Cold Regions Science and Technology, 4(1981)137--145

137

Efsevier Scientific Publishing Company, Amsterdam ~ Printed in The Netherlands

SOME APPROACHES TO MODELING PHASE CHANGE IN FREEZING SOILS

T.V. Hromadka Il and G.L. Guymon

Schoal of Engineering, University of California, Irvine, CA (U.S5.A.)

R.L. Berg

Geotechnical Research Branch, U.S. Army, CRREL, Hanover, NH (U.5.A.)

{Received January 7, 1980; accepted November 6, 1980}

ABSTRACT

Phase change effects associated with freezing soils
dominate the thermal state of the soil regime,
Furthermore, freezing of soil water influences the soil
moisture regime by providing a moisture sink which
tends to draw mobile 5ol moisture to freezing fronts.
Consequently, it is critical to general purpose models
that soil water phase change effects and the inter-
related problem of estimating the moisture sink
effects (Le., conversion of liquid weter to ice) be
accurately modeled. The choice of such a model will
not only influence the precision of simulated
temperatures and water contents in q freezing soil,
but also have a significant impact on computational
efficiency. A review of several current models that
assume unfrozen water content is functionally related
to subfreezing temperatures indicate that within a
freezing soil the soil water flow model and heat
tfransport model parameters are restricted in spatial
gradients according to the spatial gradient of modeled
unfrozen water content. A freezing soil model based
on the concept of isothermal phase change of soil
water is proposed as an alternative approach.

INTRODUCTION

The possibility of numerically modeling the com-
plex processes which occur in simultaneous heat and
soil-moisture transport in a freezing soil has received
much attention during the last decade. Early math-
ernatical models for simulating the soil freezing pro-
cess were proposed by Harlan (1973), and Guymon

and Luthin (1974). More recent modeling efforts of
coupied heat and soil-moisture transport in freezing
soils include Sheppard et al. (1977), Jame (1978),
Taylor and Luthin (1978), and Guymon et al. (1980).
A comparison of these various modeling efforts indi-
cates that the approaches used to simulate the soil
freezing process differ. Guymon et al. use a so-called
“isothermal” approach where the governing heat and
moisture flow equations are solved independently and
soil-water phase change is modeled within freezing
soil by returning below freezing temperatures to the
freezing point until the available soil water is frozen.
The other referenced modeling efforts all assume that
volumetric water content, 8, and temperature, T,
are functionally related within a freezing region of
soil

0 = §(T), T<0C (1)

and numerically iterate between the coupled hear and
moisture transport relations untii values of ¢ and T
are within a selected tolerance to the soil water
freezing characteristic curve approximation; if tem-
peratures are abave freezing and the soil is ice free,
then the functional relation of egn. (1) is discontin-
ued (Taylor and Luthin). Sheppard et al., however,
used an alternative statement of eqn. (1) to eliminate
the soil-moisture variable component by a volumetric
water content to temperature gradient, and math-
ematically combined the coupled equations into a
single relation based on temperature. This reduced
formulation incorporated the so-called apparent heai
capacity defined by

Ca = Cy +L, 08/0T (2)
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where C, is the volumetric apparent heat capacity;
Cum is the volumetric heat capacity of the soil-water—
ice mixture; L, is the volumetric latent heat of fusion
of water; and the density of water, pw, is assumed to
be unity. Equation (2) was apparently originally
presented in terms of volumetric ice content, but
more commonly volumetric water content is used in
eqn. (2} (Williams 1968 and Anderson et al. 1973).

Although Jame, and Taylor and Luthin numerical-
ly iterate and adjust solutions of the governing heat
and moisture flow equations until eqn. (1) is satisfied,
the underlying mathematical result is the solution of
a single differential equation incorporating an
appropriate apparent heat capacity term.

The Sheppard et al. mathematical model assumes
negligible gravity effects in their vertical soil-water
flow model, and relates soil-water pore pressure head
to absolute temperature in order to combine both
transport equations into an apparent heat capacity
formulation including eqn. {2). Jame, and Taylor and
Luthin, however, simulate coupled heat and moisture
flow in a horizontal freezing soil column and use
volumetric water content as the governing moisture
transport variable.

In this paper, the two governing heat and soil-
water flow mathematical models used in a horizontal
freezing soil column problem will be combined into a
single transport model similar to the vertical column
model of Sheppard et al. Using the volumetric water
content to temperature functional relationship
assumption, the resulting combined transport model
can be written in terms of either the moisture trans-
port or heat transport variables (i.e. volumetric water
content or temperature), with the apparent heat
capacity term (or equivalent) included in the formula-
tion. From the resulting combined model, it will be
shown that severe limitations on the transport con-
duction parameters of thermal conductivity and soil-
water diffusivity must be satisfied in order for the
model to describe the soil-water freczing process.

The objective of this paper is twofold. The first
objective is to evaluate the mathematical consistency
of combining the assumptions in eqns. (1) and (2)
with coupled heat and moisture transport models.
A number of investigators assumes that soil-moisture
transport in freezing soils can be modeled by an
analogy to unsaturated soil-water flow theory where
soil moisture driven by hydraulic gradients dominates,

and the usual soil-water diffusivity can be modified
by an ice-content correction or scaling factor in order
to accommodate ice formation and its effect on soil-
water flow. Additionally, the classical heat transport
relation is assumed for heat flow within freezing soils,
and heat transport due to convection by soil-water
flow is assumed negligible in several models. Ice
formation within freezing soils is modeled by an
appropriate soil-moisture sink and heat source term
based on the time rate of change of volumetric ice
content within the freezing soil.

The second objective of this paper is to present an
alternative modeling approach based on the previous-
ly mentioned isothermal concept. This second
approach is based on the assumptions of an analogy
to unsaturated soil-water flow theory and the classical
heat transport relation (with convection), but some-
what relaxes the volumetric water content to tem-
perature functional requirement. Soil water in excess
of that predicted by the soil-water freezing character-
istic curve is permitted, but further soil freezing is
modeled isothermally until the soil-water content
corresporids to the freezing characteristic curve.

SOIL-WATER PHASE CHANGE EFFECTS
MODELED AS AN APPARENT HEAT CAPACITY

A horizontal freezing soil column will be discussed
due to the extensive numerical model development
and laboratory parameter estimations given in the
literature (e.g. Jame 1978).

Soil water flow in freezing soils is generally
assumed modeled by an analogy to unsaturated soil-
water flow theory by

p198y

a a0 a4
-—-(D —) = — 3
dx ax ot pwot
where D is the appropriate freezing soil-water dif-
fusivity. Equation (3) is based upon the assumption
that soil water primarily moves as a liquid, driven by
hydraulic gradients, Vapor movement and thermally
driven moisture flow is assumed negligible (Fuchs
1978, for example).

Neglecting convected heat effects, heat flow in
freezing soils is generally modeled by

] (K BT)_C oT .
dx Tax ™ 3¢
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where KT is the thermal conductivity; 8y is the
volumetric ice content; L, is the volumetric latent
heat of fusion for liquid water; and py is the density
of ice. A third major assumption in several current
models is that water content and temperature are
functionally related for below freezing temperatures
(Sheppard et al., Taylor and Luthin, Jame)

8 =a(I), 8RR (5)

where R(7T) is the domain of functional definition
for subfreezing temperatures,

From eqn. (5), the thermal gradient of water
content is defined by (Jame, Sheppard et al.)

g = 30/0T, 8ER(T) (6)

Therefore, eqns. (3), (4), (5) and (6) may be com-
bined into one governing equation similar to the
formulation of Sheppard et al. '

0 [ a8 Ky 00
— (LD — +— —] =
dx dx 6 ox

[La+&] g,&ER(T} (N

or in simpler notation,

a( 86‘) a4
= )y —

2o &
ox ! ax 3 at

8 = 8(I (8)
a, = L,D+K1/8

ay = Ly +Cpyf8

where ¢ is the corresponding apparent heat capacity
term equivalent to eqn. (2) for volumetric water
content used as the primary variable in eqn. (7).
Thus, the § = 8(T) assumption leads to one equation
incorporating an apparent heat capacity term (or
equivalent) and ancillary relationships between
‘parameters. Although from the above it is necessary
to numerically solve only one equation, Jame (1978)
and Taylor and Luthin (1978), for example,
numerically solve each equation of state separately,
and adjust solutions by an iteration procedure for an
assumed 8 = 8(T).

To determine the ice content profile, considera-
tions of mass transport may be used as outlined in
Hromadka and Guymon (1980). Thus, eqn. (3) can
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be temporally and spatially discretized for numerical
solution as follows:

2A¢ _pw 2At% a8 l {
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where At is a numerical time step increment, £ and
I'; are spatial domains and boundaries respectively of
soil column region, j. Appropriate basis or (rial func-
tions are substituted into eqn. (9) and indicated
mathematical operations are carried out, yielding a
matrix system very similar to that resulting from
using the well-known finite-element method.

Some theoretical implications and problem limita-
tions as posed by eqn. (7) can best be developed by
examining a simulation of horizontal freezing in a soil
column. Laboratory data obtained by Jame (1978)
are used as a case study. Unsaturated soil-water dif-
fusivity, D(8), is assumed described as shown in
Fig. 1, and water content is assumed to be a function
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Fig. 1. Soil-water diffusivity versus unfrozen moisture
content (Jame 1978).
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Fig. 2. Liquid water content versus temperature relationship
showing experimental data and the approximate curve used
in the computations (Jame 1978).

of temperature as shown in Fig. 2. These data are
generally similar to data from frost susceptible soils.
From Figs. 1 and 2, it can be shown that within
region R, of the diffusivity curve, the magnitudes of
(Cu/0) and (Ky/8) are less than one-half of one
percent of the magnitudes of (L,)} and (DL,), respec-
tively. Accordingly, within region R, eqn. (7) may be
numerically approximated for the given assumptions
by

3 ( ae) a8
—_—{D —} = —

ox ox ot

D = D(8,61) = D(0)/10'°%1
XER,

(10

where D(8,81) is assumed defined by an adjustment
to unsaturated diffusivity as described by Taylor and
Luthin. Because data on hydraulic conductivity of
frozen soil are not generally available, an estimate of
frozen soil hydraulic conductivity is usually assumed
for most models. The approach used by Taylor and

Luthin which is based upon unfrozen soil water dif-
fusivity is arbitrarily selected for study purposes.
For region R4 (Fig. 1), eqn. (7) may be examined in
the limit to be

3 [(K1 2071 (Cm 30
im {— |f—=—+DL,)— | =|— +La)'_'
6—0} ox ] dx ) at

I
2 aT oT
2 L), 2L

, XER, (11)

ax. ot

where the thermal parameters are functions of soil,
water and ice fractions. Within regions R, and R,,
the magnitudes of (DL,) and (K'y/6) generally are
such that neither term can be eliminated from the
formulation.

For significant diffusivity values, difficulties may
arise in attempting to model a zero moisture flux
boundary condition while maintaining a freezing
thermal gradient; that is, for & = 8(),

a6 .. ar
D—=DhH— =10
ox dx

(12)

aT
Kr=— %0

ox
would be the boundary condition. Accordingly, dif-
fusivity must be set to zero at the column boundary.

Another difficulty is possible accumulation of soil
moisture above the water content value predicted by
the characteristic curve, (7). For the horizontal
freezing column problem (Jame, for example) where
zero moisture flux occurs at the column boundaries
at x = (0,L), the 8 = 8(T) assumption necessarily
implies that the thermal and moisture gradients are
positive, for the freezing front advancing from x = 0.
Also, a closed system freezing column problem can
only have a depletion of unfrozen soil moisture, since
an increase of moisture implies an increase of
temperature by the 8(T) assumptions and eqns. (3)
and (4). Hence, the governing relations within regions
of freezing soil become

3 [(Kp 867 [Cm 1\ 08
— —é' +DL3)—]=(?+La)‘5?, 0<x <L

(13)

ax ox g
affar <0, r=0
g = 8(1)



Forag/or=0,

a © BT) L a b ae (14)
“Bx(TBx B aax( ax)
which results in a specific formulation for thermal

conductivity in a steady-state moisture content region
for the models considered

K Ao oL, 2!
T~ (3T/ex) 23T
(15)
8 = 6(7)
3ot = 0

For some region, R, of the soil column where g is set
to the constant value 84, A, can be evaluated such
that eqn. (18) becomes

Y
(K +L,6,D7) (E)
(aT
)

where primes indicate known values. An approximate
spatial gradient relationship is given by

af( LéaD €R
— m—f.8,—: x
ax T 0 ax

~L.6,D; xER (16)

Kt =

6 = 6(7) (17)
agfar ~ 0

'
(@T/ox) /(8T /3x) =~ 1
where f(T denotes that therrnal conductivity function
which satisfies the steady-state moisture content
relationship of eqn. (16).

For the dynamic case, in a freezing soil, eqn. (13)
can be rewritten as

3 (K 007 _(C 20
— [(—T +LaD)—] = (—f~“ +La)—-
ox L\ 6 ax g ot
20
at

(18}
<0, 0<x<L
where for unidirectional freezing in a soil-column

{freezing front advancing from x = 0) the various
gradients are generally given by
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affar < 0

86/8x > 0

3%0/0x?< 0 (19)
<0

From egns. (18} and (19)

9 (—KT) BG] . b ] [(L D) ﬂ] (20)
dx [ 8 Joxd " ax LT ax

which when expanded gives (for below freezing tem-
peratures)

d LY < a(KT) (KT +LD626 66(21)
5( a) S ax\ 0 g a)ax2 dx

In order to avoid moisture accumulation at a
constant temperature and preserve the 8(7) assump-
tion, eqn. {21) must be satisfied for every water con-
tent profile. Thus, for the given model assumptions,
the transport parameters are limited in spatial gra-
dients according to the spatial gradient of water
content. Especially important are the initial condi-
tions of the problem which also bound the parameter
spatial gradients as given in eqn. (21).

For example purposes, consider a strictly freezing
horizontal soil-column problem with initial condi-
tions given below (Fig. 3):

6 = 6(T) (Fig 2)

bz =0, t>0) = 0

O(x=L, 1=0) = 8; 0y <o <n
8(x,t=0) = (0o~ Bp)x/L +0p
X =L t>0) =0 - @
dx

ﬂaﬁa =8, =0, 0<x <L
Py
§>0, 0<x<L

T(x)<0°C, 0<x<L )

where % is the porosity. Thermal conductivity is
assumed given by the DeVres (1966) equation

Kt = Kwb + K18 + Kgbs (23)
where (Kw, Ky, Kg) are the thermal conductivities of
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Fig. 3. Geometry for example initial condition problem.

waier, ice and soil. Other pertinent parameter estima-
tions are obtained from the laboratory data shown in
Figs. (1) and (2). The unsaturated diffusivity shown
in Fig. (1) is estimated by

D(9,6;=0) = 0.278e%°-%%  0.11<6<0.26 (24)

Taylor and Luthin propose an ice accumulation cor-
rection factor, J, for freezing soils, such that

D(0,6y) = D(O)I

I = 101% (25)

Thus, for below freezing temperatures

D(8,6y) = 0.278e15580-23.0391 0 11 <0 <0.26(26)

The spatial gradient of diffusivity for below freezing
temperatures is given by the chain rule

aD(g,0) ap od 9D af;

—_— et — 27
dx 96 oax 98 ox

From eqn. (23)

IKT X a8 p ag (28)

——— I —+ —

ax  Voox ' ax

From Fig. 2,

9(T) = 0.325+0.55T, 0.11<§<0.26 (29)

thus,

. o8 .

6 = ﬁ = 0.55=0, 0.11<6<0.26 30)

For the initial conditions of eqn. (22) and 0.11 < §
<0.26,

36y pw 88 39
ax P 0x dx
oK 36
- Ky - 11K —< 0 (31)
ox Ox
o069 06
690 _ 5091 p 2%
0x ox

For the initial conditions of eqgn. (22), the statement
of eqn. (7) is rewritten in terms of temperature as

9 [(L Dé+K)aT] = [L,8+C ]E (32
ax . T ax 4 A )

and from eqn. (2),

Lé+ClaT—CaT 33
Lad+Cul 5= G, (33)
Equation 32 is expanded as
L,Dé +K7) or + [a (L,DB+K )]aT
(La T 3x? ax T)ax
ar
= (g — 34
ot

For 6 equal to the constant 6, per eqn. (30), the
initial condition modeled temperature profile is linear

and
aT

Y
oT (35)

ax

b .
— (LD, + K1) =
ax

8T/ox >0

but from egn. (4), the initial condition of the test
problems implies

aKt oT oT ag
e R (36)
dx oOx at py Of
Thus,

oT a0
0> Cy o~ L, 2L 1

at py Ot

(37)

0K
2T o
0x



Since convected heat is assumed negligible in this
example, it can be assumed that initially

affor < 0 (38)
but

8T oT oo o

;;:33"6—; r<oc (39
Thus, for the initial condition of the test problem
agfar < 0 (40)
Therefore, from eqns. (18), (35), (38) and (40)
DLy 3 Kr @)

=y -
ax ax 4,
is a necessary condition to preserve the 6(T") assump-
tion for the freezing soil test problem. From eqn.
(34), the restrictions of eqn. (41) also apply in a
freezing soil where temperature (or moisture) gra-
dients are linear. The conditions of eqn. (41) can also
be determined from eqn. {7} by a development
similar to the above.
For thermal parameters assumed given by

Kw =4.8cal/hem °C
K1 =19cal/hcm °C (42)
L, =80calfcm?

3

eqn. (41} can be evaluated for the initial conditions
of the test problem as

ADL, Y .
= 40728 D — cal/h cm
ox ox
(43)

d (KT a4
— | =) = ~29.3 — cal/h cm?
ox \ @ ox

but 88/3x > 0 by Fig. 3. Thus, from the initial condi-

tion of the test probiem and egns. (41) and (43), a

necessary requirement for preserving the #(T)
assumption is

D(0,01) < 0.0072 cm?/m
(0,01) % )

0<x <L
The conditions of eqn. (44) cannot generally be satis-

fied for the considered domain 0.11 < <0.26.
For modeling  purposes, it is assumed that eqn.
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(41) must be satisfied for any moisture content
profile. The results of eqn. (41) can also be derived
from eqn. (21) by considerations of linear water
content profiles. A major implication of egqn. (41)
is that for the #(T) assumption to remain valid, the
soil freezing front must essentially continually ad-
vance into the soil column. The requirement of egn.
(20) implies that the net heat efflux must never be
exceeded by the net influx of latent heat (influx due
to moisture transport). Since the assumed initial
condifion ice and water content profile are arbitrary
for the problem of Fig. 3, the #(T) assumption and
resulting apparent heat capacity term formulation
indicates that the models that incorporate these
are restricted to a limited class of soil freezing
probleras.

SOIL-WATER  PHASE
MODELED AS AN

CHANGE  EFFECTS
ISOTHERMAL PROCESS

Guymon et al. (1980) propose 3z model of simul-
taneous flux of heat and moisture in freezing and
thawing soils that assumes latent heat effects can be
modeled as an isothermal process. The concepts
employed in this model are discussed below.,

Consider the heat budget A{Q required to alter a
unit volume soil-water—ice mixture by a temperature
change of dT in a time interval of d¢,

pr 90;
AQ = CmdT —L, -1 4 (45)
Equation (45) can be rewritten as
AQ = Cypy — dr—Ly— —dt (46)
at Py at

where temperature is a differentiable function of
time.

Application of eqn. (46) to problems where the
water content of the soil can also be assumed to be a
differentiable function of temperature permits the
rewriting
20 = (Cm Lo ") e @7)
ar/ ar
which establishes the apparent heat capacity formula-
tion of eqn. (2}, where applicable.
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Assuming that the convected moisture enters the
soil system at approximately the temperature of the
freezing point depression, a small drop in temperature
AT (in time At) of the soil-ice—water mixture is
modeled by a heat budget of

; 90
AQ = Ly [07-0(To)] ~ Ly Py AT -C,, AT (48)

where 8' is the volumetric moisture content at the
beginning of the process; 8(T,) is the volumetric
water content described by the thermal soil-water
characteristic curve for temperature Ty, Ty is the
initial temperature of the system, AT js the tempera-
ture drop (assumed negative), and AQ is the heat [ost
from the system during time step Az,

From eqn. (48), three macroscopic thermo-
dynamic cases are accommodated in the lumped iso-
thermal model for a strictly freezing process

Ly [0'-08(Tp)] = AQ (49)
Ly [0'-8(To)] > AQ (50)
L, {8 -8(Tp)] < AQ (51

Equation (49) is associated with isothermal freezing
in a static thermal and moisture regime. Relation (50)
also indicates isothermal freezing (i.e. no temperature
variation) but additionally indicates possible moisture
accumulation. Equation (51} occurs with a tempera-
ture change of the system AT (during time step Af)
determined from eqn. (48)

_ La18"-0(To)) - AQ

AT (52)
ad
Ly a_j'.." + Cm

The ice accumulation term is calculated by

aQ .

I AQ< L, [8'-6(T9)]
py 98y L,
— —dt = (53)
pw 81‘

0 8T~ AT
] aT >

itAQ >L,[8" - 68(To)

Assume &(T) approximated by a set of tinear fune-
tions defined on a discretized thermal domain per
Fig. 2. Then for an approprate temperature sub-
domain for T, <T< Ty

0(T) = fotb T (54

where 0o, B, are constant soil parameters, and
ag(TAT = §, (39)

Thus, for a small change in temperature AT (AT
negative}, eqn. (48) and eqn. (55} are modeled by

AQ = {L,18' ~8(To)] ~LaBi AT}=Cn AT (56)

where the term in brackets represents an isothermal
freezing process.

The terms within the braces of eqn. {(36) may be
approximated numerically by decoupling the ice
formation terms from the general heat transfer equa-
tion and allocating the subsequent heat evolution to a
jatent heat budget. As the ice content increases, the
thermal and moisture parameters are adjusted. Ice
formation is interpreted as a moisture sink in the
moisture transfer relation. Only when the necessary
heat evolution has occurred, is a soil mixture’s tem-
perature allowed to recede below the freezing point
depression, hence modeling the isothermal phase
change process.

DISCUSSION

Although there are no apparent theoretical
problems in applying the apparent heat capacity con-
cept to numerical models that deal only with the
thermal regime of freezing soils, there may be
problemns when using this concept to numerically
model simultanecus thermal and moisture states of
freezing soils. This is particularly {rue in regions
where the thermal {or moisture content) spatial gra-
dients are approximately linear, resulting in invalida-
tion of the water content to temperature functional
relationship as shown herein. In the literature,
numerical models employing this approach require
small time-steps {on the order of centimeters). Using
currently proposed numerical modeling approaches
shows that assumptions imbedded in these models
lead to inconsistencies when these models use the
apparent heat capacity approach in its present form.
Either an apparent heat capacity formulation based
upon open freezing situations where moisture is
mobile will have to be prepared or alternative means
of accounting for latent heat effects are required.



An alternative modeling approach is proposed
which is based on an isothermal soil-water freczing
submodel. Such an approach leads to a self-consistent
medel. From a practical standpoint, time-step sizes
can be relatively large, of the order of hours, and
spatial discretization can also be relatively large, of
the order of 0.5 meters. Models that have been devel-
oped and employed are able to accurately simulate
thermal and moisture states of freezing svils over long
time spans, of the order of years. The ability to use
large discretization and achieve stable, accurate
results over a long simulation period will become
increasingly important as more complex problems are
attempted which require two or three spatial dimen-
sions. It is emphasized that the proposed isothermal
approach is a lumped thermodynamic assumption
used for predictive modeling. No claim is made that
such a modeling assumption describes the micro-
scopic thermodynamic behavior of water freezing or
thawing in a soil.
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