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The Complex Variable Boundary Element Method, or CYBEM will be developed with
respect to a variable trial function definition over each boundary element. The benefits
in using this technique are that the modeling error in matching the prescribed boundary
conditions (there is no error in satisfying the Laplace equation) is reduced without the
addition of nodal points to the problem discretization. Consequently, the n X n matrix
requirements are not increased when using this new approach.

INTRODUCTION

The Complex Variable Boundary Element Method, or CYBEM has been
shown to be a valuable numerical technique for the analysis of two-dimensional
potential problems. In Hromadka 1984 [1], several CVBEM applications are
examined which include groundwater flow, St. Venant torsion, heat flow, ideal -
fluid flow, and other topics. Another reference which concentrates on the
CVBEM development is Hromadka and Guymon 1983 [2], and includes a re-
view of the pertinent background literature.

In this article, the CVBEM will be developed with respect to a variable trial
function definition over each boundary ¢lement. The benefits in using this tech-
nique are that the modeling error in matching the prescribed boundary condi-
tions (there is no error in satisfying the Laplace equation) is reduced without
the addition of nodal points to the problem discretization. Consequently, the
n X n matrix requirements are not increased when using this new approach.

CVBEM MODELING TECHNIQUE

In this section a brief review of the major concepts used in the CVBEM will
be presented. Further details in developing a CVBEM model are provided in
Appendix A.

The main objective of the CVBEM is to develop an approximation of the
analytic function w(z) where w(z) is analytic over the simply connected domain
() enclosed by the simple closed boundary I'. Because w(z) is analytic on
© UT, then

w(z) = $lz) + iY(z) (N

where ¢(z) and yi(z) are the comjugate two-dimensional functions which both
satisfy the Laplace equation over (.
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The CVBEM initiates by representing the probiem boundary I' as the unjon
of m boundary elements by setting

r=r, ¥))

where each I'; is a straight line segment with nodal points specified at the end-
points such as shown in Figures 1 and 2.

The next step in using the CVBEM is to develop a continuous approximation
of w(z) on I by the global trial function G (z) where

G(z) = 2N, (D)wy 3)
/=1

where N, (2) is a continuous trial function representing the influence of w; over
clements I',_, and T; w; is the nodal point j value of w; = w(z;) = b; +
il = @(z;) + iP(z;); and G(2) is defined for Z € T. The CVBEM approxima-
tion function @(z) is developed by the line integral (taken in the counterclock-

wise direction)

1 [G
iz} = ——~ __(i_}_cg'é, z€Q. ()
2midr { =z

Because G (z) is continuous on I, then @(z) is also analytic over () and the
real and imaginary parts of &(z) both satisfy the Laplace equation over £).

FIG. 1. Domain ) and boundary I with nodal point placement.

FIG. 2. Boundary element and nodal point definitions.



VARIABLE TRIAL FUNCTIONS AND CVBEM 261

"That is,

a(z) = d2) + i(2), zEN &)
where

Vé(n) = Vi) =0, €. (6)

Previously, Hromadka 1984 (1] considered various polynomial trial functions
on each I'; which resulted in CVBEM approximation functions analytic over (1.
Modeling error was evaluated by examining how well the CVBEM analog con-
tinuously matched the boundary conditions along I'. At locations where large
discrepancies were found, additional nodal points were added.

In this paper, modeling error will be attacked by redefining the trial function
at locations on I where @(z} deviates substantially from the problem boundary
conditions. In this fashion, the modeling error is reduced without the addition
of nodal points on I {which is accompanied by an increase in the size of the
fully populated CVBEM matrix system).

THE CVBEM NUMERICAL STATEMENT

The CVBEM model is a function of the 2m nodal values of ¢, and {; where
W, = ¢; + i, is associated at node j. That is, if w(z) is known at each node
forj = 1,2, -, m, then the 2m nodal values of Ef- and i:t?, are known on I' and
Eq. (4) resuits in the numerical statement

a(z2) = oz, @, ) )]

where ¢ and § are the arrays of nodal values, and necessarily ¢, = ¢(z;) and

Y = iz

JGc:rlf:rajlly, however, the problem boundary conditions only supply values for
one of the functions ¢(z) and Y(z) on portions of I'. This situation resulis in
many of the nodal points having one of the values &; or ¥, being an unknown.
Thus, estimates for these unknown nodal values are needed in order to develop
a CVBEM approximation, ¢xz).

Two approaches for estimating the unknown nodal values are provided as

follows:

CLASS 1:  For each unknown nodal value, develop an explicit equation.
For example, if ¢, is unknown and ¥, is known, define

¥ = Imalz) = ¥z, 6, ) (8a)

CLASS II: For each unknown nodal value, develop an implicit equation,
that is from (8a),

&, =Re 6(z) = dlz, b, 9) (8b)

Both the CLASS I and CLASS H systems result in estimates for the un-
known nodal values of w(z), but the CLASS [ system will result in &(z) match-
ing the known nodal values whereas the CLASS II system will result in d{z)
matching the estimated nodal values.
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SOURCE OF MODELING ERROR

Should the choice of trial functions be correct, then necessarily @&(z) = w(z)
over {}. Consequently, CVBEM modeling error occurs due to the trial functions
being incorrect over boundary elements which have unknown nodal values.

To improve accuracy, nodal points may be added which result in an im-
proved integration of the unknown function [e.g., ¢(z} or Y¥(z}] on a boundary
element. The approach used in this article, however, is to redefine the trial
function on the boundary element rather than add nodal points.

VARIABLE TRIAL FUNCTION DEFINITION

The problem boundary conditions will result in (at least) the specification of
either ¢(z) or Y«(z) on each boundary element I';. (Should both ¢(z) and ys(z) be
known on I';, then w(z) is known on I; and there will be no error contribution
from this boundary element.) The known function will result in an exact contri-
bution from element I; in the calculations of @(z) values. The unknown func-
tion on [‘,-, however, will result in modeling errors due to the incorrect trial
function assumptions.

An adjustable trial function can be used for the unknown function on element
I';. Figure 3 shows the trial function geometry definitions. From the figure it is
seen that (for example) ¢(z) is approximated by a continuous function com-
posed of straight-line segments. The analyst selects the weightings #; and »;
for each nodal point on I' which results in a constant nodal value ¢; being
specified over lengths of ;" in ¢lement I'; and m; %~ in element T;_;. The net
effect of these weightings is an increase in nodal value influencé over the corre-
sponding element. Additionally, the line segment geometries resuit in simple
CVBEM computations for the development of the global matrix systems.
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FIG. 3. Distribution of ¢(z) on I'.



VARIABLE TRIAL FUNCTIONS AND CVBEM 263

BOUNDARY ELEMENT CONTRIBUTIONS

From Eq. (7), &(z) values depend on the boundary element contributions
computed from the integral equation of (4). That is,
o 1 [ GdL &
o) =Y — | TEE v, 9
E, 2mily, [ -2 g‘l ! _ ©
For clement T, the total contribution is

__1 [ GOt
T 2midy -z (10)

If ¢(z) is known on I';, then a trial function can be selected to exactly caicu-
late the ¢(z} contribution for I';. For (z) unknown on I';, let the trial function

be specified on [; such as shown in Figure 4. Then the integral approximation is
WAL _ (Y- L i L= g Jmd

—, o) iyt —
nd—z & i~z Uy {—z

[zfn - €] W4l 4 f”*'— dg

J{ﬁ-l

+ N

. I - e
5 Zi+1 z L -z L {—:

- +
Z+1 T g

(11)

The several components are directly calculated to be for element I as

vodr [, d . - 7~ 2 d | .
-z 'i'j[]n 2 + 10ng + %n[l + (z___u}-";, — z,-*) (ln 7 + :92)]

— Z — Zjy d . - dy o .
- ¢j[1 + (ﬁ) (Ind—z + :ez)] + w,-ﬂ[lnzz + zeg].

(12

FIG. 4. Boundary element contribution geometry {yi(z) unknown).
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Examination of (12) shows that the approximation is not defined should
z = z; Or z;;. In this case, the limiting value as z — z; (for example} where
z € (} is used and the Cauchy Principal Value results:

Eaads ZI

lim r,b]g % 4;,( n i + 6) z €0, (13

From (12) and (13), the various nodal values (known and unknown) are mul-
tiplied by calculated complex numbers and summed together to form a global
matrix system for the estimation of the unknown nodal values. Using the
known and estimated nodal values, the CVBEM é&(z) function is now available
for use in modeling error analysis.

CVBEM ERROR ANALYSIS

Because the CVBEM develops a complex function &(z) which is analytic
over {1}, the real and imaginary parts satisfy the Laplace equation exactly over
(2. Therefore, there is no error in satisfying the governing partial differential
equation (Laplace equation). However, modeling error occurs due to @(z) not
satisfying the boundary conditions continuously on I'. This objective proceeds
by first evaluating how @(z) values compare to the boundary conditions along
I'. Hromadka 1984 [1] presents several techniques for the evaluation and repre-
sentation of this modeling error. The most convenient and easy-to-use tech-
nique was found to be the approximative boundary approach whereby a new
boundary I' i3 determined which represents the (x,y) coordinates where &(z)
achieves the boundary condition values. Appendix B presents the main features
of the approximative boundary technigue.

Convergence of the CVBEM to the exact solution w(z) can be shown by use
of the unit circle.

For discussion purposes, let u(z) be known continuously along the problem
boundary C (Dirichlet problem) where C is the unit circle C = {z:|z} = 1}
which represents the transformation of the problem boundary I' by use of the
well known Schwarz-Christoffel theorem {3] and where w*(z} = u + iv is the
corresponding transformation of w(z). Then by the Poisson formula

v == [uweas e
2w I
where W(#) is the weighting function
sin 8
= 15
W) (1 = cos 6) (15)

Figure 6 shows the distribution of W(8) along C with respect to an arbitrary
point z, € C to reoriented to coincide with & = 0, where —a < § < 7. Then
use of the CVBEM necessarily involves the global trial function on C to ap-
proach u(z) as the number of nodes increases. Hence, the error of approxima-
tion is defined by e(z} = w*(z) — &(z) where &(z) = ¢ + iP is the CVBEM
approximation on C. Thus from (14),

5 1
—h= - [« - bW (16)
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FIG, 8. Cauchy principal value case (§(z) unknown).

FIG. 6. The weighting function w(#) for z, € I (and & = Q).

and
. 1
b= =5 | - dwo)ae ()
™ Jo
The maximum error weighting occurs for (w ~ @) distributed as shown in

Figure 7. Thus for |d(u ~ ¢)/dz} bounded by M, and 4 — | < E, (1T) is
computed as

* 5
2wu — ¢ < 2K f Wig)de + 2 J MOW (B} db . (18)
5 0
Solving the integrals,
2L f Wi{g1de = 2E{ta 2 — In{l — cos §}] (19
5

and for E small,

5 #sin 646 & 24d8
M o {1 — cos a)"*w o {12 — &% eo
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FIG. 7. Maximum error distribution along C with derivative bound M.

which for 8 = 4, (20) reduces to

j # sin 846
(

. 1
l~—cosﬂ)¢2M6 @b

But from Figure 7,8 = E/M where E = max|u — ¢] on C. Hence, the error
of {17} is restated for E small

2rlv — Y| = 2E(In 2 - In 8%/2) + 12E (22)
or rearranging terms
2y ~ @ S 16E + 4E InM — 4E nE. (23)

Thus as max |u — $| — 0, necessarily max Jv ~ §| — 0. Indeed, from (23),
the max |v — | is bounded by max |u — | which is known on C {and [').

ADAPTIVE INTEGRATION

To better meet the boundary conditions, the typical procedure is to add nodal
points on I' where error is computed to be large. In this article, however, error
will be reduced by modifying the trial functions used to represent the unknown
function distribution on I'. That is, from Figure 3 values for weightings n; and
7, will be selected to redistribute the continuous trial function definition on I
where boundary error is found to be large. In this fashion the CVBEM error is
reduced without the need to add nodal points to I

In the following example problems, the variable trial function technique will
be used with the approximative boundary to develop CVBEM models of
boundary value problems. The modeling process stops when the approximative
boundary is sufficiently “close™ to the true problem boundary. Usually the
tolerance selected is the actual construction tolerance of the project.

The modeling process initiates by the specifications of nodal points along I'
such as shown in Figure 1. The CVBEM approximation @&(z) is developed ini-
tially assuming zero weightings of both n;" and ;" for each node j; that is,
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straight line approximatigns are used between nodal values (see Fig. 3). An
approximative boundary I' is then developed such as described in-Appendix B.

Comparisons of the approximative boundary I' to the true problem boundary
I indicates where approximation error is large and where the CVBEM trial
functions need correction. At locations of high deviation between I' and T,
nodal point weighting factors are added.

APPLICATION

Two-dimensional ideal fluid flow can be described mathematically by the
Laplace equation. Of interest is the flow net associated to ideal fluid flow
around a cylinder such as shown in Figure 8. Figure 9 shows the nodal point

UNIFORM
FLOW
DIRECTION

FIG. 8. ldeal fluid flow around a cylinder.

ly
Loo.oi (o L L

o,/
¥=0
F1G. 9. Example problem nodal point placement.
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placement where symmetry is used to reduce the problem domain expanse.
Only the first quadrant is used, with 21 nodes defined on the problem boundary,
I'. Also shown are the boundary conditions (or level curves) assumed to repre-
sent the exact solution, w(z) on 2 U T.

The numerical solution is first based on weighting factors set at n; = 0.50.
This corresponds to a constant nodal value (for the unknown function) being
defined over ¢ach boundary element. The approximative boundary correspond-
ing to the boundary condition level curves is shown in Figure 10. From the
figure, numerical integration error is most significant near the cylinder, and
therefore, the trial function distribution requires the most adjustment.

To proceed, weightings of m; = 0 are used (which corresponds to a linear
trial function over each boundary element) and the corresponding approxi-
mative boundary is developed to investigate the amount of improvement in
modeling accuracy. Based on this step, it was concluded that the trial function
assumptions required adjustment near the intersection of the cylinder with the
remaining problem boundary, i.e., near nodes 17 and 1 of Figure 9.

Figure 11 shows the trial function selected for use near the nodal points 1
and 17. From the figure, the trial function allows for an exceptional variation in
unknown nodal values near the nodal point. The increase in computational ac-
curacy is reflected in the closer fit between the approximative boundary I' and
the true problem boundary as shown in Figure 12.

IMPLEMENTATION

The procedure presented reflects the adaptive integration technique of reduc-
ing the integration errors due to the incorrect trial functions assumed for the un-
known variable over each boundary element. This can be demonstrated by
examining the CVBEM approximation of (4).

/“’Vr""i

=

FIG. 10. Approximative boundary for %" = 0.50.
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N|(!,

7 = 0.00
7= 0.95

0 C:) ts)

FIG. 11. Adjusted trial function for nodes (1) (and (7).

FIG. 12. Approximative boundary using % = 0 except for nodes (D) and D (Node:
displacements are magnified tenfold).

On each boundary element I, the true distribution of the solution is given by

w(l) = G} + e(0), ter (24)
where over each element I';,
w(l) = Nj(‘;)w(zj) + Nj+1(€)w(2j+1) + ej({), = rj- (25)
In (25), N;({) and N, () are linear trial functions, and e;({) satisfies the
conditions
ei{z;) = e{z;o) = 0 } 26)
() =0, Lerl).
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From the above, for each nodal location z,,

1 J [GY) + e(D]dL
r

o@) = 3— —

1 n (6@, 1 [ ed
- Zwijg jrj {- *

 2milnl-zn

(27}

Integrating the several terms of (27) determines the complex constant weight-
ings wy, where

w(z) = 2, wealz) + > e (28)
J=1 =1
It is noted in (28) that the complex constants w; are directly computed from in-
tegrating the N;({) functions with respect to each nodal coordinate z;.
In (28), each complex nodal value can be written in terms of the known
(boundary condition) value &, and unknown (to be estimated) value £, by

w(z;) = A& + A, 29)

where A = 1 or i depending on the associated variable. Then (28) can be writ-
ten in terms of the unknown nodal values as

&) = Efu(zj)w,l-“k + sz(zj)wjk + Ee}‘k (30)
=1 i=1 =t

where the real contants W}, and W}‘k reflect whether £,(z,) is the real or imagi-

nary part of w(z,). In matrix form, (30) is expressed for m unknowns as

£ =NE + N& +E,. (3D

where N, and N; correspond to the real constants W, and Wk, respectively; &

and & are the column vectors of nodal unknown and nodal known values, re-

spectively; and E, is the column vector of error contributions for each node.
In comparison, the CVBEM solves for the estimates £, of & by

£ = NE& + N&. (32)
Thus, error estimates for unknown nodal vatues are given by
(& — &) = N(& - &) + E, (33)
or
(1 -NJ& - &) =E. (34)
Letting L = 1 — N, gives _
L& - &) = E (35)
where for row k of E,,
el = ok [ 0% <L [ LOhe 36
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Zx-1

e
FIG. 13. Nodal position z§ for error estimate.

For o' — @'| = M, and z selected to be a distance |z, — 2| = § from
node z; (see Fig. 13), (36) is evaluated as

Il = (50) () (5) @

where [ = [ |d¢| and 1 = [|]|/m.
Thus, for contributions from elements [',_, and ', to row kof E_,

JE = (I0PM.)/Q@mm) (38)
and [E.| = {Ei| > 0asm — .
Computational estimates of nodal accuracy are obtained by

”gu - En" = “L_lll “Eu” (39

where ||£, — f“" = max;|£,(z) — z’u(z,); |E.[l is given by (38); and L7 =
max; 2., |L;;'| where L;! are the matrix entries of L. ’

CONCLUSIONS

A new procedure for developing accurate CVBEM approximations is pre-
sented based on the definition of continuous trial functions over each boundary
element. The technique is easy to use and the error analysis procedure is
straightforward for linear programming. A significant benefit of this technique
is that modeling error is reduced without the need for the addition of nodal
points on the problem boundary.

APPENDIX A

Complex Variable Boundary Element Method

Hromadka and Guymon [2] present a detailed development of the CVBEM.
A comprehensive presentation of the method is given in Hromadka, {1]. A fea-
ture available with the CVBEM is the generation of a relative error measure
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which can be used to match the known boundary condition values of the prob-
lem. Consequently, the method can be used to develop a highly accurate ap-
proximation function for the Laplace equation and yet provide a descriptive
relative error distribution for analysis purposes. Because the main objective of
this article is to analyze the numerical error in solving (5}, it is noted that the
Laplace equation is solved throughout the problem domain (if homogeneous) or
in connected subregions (if inhomogeneous). Many anisotropic effects can be
accommodated by the usual rescaling procedures or by subdividing the total
domain into easier-to-handle subproblems. The CVBEM is then applied to the
problem domain(s) as discussed in the following.

Let {} be a simply connected domain with boundary I" where T is a simple
closed contour (Fig. 14). Discretize I by m nodal points into m boundary ele-
ments such that a node is placed at every angle point on I' (Fig. 15). Each
boundary element is defined by

I, ={z:z = z(s) where z{s) = z, + (., — z)5,0 =5 =1}, j#m
(Al)

with the exception that on the last element,

I, ={z:z = z(5) where z(s) = z,, + (z; — z,,)s,0 =5 = 1},

FIG. 14. Simply connected domain £ with simple closed contour boundary I'.

r222qz

FIG. 15. T discretized into m boundary ¢lements.
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Wi k-1 w3 Wi.2 W
Zinel  Ejk Zik-t 23 22 2j,
» ——r) < T < < L
241 Fj 2
LITY %
LEGEND

* ELEMENT ENDNODE
o ELEMENT INTERIOR NODE

FIG. 16. (k + l)-node boundary element I; nodal definitions.

Then

r=yr, (A2)

Let each I'; be discretized by (k + 1) evenly spaced nodes (k = 1) such that [
is subdivided into k equilength segments (Fig. 16). Then I is said to be a
(k + 1)-node element. From Figure 16, each I'; has an associated nodal coordi-
nate system such that z;, = z; and 2; x+; = Zjst = Zjwrs-

On cach I';, define a local coordinate system by

cj(s) = Zin + (Zj.k+l - Zjll)s, 0=s=1

=1z + (z1 — )5,

(A3)

where di; = (z441 = 2;,1)d5.
On each (k + 1)-node element I';, a set of order k polynoxmal basis functions
are uniquely defined by

Nfl(s) J10+ j.i, 18 + o +a'it5ks (Ad)
whenei=_l, ,t 0,k + 1 and 0 = s = 1, and where
n = 2 i n=i
o i X I . AS
N} t(.\'ZJ k+1 = ZJ'[) {0, n # i ( )
The basis functions are further defined to have the property that for { € T
-z )
-z e el
N::(ﬁ-) = ” (Zj.kﬂ = Zn ¢ ! (A6)
Zik+1 T Zjn

0, (€&T,

Let w(z) be analytic on £ U I'. That is, let w(z) be the solution (unknown) to
the steady-state boundary condition problem being considered. At each nodal
point on I, define a specified nodal value by (Fig. 16)

aj,i = w(zj.i) (AT)

where from Fig. 16, @;, = @; = @j_1x+1.
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Using (A6) and (A7), an order k global trial function is defined by
L=z _
Gy = ZG*(;,(s)) =2 Zw,.Nf.( gl - Z) (A8)
j o=l Zj+ f)
From (A8), the global tnal function is continuous on . An H, approximation
function &,(z) [1] is defined by the Cauchy integral
L ﬁ@@
g -
Because the derivative of dy(z) exists for all z € [}, then @, (z) is analytic in {2
and exactly solves the Laplace equation in {.
Expanding (A9} and using (A2) gives
GHQ dL i I G dg
r {—z s {—z
Integrating on boundary element j gives [1]
G dL - e 7=z,
J;,.—ij,_-—? =R7'2) + X, Nidy) In -—z—:—’g—l) (All)

=1 §

wk()— zeQ, z¢T. (A9)

(AlO)

where R} 7'(z) is an order (k — 1) complex polynomial resulting from the circuit
around point z (see Fig. 17) and v, is equal to (z — z)/(z+y = z). Thus, the
CVBEM results in the approximation function

N i _ — Z - s
o, lz) = -2—‘;;; ?(R_f "z} + 2 wj,,-Nf. ,{-y,-) In("z'_—;:l)) (Al2)
or in a simpler form [1]

@(z) = RY2) + 2—117—1 Y Iniz -~ z) X T! (A13)
i i

BRANCH-CUT

FIG. 17: Branch-cut of La(z — {} function, { € I,
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where TF = w,_; N, (¥-1) — @,/ N} (¥,), and R¥(z) follows from (A12).

The approximation function of (A13) exactly satisfies the governing flow
equation in the problem domain {2 for the approximated boundary conditions
on the problem boundary, I'. Because @, (z) is analytic on (2, then the maxi-
mum relative error of |w(z) — @:(z)| must occur on T'. Consequently, the total
approximation error can be simply evaluated on I with the corresponding errors
in the interior of {2 being less in magnitude. Because the boundary conditions
used to evaluate (A13) are known continuously on I', then @ (z} can be deter-
mined within arbitrary accuracy by the addition of nodal points on T due to
{without proof)

2ai im @, (z) =

ity 0 GO AL _ f WO i), (Al
masiT | —o r -z r -

{—z
APPENDIX B

The Approximative Boundary for CVBEM Error Analysis

Generally, the prescribed boundary conditions are values of constant ¢ or
on each T;. These values correspond to level curves of the analytic function
w(z) = ¢ + iP. After determining a @&(z), it is convenient to determine ap-
proximative boundary I' which corresponds to the level curves of &(z) = ¢ +
id which are specified as the prescribed boundary conditions. The resulting
contour I is a visual representation of approximation error, and I' coincident
with T implies that d(z) = w(z). Additional collocation points are focated at
regions where I” deviates substantially from I

A diffjculty in using this method of locating collocation points is that the
contour I' cannot be determined for points z outside of £} U I'. To proceed, an
analytic continuation of @{z) to the exterior is achieved by rewriting the integral
function (A9) in terms of

1[G

2wl b (-2 = Rz} + i(a, + i)z ~ z) Ln(z — z}, (B)

i=1

where o, and B, are real numbers; and La{z — z;) is a principie value logarithm
with branch-cuts drawn normal to I from each branch point z; such as shown in
Figure 18. The resulting approximation is analytic everywhere except on each
branch-cut. The R,(z) function in Eq. (B1) is a first order reference polynomial
which results due to the integration circuit of 27 radians along . If w(z) is not
a first order polynomial, then R{z) can be omitted in (B1).

Implementation on a computer is direct although considerable computation
effort is required. One strategy for using this technique is to subdivide each [}
with several internal points (about four to six) and determine @(z) at each point.
Next, I' is located by a Newton-Raphson stepping procedure in locating where
@(z) matches the prescribed level curve. Thus, several evaluations of @(z) are
needed to locate a single I' point. However, the end product may be considered
very useful since it can be argued that @(z) is the exact solution to the boundary
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% :

BRANGH-CUT
FROM &,

FIG. 18. 'The analytic continuation of d(z) to the exterior of {2 U I'. (note branch-cuts
along T at nodes z;).

value problem with I" transformed to Iy , and T is a visual indication of approxi-
mation error.

The use of the method discussed for locating additional collocation points on
I is demonstrated by application of the CVBEM for solving two steady state
heat transfer problems, The problems considered each involve a different
geometry and set of boundary conditions of the Dirichlet class. The anaiytic
solution to the problems are inciuded in Figure 19. Each solution satisfies the
Laplace equation and is defined as a function of a local coordinate x-y
system with an origin specified as shown in the figures. On the problem
boundaries, I, the potential function or temperature is also a continuous func-
tion of position defined by

oz €T) = —;-(xz +yY), (B2)

From (B2), it is seen that the boundary conditions are not leye! CUrves; conse-
quently, the determination of an approximative boundary [ requires further
definition. In these applications, the problem is approached by using the
statement

[ = {z d(z) = ‘%‘(xz +yY) = ‘%lzlz} (B3)
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2

b 4

&0*

o{x,y) = {x* - 3xy?)/2a + 2a%/27

| ¥

#{x,y) = (x? + y3)72 - a*p*(x*/a? + yi/bt - 1)/(a? + b?)

FIG. 19. Application problem geometrics and solutions for temperature, ¢(x, y).

The strategy of working with level curves (i.e., ¢ = ¢, forz €[, j =
1,2, ,m) follows analogously.

The two applications illustrate the development of CVBEM approximation
functions which exactly satisfy the governing partial differential equation
{(Laplace equation) in & and approximately satisfy the boundary conditions
which are continuously specified on I'. The subsequent figures illustrate the
CVBEM error evaluations along I' for evenly spaced nodal placements for each
problem boundary. '
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FIG. 21.  Approximative boundaries for five nodal point distributions.
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