14, and 15 gives the subdomain integration
numerical model for Eq. 2 on £,:

8K h"(h,, ~ k) SR (h,~h, ) dx,

J+l
£
(x}-o-l_xj) (xj_xj—l) ar
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dx dx,.\
+3;’_1(;:,41dh,+l)+—jt—(h,.—h“,) .................. (16)
in wh.lCh ﬁj = K_‘ /ﬂ.
For problems where
B — b= h,—h, = Ah (L7}
dx_;_\ dx}'+l dx}
S
and t dr dt (18)
the numerical statement of Eq. 16 can be simplified as
¢ n” AR K.h AR dx,
KA B A AR (19)
(xj'-i-\'—x}) (xl'_xf’l) dt

It may be noted that the X parameter has not been assumed constant in the
qumerical model derivations, i.e., due to the approach of solving for spatial
coordinates x,, nonlinear terms such as kK (h) will be constant on the boundaries

of &;.
Fquation 17 is integrated with respect to time to give the model approximation

for Eq. 2 on {},
r-(krlaﬁr{ k,h" fjh'
S (-’:j+| -xj) (xj_'xj—[)

Integrating Eq. 20 over a small A timestep gives

R h"At | (xf,,, —x; )
n
2 I 1 1 1
(I,zn”'x,u)_(x;ﬂ—xj) Xisr = Xy

EshrA’ t (sz—xj_l ) 1 K
- n +ay=x7 21
PN ST R T .

in which in Eq. 21 the superscripts | and 2 designate x-coordinate values at
time kAt and (k + 1) Ar, respectively. Equation 21 can be further simplified
by letting

R.h" b1 R, k' As L

— i — + X =x; QB
(—"“-l_xj) (xj—xj—l)

in which it is assumed that (12)

] dt + x (kA1) =x, {(k+ 1)Ar] {20}

rmkdr

|
fl=;[3xj(:=kAt)-xj(t=kA:—Ar) ................. (23)

Therefore, an explicit formulation for the approximation of Eq. 2 is developed
whereby each future x-coordinate, ¢.g., xf , can be determined from previously
determined data. The deveiopment of an equivalent numerical model for Eq.
1 follows analogously to the preceding derivation (6,7,8).

MooEes APPLICATIONS

To demonstrate the accuracy of the proposed numerical method, the first
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problem presented is an idealization of ground-water flow from a confined aquifer
that forms the banks of a stream. It is assumed that drawdown is sufficienly
small so that Eq. 1 describes the flow process. The initial and boundary conditions
assumed in order to simulate an instantaneous step change in the piezometric
profile of the aquifer are (Fig. 3)

h(x,00=h,; h{o,ty=h_,t=0; A0, 8})=0,t>0 .. ... ..... (24)

The analytical solution to Eqs. 1 and 24 is given by

X
h=h, erf| —~—m==x
(Vtmt)

in which A, = the assumed constant step change of stage. For example purposes,
the substitutions of a unit step change in stage and o = 0.25 (units of L*/T)
were used.

ground surface \

/— initial stream stage

Y 1 piezometric profile
Q
Y % h
{ -
STREAM Z/i
Y
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L AQUITER TN ¢

FIG. 3.—Flow from Contined Aquifer to Stream Due to Drop in Stage

Due to the several simplifying assumptions used to reduce the complexity
of Eq. 16 to the approximation of Eq. 22, small timestep increments were
required. The assumption of Eq. 17 is met by suitable discretization of {1 by
equally spaced nodal points, The assumption of Eq. 18, however, limits the
time rate of change of the siate variable profile, i.e., in the initial portions
of the problem solution when the piezometric profile changes relatively rapidly.
much smaller timestep increments were required than when the piezometric
profile varied more siowly. In order to keep the program size small, several
simulations were made using various constant timestep sizes. The resulting
modeled profiles were compared until negligible differences in the computed
piezometric profiles were observed with decreasing timestep size. The resulting
piezometric profile at various intervals of time are compared to model resuits
in Fig. 4. From the figure, good results were obtained in the uwse of Eq. 22
to model the linear formulation of Eq. 1.

The second problem presented is the application of the model of Eq. 22
to solution of the nonlinear formulation of Eq. 2. The problem considered is
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FIG. 5.—Modal Results in Predicting Free Water Surface [Dots Represent Modeled
Resuits; Solid Line Represents Analytic Solution te Equation 2 {3)]
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the estimation of uncenfined ground-water surface profiles for an instantaneous
step change in elevation between two reservoirs separated by a given length
of soil. Figure 5 shows dimensionless water surface profiles and computed results.
For the normalized problems considered, time steps of .000125 were used requiring
a total of 720 cycles to advance the profiles from normalized time of 0.01-0.1¢.
As can be seen from Fig. 35, good results are achieved. As with the previous
test problems, several simulations were made reducing constant timestep sizes
until negligible differences in the computed ground-water surface profiles were
observed.

The computational algorithm can be accommodated on cutrent programmable
calculators when the simplifying assumptions of Eqs. 18 and 19 are used. A
further simplication of the model is the elimination of the time-step approximation
of Eq. 23, further reducing calculator memory requirements.

ConcLusions

The subdomain integration version of the weighted residuals method is applied
10 the linear and nonlinear equations of one-dimensional confined and unconfined
ground-water flow, respectively. The approach used is to determine the spatial
coordinates as a function of piezometric or free ground-water surface profiles.
A simplified version of the numerical model can be accommodated by current
programmable calculators. Good results were obtained when applying the
proposed numerical model to the problems considered. However, several simula-
tions were required for each problem tested, progressively reducing timestep
sizes until negligible differences in computed results were observed.
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Arpenpix Il.—Noration

The following symbols are used in this paper:

h = piezometric or free water surface elevation;
h; = nodal point value of #;
K, = saturated hydraulic conductivity;
K, = K,/m
# = specific porosity;
x,t = space and time coordinates;
erf = error function;
a = hydraulic diffusivity;

At = time step;
1) domain of definition; and

Q, subdomain j.
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