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The Complex Variable Boundary Element Method or CVBEM can be used in a computer-aided-design
environment wherein the numerical analyst specifies additional boundary element nodal point loca-
tions based on computed errors in satisfying the problem boundary conditions. In this fashion, the
analyst develops a problem geometry which is acceptable for the construction design, and the CYBEM
determines the exact solution for potential problems redefined over this new geometry. Because the
computer interactive technique uses graphical displays, the approach is efficient, and easy to use.
Additionally, accurate solutions to potential problems can be obtained without the need for special

training in the theory or use of the CVBEM,

INTRODUCTION

The Complex Variable Boundary Element Method or
CVBEM has been shown to be a useful tool for the numeri-
cal analysis of Laplace or Poisson equation boundary value
problems! The numerical procedure is to discretize the
boundary I by nodal points into boundary elements, and
then specify a continuous global trial function G(¢)on T as
a function of the nodal values. Using the Cauchy integral,
the resulting integral equation is
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where @(zq) is the CYBEM approximation for z, €£2; and
- 82 is a two-dimensional simply connected domain enclosed
- by the simple closed contour I'.
Because G{I) is continuous on I, then w(z) is analytic
over 2 and can be rewritten as the sum of two harmonic
‘functions

a(z) = ¢(2) + iY(z) (2)

Thus both $(z) and ¥(z) exactly satisfy the Laplace equa.
tion over £2.

Approximation error occurs due to &(z) not satisfying
the boundary conditions on T exactly. However, an
approximative boundary I" can be developed {(by trial and
error) which represents the location of points where @ (z)
does equal the specified boundary conditions such as level
curves (see Fig. 1). Consequently, the CVBEM approxima-
tion error can be interpreted as a transformation of ' > I
where the ultimate objective is to have I coincident with
. Because all the error of approximation is due to the
incorrect boundary element trial functions, accuracy is
increased by the addition of boundary nodal points where
approximation error is large (i.e. adaptive integration).
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Figure 1. Level curves of an analytic function (example
shown: w{z) = z)

In this paper, a computer interactive technique is reported
which graphically displays I and T so that the numerical
analyst can readily specify additional nodal points on the
CRT screen. In this fashion, the user interacts with the
CVBEM to locate the necessary nodal point additions until
T and T are within an acceptable level of tolerance. For
example, the tolerance may be the allowable construction
limits specified for a shaft (torsion problem) for use in
aircraft design. . '

As T' approaches I" geometrically, the analyst is assured
by the Maximum Modulus Theorem that the maximum
approximation error occurs on I' and that the governing
partial differential equation (Laplace) is solved exactly.
Consequently, the final product is the exact solution for a
problem geometry which is within the construction toler-
ance of the design.

THEORETICAL BACKGROUND OF THE CVBEM

A complete presentation of the CVBEM development, case
studies, mathematical proofs of convergence and existence,
and several FORTRAN computer programs are given in
Hromadka! In order to develop the geometric interpreta-
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tion of modeling error associated with the approximative
boundary concept, a brief development of the CVBEM
numerical technique is presented in the following.

Let § be a simply connected two-dimensional domain
(i.e. no holes within £) enclosed by a simple closed contour
I'.? Let ¢(x,y) be a two-dimensional harmonic function
over 2 U T; that is,

l9er.y) 3¢(x,y)
ax? 3y?
Then there exists a simply connected domain £2* such that
QU is a proper subset of 2* and ¢(x, y) is harmonic
over 0%,
There exists a harmonic function ¥ (x,y) conjugate to

¢(x, ) which also satisfies the Laplace equation of (3) over
Q* and additionally satisfies the Cauchy-Riemann condi-

tions of
x,y) _dix.y) 0p(x.p)  x,y)
ox 3y | oy ax

=0, {(x,enur (3)

4)

Let z=x+jy be a complex variable over §2*. Then both
¢(x,y) and Y(x,y) can be written in terms of ¢(z) and
V(z) such that an analytic function w(z) is defined over
Q* by

w(z)=9@E)+iY(z) &)

where to simply notation, (5} can be rewrittenasw =¢+ i,
zEQ",

Equation (5) represents a relationship between two con-
jugate harmonic functions generally called the potential
(#) and stream functions (). A list of typicai potential and
stream functions which occur in engineering and physics is
given in Table 12

The Cauchy integral theorem equates values of w(zy) for
Zp € £1 to 2 line integral of w({) for t € T by

g [ 2OE
0 mig t-:
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Table 1. Potential and stream functions

Physical phenomenon  ¢(x,y) = constant ¢ (x, y) = constant

Heat flow Isothermals Heat flow lines
Electrostatics Equipotentials Flux lines
Fluid flow Equipotentials Stream lines
Gravitational flow Potcatials Lines of force
Magnetism Potentials Lines of force
Diffusion Concentration Lines of force
Elasticity Strain Stress lines
Current flow Potential Lines of force
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Figure 2. Modeling T by boundary elements Iy
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Figure 3. Linear basis function

To illustrate the development of a CVBEM approximation
function, ¢(z), consider w(z) to be defined over Q* with
QUT interior of Q*. Subdivide T into m boundary
elements T; such as shown in Fig. 2. Nodal points are
specified at each element endpoint (here, a linear poly-
nomial CVBEM approximation is being developed). At each
node, determine nodal values of w(z) by

w(z;) = wy = ¢(z;) +iVE)EG+ i i=12,...,m (7)

Then a global trial function of w(z)} is determined for
zE€Tl by

m
Gz = ). OlasVi(@) + wyay Nyaq(2)] 8)
j=1
where the Ny(2) are linear basis functions (see Fig. 3); and
8;=1forz €Ty, and §; = 0 for z & I';. Substituting G(z) in

place of w(}) in (6) determines a CVBEM approximation
w(z)of w(z)

o I GE &
SO e ©)
Letting IT,, = max|z;,, ~2;,i=1,2,...,m, thenitis
seen (without proof) that
lim  GE)=wg), $ET (10)
T, 10

and therefore

lim (0@ -o@)= lm — | LHCONK
ir,t—-o ir,0—0 2ni t—z
r

=0 (11)

Thus the error of approximation, e(z), is defined by

l —
ey=L [ @O —CEnd 1)
2mi t—z

Because G(§} is continuous on I then w(z) is analytic over

€2 which implies both ¢(z) and (z), where &(z) = $(z) +

iY(z), are potential functions over £2.

In practice, ¢(z) is known on I, and Y (z) is known on a
separate contour on [y where I'=Ty U Thus @(z) is
not completely defined without estimates for the unknown
nodal values. To obtain such estimates, the real (or imagin-
ary) parts of @ (z) are collocated to the m known nodal
values, resulting in m equations for the m unknown nodal
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values. Using these m nodal value estimates along with the
m known nodal values supplies the w(z) integral function
with sufficient data to determine the CVBEM approximation
of (9).

CVBEM APPROXIMATION ERROR

Generally, numerical approximation errors in solving poten-
tial problems are of two forms: (i) errors due to not satisfy-
ing the governing equation over £2, and (ji) errors due to not
satisfying the boundary conditions continuously on I'. For
the CYBEM (and for other boundary integral equation
methods), the first type of approximation error iseliminated
due to both ¢ and V¥ being potential functions. But &(2)
does not usually satisfy the boundary conditions continu-
ously on I (if it did, then &(z) = w(z)). The next step in
the CVBEM analysis is to work with &(z) in order that
w(z) = w(z).

This step in the analysis of approximation error provides
a significant advantage over domain numerica] methods
such as finite elements or finite differences. In the domain
methods, the analyst examines error with a form of sequence
Cauchy convergence criteria by arbitrarily increasing the
domain nodal densities and comparing the resulting change
in estimated nodal values. Whereas with the CVBEM, the
analyst has several forms of the approximation error to
work with? Probably the casiest form of error to study is
the development of the approximative boundary T which
represents the locations where {z) achieves the desired
boundary values of w(z). Generally, the boundary condi-
tions are constant values of ¢ or  along boundary elements,
ie. ¢=¢ for z€T; or ¢ =y, for z €T}, This set of m
nodal values {¢,~, ¥} are level curves of w(z). The approxi-
mative boundary I is determined by locating those points
where ¢ =¢; and ¥ = Y (sec Fig. 1). Due to the colloca-
tion process, I' intersects I" at least at each nodal point
location, z;,/=1,2,...,m.

To determine [T, each element I; is further subdivided
by interior points (specified by the program user) where
@(z) is to be evaluated. At each element interior point,
@(z) is calculated from the line integral of (9) and the
values of ¢ and  are determined. If the appropriate ¢ (or
) matches the boundary condition on [}, then " intersects
I' at that point. Otherwise, subsequent points are evaluated
by marching pointwise along a line perpendicular to I'; until
the boundary condition value is reached. For point loca-
tions interior of £, equation (9) is used. For peints exterior
of ¢ UT, an analytic continuation of (9) is used.

In this fashion, a set of points is determined where
&X(z) equals the desired ¢; or Yy values. The contour I' is
estimated by then connecting these points by straight lines.
Because I" and T" intersect at least at nodal point locations,
I" appears as a plot which oscillates about the I' contour.

COMPUTER INTERACTION FOR ERROR REDUCTION

A procedure to use a graphical display for evalvating the
CVBEM model is to display both I" and I" superimposed on
the CRT. By magnification of the departure between I and
I, the analyst can easily inspect the performance of the
CVBEM approximation. Because the approximation error is
due to the assumed basis function assumptions, the integra-
tion error is reduced by the addition of nodal points on I,
similar to an adaptive integration technique,

The addition of nodal points can be made directly via
the CRT screen and a ‘locating the closest boundary co-

Figure 4. Example problem geometry

ordinate’ computer-graphic subroutine. After the nodal
additions are completed, a new ¢(z) is determined and the
revised I' plotted on I'. By the addition (and deletion) of
nodal points from I, the analyst is able to quickly evaluate
the quality of the CVBEM model. Because the addition of a
nodal point can be interpreted as the addition of an approxi-
mation error sink term, the geometric representation of
error by means of I' provides a mathematical sophisticated
yet easy-to-use modeling tool.

CASE STUDY

To illustrate the previous discussion, a computer-interactive
version of the CVBEM for solving potential problems in
two-dimensional domains as developed by Advanced Engin-
eering Software (Irvine, California) is considered.

The test problem considered is the development of a
CVBEM approximation function for the two-dimensional
domain shown in Fig. 4. This example represents any
number of possible engineering problems such as listed in
Table 1.

The objective of the analysis is to locate a sufficient
number of CVBEM nodal points on I' until I" is within an
acceptable tolerance to I'. Generally, this tolerance is the
allowable limit of deviation from the design for construc-
tion purposes.

Using symmetry, the domain of Fig. 4 is reduced to the
domain of Fig. 5. The purpose of using symmetry is to
reduce computational effort and computer memory require-
ments. Because the CVBEM is a boundary integral method,
all nodal values are linked together resulting in a square
matrix. Consequently the use of symmetry to reduce the
problem size, or even to use the computerinteraction
approach rather than a brute force computer-generated
nodal distribution on T, saves considerably on computa-
tional requirements.

Figure 6 shows the first attempt at modeling the domain
of Fig. 5. Because of the nature of the approximative bound-
ary concept, the boundary condition values of constant ¢

‘(or ) stepwise along T are of no real consequence. How-

ever, for the reader’s convenience, the boundary conditions
are also shown in Fig. 5.
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Figure 5. Simplified problem geometry

Figure 6. CVBEM nodal distribution for example problem

Figure 7 shows the overlay of I and [ for the nodal
distribution used in Fig. 6. The modeler locates additional
nodes for subsequent tries based on the largest departure
between I' and I". After four attempts, the CVBEM modeling
error is represented by I' as shown in Fig. 8. It is noted that
in Fig. 8, departure is magnified ten-fold for visibility. As
discussed previously, if the I" is acceptable for construction
purposes then the associated (z) is the exact solution of
the boundary value problem with I transformed into T,

SOFTWARE PACKAGE DESIGN

Both minicomputer and microcomputer versions of the dis-
cussed CVBEM technique are available. Consequently, the
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software structure for an Apple 1I E 64K microcomputer
will be presented only.

The reported CVBEM computer interaction program is
subdivided into three large legs where each leg contains the
main driver program.

The program package is composed of

(i) CVBEM approximation program (to determine nodal
estimates)

(ii) CVBEM approximator evaluation program (to
evaluate any @(z))

(iii) Approximative boundary determination program to
determine (x, y) co-ordinates where @(z) equals the
boundary condition level curves

(iv) line drawing graphics program to plot (x,y) pairs
for both I" and T" anto CRT (or plotter)

(v) Nodal point (x, y) data entry routine

|
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Figure 7.  Approximative boundary (dashed line) for first
attempt using CVBEM
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Figure 8. Approximative boundary (dashed line} after
four attempts using CVBEM (departures between I' and T
are magnified ten-fold)
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Figure 9. CVBEM computer-interaction program structure
schematic

The microcomputer programming is structured as shown in
Fig. 9. From the figure, disc storage is used to store " related
(x, y) paizs, otherwise, computer memory is used for nodal
point co-ordinates.

CONCLUSIONS

The CVBEM has been used to develop highly accurate solu-
tions for two-dimensional potential problems. In order to
achieve a high degree of accuracy, a computer interactive
graphics technique is reported which utilizes the approxi-
mative boundary technique to display the CVBEM modeling
error as a result of the nodal point distribution selected by
the analyst. Subsequent nodal point locations can be added
(or deleted) by direct interaction with the computer pro-
gram via the CRT. The only programming requirements
needed to implement this easy-to-use analysis approach
with the CVBEM is a standard CRT line-drawing graphics
package, and a ‘locating a point to the closest contour’®
program routine.
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