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The non-linear soil-moisture diffusivity model can be approximately linearized by using values of
diffusivity assumed constant for small intervals of space and time. By a series expansion of the
diffusivity function and integrating the resulting series of differential equations with respect to time,
an improved numerical model 15 developed. Results from application of this new approach to a
sharp wetting-front soil infiltration problem indicates that a 67% saving in numerical effort is
achieved at comparable estimation accuracy levels when using the traditional finite timestep

Crank—Nicolson approach.

INTRODUCTION

The study of numerical methods for the approximation of
non-linear soil-moisture transport in a horizontal col-
umn has received recent attention. Hayhoe® compared
the numerical effectiveness between the finite element and
finite difference numerical methods in modelling a sharp
wetting-front soil infiltration problem. A special finite
difference analog was advanced as the best numerical
approach to the problem studied. Hromadka and
Guymon® further studied the sharp wetting-front pro-
blem and developed a modification to the finite element
method which resulted in an increase in model accuracy
for a linear soil-water diffusivity problem. For a non-
linear diffusivity problem, the traditional finite element
formulation gave superior results to Hayhoe’s finite
difference approach when the finite element analog used
constant element diffusivity values as determined by a
spatial estimation procedure®.

In this paper, the pon-linear soil-water diffusiviry
problem is re-examined with respect to the finite element
modified procedure which we call the ‘nodal integration
method’. By expanding the diffusivity function as a Taylor
series time expansion, the governing equations can be
temporally integrated. This procedure results in 8 numeri-
cal analog similar to the nodal integration formulation,
but with a constant element diffusivity value determined
by a temporal integration. This new numerical approach
enabies the finite titmestep increment to be increased and
yet retain similar numerical approximation accuracy.
Although the quasi-constant values of diffusivity used to
linearize the mathematical mode! require additional
computational effort, the overall computer execution
costs are reduced. Reduced costs are achieved because of
reduction in the number of finite timestep advancements
of the problem’s global matrices.

The mathematical development of this numerical pro-
cedure is presented herein. As a case study, the integration
procedure is used to approximate the numerically difficult
problem previously studied by Hayhoe® and Hromadka
and Guymon®.
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MATHEMATICAL DEVELOPMENT

The one-dimensional horizontal soil-moisture transport
model for an unsaturated soil column is:
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where & is the volumetric water content (0 less than the
soil's porosity); x is the spatial coordinate; ¢ is time; D is
the soil-water diffusivity and is a function of soil-water
content; and R is the spatial domain of definition.

The domain R can be discretized by » nodal points
Bi=1,2,..., n into n disjoint subsets;

R, ={xj0<x <(x(8,)+x(0,))/2}

R, = {xl(x{0)+x(8,))/2 < x < {x(8,) + x(8,))/2}
: (2)

R, ={xI(x(0, )+ X0, 2 <x < x(0) =1
where x(8)) is the spatial coordinate associated to nodal
point ¢, and

R=
i

[Nat

R, 3)

Equation (1) must be satisfied on ¢ach R;. Therefore, n
equations are generated by solving
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where
D=D(6)
(5
9="0(x,t)
Integrating equation (4) with respect to space gives:
of d
D— = — ' . .
{ ax} S j()dx, xeR;, ¥, (6)

R,

i

where I'; is the spatial boundary of region R Integrating
equation (6) with respect to time gives:
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where I, is the limits of temporal integration between
timesteps kAt and {(k + 1)At. Equation (7) can be simplified
by using the linear transformation:

‘ t=kAt+e¢
(8)
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Thus,
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The soil-water diffusivity function can be expressed
with respect to time by the Taylor series:
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where i is the ith order temporal differential operator; and
Xo is a specified spatial coordinate. Combining equations
(9) and (10) gives:
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For a spatial local coordinate system defined by:

dx  (11)
r.‘

y=x—(d0)+x(8,_)/2 xeR;
dy=dx
1 =(x(8; )= x(0, 1 ))/2 (12)

Equation (11) can be expanded as:
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The soil-water content function is approximated spatially
and temporally by:

dy {13)

" k+1
b ZN,( Sy 9;») (14)
where N, and M, are the linearly independent spatial and
temporal shape functions, and
0= B(x =x(0,), 1 =m A1) (15)
where the 8are known values for time steps m=0, 1, k.

The spatial gradient of the soil-water content function is
approximated by:

L L W BT

dx dx 5 0

Substituting equations (14} and (16} into equation (13)
gives the numerical approximation:

At

2 D9y =1, kA [ aN kil
A e G SR
e

i=0 it r=1

0

Al

Z Dy =0, kAr) [ (& N, [
5 SR ()

0

gL T

The unknown values of nodal points 857! can be solved
by equating:
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Ar
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NUMERICAL MODEL

The space-time surface approximated by equation (14)
can be simplified by assuming that the functional surface
can be describéd by sets of piecewise continuous poly-
nomials. For a parabolic spatial shape function approxi-
mation for § between nodal points (0,_, 8, 8, ).
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where for discussion purposes it is assumed that in
equation (19)

x4 4) - X(Bj) :x((}j) - xtgjv 1=
dx=dy
For a linear polynomial function approximation for the

time curves between time-steps (k, £+ 1) where (k+1) 1s
the time step to be evaluated,
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de=dt

Combining equations (19} and {20}, the spatial gradient
approximation during the time-step Ar is given by:
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where superscripts 1 and 2 refer to timesteps kAr and (k
+ 1)At, respectively. Combining equations {18), (19) and
(21) gives:
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The temporal integration of equation {22) is evaluated by
isolating the time-integrated function as:
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Rearranging terms, the nodal point expressions can be
isolated by:
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Carrying out the indicated integration in equation {(24)
gives:
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In a different notation, equation (25) can be rewritten as:

D62, — 63— Do[0?—02_,]— [92 | 22621 62
. !
=—DJ0,,~ !]+D0[9_}__8_}’1]__"2_4[H | +2205+05, 4]
(26)
where
5 o DUy=nanT!
D=%_- =
e T
) P+l
b = 3 DPy=nlan S p=01 27)

A (42U
Since the space-time surface is assumed to be linear

with respect to time, the temporal differentials of soil-
water diffusivity in equation (27) are given by:

DW= oD = Q(E{;)V (28)

arN o oeN\ ot

where the temporal water content gradient can be appro-
ximated from values of water content during time step k.

Hromadka and Guymon® determine a complete for-
mulation for a parabolic spatial interpolation function
which involved five nodal points rather than three in
order to estimate nodal point values; however, the
additional computational effort did not significantly
increase the approximation accuracy. In their study, the
(linear interpolation shape function) Galerkin analog to
equation (1), was determined and meodified to correspond
to eguation (26) for the special case of i=0.

The Galerkin version of the weighted residual process
can be used to approximate equation (1) by the finite
element method. The solution domain is discretized into
the union of # finite elements by:

L= U1, (29)

i=1

The water content is utilized as the state variable and is
approximated within each finite element by:

({x)=IN {x)0; (30)
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where N;=the appropriate linearly independent shape
functions; &;=state variable values at element-nodal
points designated by the general summation index j.
The Galerkin technique utilizes the set of shape fun-
ctions as the weighting functions, which indicates that the
corresponding finite element representation for the in-

filtration process is:

8 a0 0
ﬁﬁx[mmax} - }Ndr 0 (31)

Integration by parts expands equation (31) into the form:

300N, 28
i J[D{B)a LNy }dx}=0 (32)

L
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where §;=external endpoints of the one-dimensional
linite element, L,. The first term within the braces sums to
zero for interior elements, and also satisfies the usual
specified (or flux type) boundary conditions of the pro-
blem for exterior finite elemenis. The remaining integral
term is solved by substituting the appropriate element
approximations and shape functions into the integrand
and solving by numerical integration. A convenient
approach to deal with the non-linearity of equation (32) is
to assume the diffusivity function to be constant within
each finite element during a finite time interval, A, in
order to carry out the integration. The Crank-Nicolson
time advancement approximation has been widely
used'* to solve the time derivative of equation (32).

The Crank—Nicolson formulation reduces equation
(32), where values of soil-water diffusivity are assumed
constant within each finite element, into a system of linear
equations expressed in matrix form as:

{Pﬁ;s}a'“ {P——-— }ef (33)

where P is a symmetrical capacitance matrix and is a
function of element nodal global coordinates; § is a
symmetrical stiffness matrix and is a function of element
nodal global coordinates and constant finite element
diffusivity coefficients (during time step Ar); At is the finite
time step increment; and & is the vector of nodal state
variable approximations (volumetric water content) at
time steps k=1, i+ L.

For a linear polynomial shape function, the element
matrices determined from equation (32) are given by:

M0 S0 _DpJv =168y 12 1706
sl faf ey faf o

where D, is the quasi-constant diffusivity within element i;
§ and P are element stiffness and capacitance matrices,
respectively; and (0, 0) and (&, 8)) refer to the element
nodal and dynamic nodal moisture content values, re-
spectively, for an element of length [,

For the linear temporal interpolation function, equa-
tions (26) and (27) can be written analogously to equations
{33) and (34) as:.

(P+S}¢ "1 ={P-S§}¢' (35)
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Table 1. Comparison of numerical efficiency at time t=16.5 minutes (values of water content)

x Exact Ar=0.1 min At=0.1 min Atr=01 min At=0.3 min At =03 min Ar=0.3 min
(cm) (Hayhoe) i=0 i=2 i=5 i=0 i=2 i=5
0.0 1.0 Lo 1.0 1.0 1.0 1.0 1.0
0.5 0.99 .99 (.99 0.99 0.98 0.99 0.99
1.0 097 097 0,97 0.97 0.97 0.97 097
1.5 0.95 0,95 0.95 0.95 0.94 0.95 0.95
2.0 0.9 0.93 0.92 0.92 0.92 0.93 093
2.5 0.88 0.90 0.89 0.89 0.88 0.90 0.90
3.0 0.84 0.87 0.83 0.85 (.84 087 0.86
35 0.78 082 078 Q.78 Q82 082 082
4.0 0.67 0.39 0.63 0.64 0.05 0.37 0.40
4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5.0 0.0 00 0.0

00 0.0 0.0 0.0

i number of temporal Taylor series terms (diffusivity function} included

Ar: time step magnitude

where the element matrices composing the global §
matrices of equation (35) are given by:

s_=| 1 -1
SED"L—l IJ

[ 1 -1
s=o) | 7} (36)

and

o1
p='2_4L i 11} 37)
MODEL APPLICATION

The numerical model given by equations {33}, (36)and (37)
was applied to a sharp wetting-front problem of soil-
walter infiltration into an air-dry horizontal column?-®.
The analytic value of soil-water diffusivity for Hanford
sandy loam* was selected in ordet to provide a sharp
wetting front through the soil column, causing the
numerical analysis of moisture flow in the soil to be
difficult. The quasi-analytic solution advanced by Philip
and Knight?® and utilized by Hayhoe? was used for this
study.

Equation (1) was solved subject to the initial condition;

00y =0; =0, 0<x <L (38)
and the boundary conditions:

80, H=1, AL 1)=0; 10 (39)
where the soil-water diffusivity (cm? min™') is given by:

_ {0.9x 107 %exp(8.366), 60
Dm)‘{og x 1073, 0=0 “0)

and @ is the dimensionless volumetric water content.
Owing to the nature of the soil-water diffusivity
function of (40), the temporal variation of diffusivity is
extremely important during the At time step. As such, the
temporal diffusivity Taylor series finds good use in sharp
wetiing front infiliration problems as presented herein.
For moisture transport problems where the diffusivity
function causes less difficulty in numerical estimation, the

model represented by equation (35) can be used to reduce
execution time by approximately two-thirds. That is, by
expanding the time series of equation (27), the time step
magnitude At was found to be capable of a 3007 increase
and yet retain the same level of approximation accuracy.
Table 1 contains various values of time step magnitudes
At (in min) and time series expansion terms in the
numerical model of equation (1} by (35} at time t=16.5
min. For the numerical model, a spatial discretization of
0.5 cm was used where the total column length was set at
5.0 cm to correspond to the model results of Hayhoe?.
The test results indicate that the numerical accuracy
achieved for At=0.1 min {without the temporal Taylor
series expansion for diffusivity) is also matched for a At
=0.3 min time step where the temporal Taylor series is
included through the fifth term. Since the integration of
the diffusivity series expansion involves negligible com-
puter execution time when compared to the solution of
matrices during the time advancement, further increases
in time step sizes may be possible for less difficult models.

CONCLUSIONS

A new numerical approach to soil water (diffusivity)
infiltration problems is advanced. By use of a modified
finite element analog to the governing equations, a Taylor
series of soil water diffusivity with respect to time can be
integrated. Application to a case study indicates a re-
duction in execution costs due to the capability of
increasing the finite time step and yet retain comparable
numerical accuracy.

The inclusion of the Taylor series expansion for
diffusivity (10) in the traditional finite element matrix
formulation (34) was found to produce less desirable
results. Using the numerical model for equation (1) given
in Hromadka and GuymonS, the addition of the temporal
Taylor series modification produced an increasing over-
estimation of the wetting front advancement into the
horizontal soil column. That is, as the number of the
diffusivity function Taylor series terms were increased in
equation (34), the numerical solution indicated an increas-
ingly inaccurate penctration of moisture into the horizon-
tal soif column. This numerical behaviour is probably due
to the finite element capacitance matrix over-estimation
of mean moisture content within the nodal domains®.

A sophistication of the proposed integration technique
is to use higher order polynomial interpolation functions
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for the time variable. For a parabolic interpolating
function, the increase in numerical accuracy was found to
be negligible®. However, some advantage was found when
using a parabolic interpolation for time in order to
estimate the temporal gradient of the diffusivity function
(28). For the horizontal soil column, the timestep increase
{(at comparable numerical accuracy) was found to be
approximately 330%, whereas the linear estimation pro-
cedure enabled a 300% increase in timestep magnitude.
The additional computer memory and computation
requirements involving a parabolic temporal interpo-
lation, however, somewhat offsets the advantage of the
additional timestep increase in magnitude.
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