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A UNIFIED MODEL OF RADIALLY SYMMETRIC
HEAT CONDUCTION

T. V. Hromadka 11
Water Resources Division, U.S. Geological Services,
Laguna Niguel, California 92677

The nodal domain integration method is applied to a radially symmertric heat con-
duction problem where the solution domain is discretized into irregular radiai [finite
elements, and the state variable is approximated by a spatial linear tnial function
within each finite clement. The resulting finite-element model represents the well-
known Galerkin finite-element, subdomain-integration, and an integrated finite-dif-
Jference numerical statement as well as an infinity of other mass-lumped matrix schemes.
Fram the NDi approach, the several numerical modeling technigues are unified into
one global domain model where each submodel can be obtained by the specification
of a single mass-lumping parameter.

INTRODUCTION

Hromadka and Guymon [1] recently developed a nodal domain integration (NDI)
model of three-dimensional heat conduction based on a tetrahedrai finite element.
From this numerical model, the finite-difference, subdomain integration, Galerkin
finite-clement methods, and an infinity of finite-element mass-lumped matrix models
are unified into a single numerical statement,

In this paper the NDI technique is applied to the one-dimensional, radial-co-
ordinate finite element. It is shown that the Galerkin finite-element, subdomain-in-
tegration, and an integrated finite-difference numerical model, are obtained by the
appropriate specification of a single parameter in the resulting NDI statement. Thus,
all three numerical approaches are unified into one numerical statement similar in
form to a Galerkin finite-element matrix system. The extension of the NDI technique
to developing unified cylindrical and spherical coordinate models follows from the
derived radial coordinate model and the referenced NDI three-dimensional tetrahed-
ral finite-clement model [1].

The purpose of this paper is threefold. The first objective is to present a basic
description of the NDI technique as applied to the class of partial differential equa-
tions generally encountered in the theory of diffusion and heat conduction. Sufficient
set definitions and integral manipulations are provided in order that the extensions
of the results to cylindrical and spherical coordinate systems are direct. The theo-
retical foundations of this numerical technique are based on the subdomain version
of the finite-element weighted-residuals approach and incorporate the mass-lumping
techniques used in some finite-element approaches.

The second objective is to develop the NDI numerical statement that represents
the finite-element Galerkin statement, subdomain integration numerical statement,
and integrated finite-difference control-volume statement by the specification of a
single parameter in the resulting radial-element matrix system.
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NOMENCLATURE
A(d)  operator W, weighting function
K thermal conductivity Xy spatial coordinates
N, basis functions w;,y,  nodal coordinates
p* element mass matrix r boundary
Q element mass matrix (radial) m mass-iemping factor
T radial coordinate of node ; & temperature
R control volume j $ approximation of ¢
Rt radial and time coordinates 0 domain
5 capacitance {r finite element ¢
S, set of nodes associated with finite o nodal domain associated with control
element e volome j and finite element e
§ element stiffness matrix

A third objective is to use the unified NDI formulation to gain insight into the
performance of the several well-known domain models in the approximation of ra-
dially symmetric heat conduction processes. Since the NDI model represents each
of the most popular numerical models as point values of the NDI approximation
statement, the same computer code can be used for each numerical analog, as well
as an arbitrary finite-element mass-lumping scheme.

NODAL DOMAIN INTEGRATION MODEL DEVELOPMENT

The partial differential equation describing radially syrhmetric heat conduction
in an isotropic homogeneous medium is given by

(RK ad)) RS ai) (1)
3R oR ot

where K is the thermal conductivity; § is the heat capacity; R is the radial coordinate;
¢ is temperature; and ¢ is time.

The finite-element technique approximately solves the governing equation on
a finite-clement discretization of the domain [2]. The integrated finite-difference method
uses a control-volume discretization {3].

The nodal domain integration approach partitions a finite element into smaller
“nodal domains” that are defined geometrically as the intersection of the finite ele-
ments and control volumes. The utility of this further partitioning of the finite ele-
ment is that an integrated finite-difference or a subdomain integration analog can be
conveniently written in terms of a matrix system similar to the Galerkin finite-ele-
ment matrix system. Additionally, flux-type boundary conditions can be accom-
modated on the problem domain boundary without the need for special equations or
finite-difference approximations. The following set definitions of subdomains (con-
trol volumes), finite elements, and nodal domains will be used to develop the NDI
finite-element matrix system.

Consider the partial differential operator relationship

AP =fix,»EQO=QUT (2)
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defined on global domain £ with boundary condition types of Dirichlet or Neumnann
specified on giobal boundary I'. An n-nodal point distribution can be defined in {}
with arbitrary density such that an approximation & for ¢ is defined in Q by

b= Nix, yib; (x, ) € Q (3)
J=1

where N(x, y) are linearly independent global shape functions and &, are assumed
values of the state variable ¢ at nodal point j. In Eq. (3) it is assumed that except
for a set of Lebesque measure zero

limg= limd =6 x»eEN (4)
— max||{x, ¥,).(xg, yyil—0

A closed connected spatial subset R; is defined for each nodal point j such that

n

Q=UR, (5

=1

The sets R; are generally called control volumes or subdomains and are usually ac-
companied by additional requirements that

(x_;s }’,) E Rp (xp y;) ¢ Rk!j # k (6)
and
R, = R, U B, %)

where (x;, y;} are the spatial coordinates of node j, and 8, is the boundary of R,. It
is assumed that every subdomain is disjoint except along shared boundaries, that is,

R,NR,=B,NB (8

The subdomain method of the finite-element weighted-residuals approach approxi-
mates Eq. (2) by solving the n equations

f[A(¢)“f]W,¢4=O i=12 ....n 9)
n
where
— -lv (I, )’) E Rj
w; {0. (x.y) & R, {10)
A second cover of {1 is defined by the finite-element method with
Q=8 (1D

where (}° is the closure of finite-element domain 3° and its boundary [”.
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Let S, be the set of subscripts defined by
S, = {jl N R, # {$}} (12)

that is, S, is simply the set of nodes associated with {}*. Then a set of nodal domains
() is defined for each finite-element domain Q° by (Fig. 1)

U=Q'NR jES. (13)

The subdomain method of weighted residuals as expressed by Eq. (9) can be
rewritten in terms of the subdomain cover of {} by

f [A(d) = flw;dA = f [A{d) ~ f1dA (14)
a R,
With respect to the finite-element discretization of (2,
f [A(d) — f1dA = [A(d) —~ f1dA (15)
R; RGO

where for each finite element {}° a matrix system is given by generating for each
nodai point j € §,,

J [A(¢)“f]dA=j ([Ald) - fldA  JES, (16)
R, af

From the above subset definitions and set covers of {1, application of the usual sub-
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Fig. 1 Nodal domain geometry.
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domain method to the governing partial differential operation of Eg. (2) is accom-
plished by integration of the governing equations over the nodal domains inside each
finite element, resulting in a finite-element matrix system similar to that determined
by the Galerkin finite-element method.,

In this sectton the governing heat flow equation is integrated over the several
nodal domains associated with finite element Q°. This approach is simply the sub-
domain-integration weighted-residual method as applied to a subdomain or control
volume, except that the approximation error is averaged over the nodal domains
inside the subdomain. These nodal domain contributions can then be reassembled
into matrix form for each element ()°. Using the previous set notation, the operator
relationship for the radially symmetric heat-conduction model of Eq. (1} is

3 3 F
A(¢)—f=5§(RK£)—RSﬁ (17)

Substituting Eq. (17) into Eq. (16) gives an element matrix system for (¥

3 ad 3
Lf [aR (RK aR) s a:] =0 JES. (18)

Expanding Eq. (18)

I IR A
rsnre an rs Ty— [T on

dd .
=fRS“dA JES., (19
e at

where the first term of Eq. (19) cancels due to flux contributions from contiguous
finite elements or satisfies Neumann boundary conditions on the global boundary T,
and where (n, s} are normai and tangential vector components on B,, I}, and I,

To evaluate the integration expressions of Eq. (19), definitions of the finite-
¢lement and subdomain covers of global domain () are necessary. The finite-element
cover {1 of (1 is assumed defined by

Q={x.o=r=R=r)
0 = {(x, W sR=r}
(20)

T e =R =1, =1}

where r; is the radial coordinate of node i; and
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Q={x»0=R=1)
The subdomain cover R, of ( is assumed defined by
Ri={x,»0=2r =2R=(r, + 1}
Ry={x,ylin+ ) =2R=(r, + n)}
(21)

R, ={(x, l(raey + r,) = 2R = 2L}
Therefore, the nodal domain cover {); of finite element £ is defined by
Q= QU (., (22)
where (Fig. 1)
_ Wre SR = (re+ re)

2 (23)

. YN F re)

e+l T
2=R=r,

A

Integration of the governing flow equation on each £)] involves the definition
and integration of the thermal conductivity, K. An approach to handling the nonlin-
earity problem is to approximately linearize the governing flow equation by assuming
the various parameters to be constant for small time steps Ar. For X set to a quasi-
constant value K° in £} during time step Ar, Eq. (19) may be rewritten for the nodal
domain {)] contribution to subdomain R; as

i}
[
rf-renre on

Since the governing heat-flow equation is radially symmetric, Eq. (24) simplifies to
(see Fig. 2)

0
ds=[RS—dA jE s, (24}
re ar ot

8 0
(RK' —‘b)% = f RS—¢dR JES, (25)
OR/ | re_rynvre 0 ot

This integrated relationship will be used to develop a subdomain integration model
in the following section.
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Fig. 2 NDI boundary definitions.

NUMERICAL SOLUTIONS

In the derivation of the finite-element integration statement of Eq. (25) for ()°,
no specification of the character of the state variable is assumed. In the following,
the state variable ¢ is assumed to be adequately approximated by linear trial function
&° in each finite element {}°. Therefore it is assumed that & = ¢ = ZL, ¢; in each
€)*, where the L; are the usual linear local coordinates in 0 and ¢f are nodal point
values of the temperature trial function estimate in (). Because of the linear defi-
nition of ¢° in {)°, all spatial gradients of ¢° are constant. Consequently, several
well-known domain numerical solutions of Eq. (1} in {} embodied in the finite-ele-
ment method of weighted residuals result in similar numerical approximations of Eq.
(1) in each Q°. To develop these domain numerical solutions, the following descrip-
tion variable is defined:

CDE—Q— (RK@) —RSa—(b (26)
oR oR ot

Although the Galerkin method of weighted residuals used to solve Eq. (1) in each
)* is well known, its derivation of a finite-element matrix system is presented in
order to develop some of the notation and simplifications used in the subsequent
determinations of the subdomain integration and integrated finite-difference analogs
and to demonstrate the use of flux-type boundary conditions on global boundary T

Galerkin Method of Weighted Residuals
In )7,

f ®L,dR =0 @7
ﬂf

generates a Galerkin finite-element matrix system for approximation of Eq. (1) on
.
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Integrating by parts reduces Eq. (27) to

ab | 3 dL; 8
f CDLde=RK—¢Lj —f (RK—¢—’+SR~EL,) dR (28)

The first term in the expansion of Eq. (28) satisfies flux continuity between finite
elements and Neumann boundary conditions on global boundary I in a manner sim-
ilar to the NI statement of Eq. (19).

For (¢,K) = (d°,K*} in ° during a small timestep Ar, where ¢ is an assumed
linear trial function for ¢ in (}*, Eq. (28) simplifies to the Galerkin finite-element
statement

3 dL,; E
0=K°* R—dR+S— | ROLdR (29)
oR Jne dR at Joe
where
6‘ £ d)g-a- - ¢
K LA K* (—‘ d’) (30)
dR For1 — T

Integrating Eq. (29) determines the Galerkin finite-element matrix system for the
approximation of Eq. (1) on 0%

§ & + p Q)b + Q()d° = {0} G31)
where
=X sr| V! 32)
2[, € e+l -1 1
eme S22
I’(2)=‘6—[1 2] (33)
o _SU) 3a)

.

and where I = (r,,; — r.); and (d°, &°) are vectors of the nodal values and time
derivative of nodel values of finite element e.

Subdomain Integration

A cover of finite element Q¢ is given by the union of nodal domains Q, j €
S,. The subdomain integration version of the weighted-residuals process approxi-
mates Eq. (1) in each subdomain R; by
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f dW,dR =0 (35)
Ry
where
_J1L.RER,
W= {0, otherwise (36)

But

f‘medR'—‘j ¢dR+f & 4R (YD)

R, f (1P

Thus a finite-element matrix system is generated by the subdomain integration method
for finite element Q° by

J P dR = {0} JES, (38)
af

From Eg. (25),

9 3
f CDdR=(RK—d—)) —f rs 3% ar JES, (39)
af R/ bt Jog O
Using (K, ¢) = (K", ¢,
a0 3
DdR =K R ~S—| R&dR jES. (40)
o R r-rgnr ot Jos

Integrating Eq. (40} gives the finite-element statement of a subdomam integration
approximation of Eq. (1) on finite element Q°,

§° &° + p'3)d* + Q3 = {0} (41)

where §° is given by the Galerkin element matrix of Eq. (32), and

‘3 _8El3

p°(3) =<1 3 (42)
S(!‘) 1

Q3 = 22 [2 7] (43)

and where vectors (¢, (i)") are as defined previously.

From Eq. (40), the global finite-element matrix system determined by the ap-
propriate summation of each {)° matrix system satisfies Dirichlet and Neumann
boundary conditions in a manner similar to the global Galerkin matrix system.
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Additionally, the capability of representing an inhomogeneous medium by
specifying different parameters in each finite element {)° is similar to the usual Gal-
erkin finite-element approach, aithough from Eq. (40} the conduction parameters are
necessarily evaluated at the midpoint of the finite-element and capacitance param-
eters need to represent a mean value in the control volume associated with the par-
ticular nodal point. These advantages normally associated with the Galerkin finite-
element approach can also be developed for an integrated finite-difference numerical
analog for the approximation of Eq. (1) on V"

Integrated Finite Difference

The integrated finite-difference approach [3] can be extended to the solution
of Eq. (1) on appropriately defined control volumes. The usuai control-volume def-
inition, however, is identical to the subdomain definition cover R, of global domain
{1 given by Eq. (21). Thus, an integrated finite-difference approximation for solution
of Eq. (1) on £}* where the trial function ¢° is assumed to be linear in each ) is

given by
dd° a .
K*— IR =5~ 1| Rd°dR jES, 44)
R re-rinre 9 Joy
But the integrated finite-difference approach equates
J d)‘dREcbjf dR (45)
o a

Thus, the finite-element matrix system is given by
§° &7 + p)d + Q=) = {0} (46)

where 8% 1s once more given by Eq. (32), and

s,

P =2 [(‘) {1)] @)
Slel

Qe =2 {é 2] (48)

From Eq. (40), the global finite-element matrix system determined by the ap-
propriate summation of each {}* matrix system of Eq. (46) satisfies Neumann and
Dirichlet boundary conditions in a manner generally associated with the Galerkin
approach. Additionally, anisotropic inhomogeneous mediums are similarly accom-
modated as with a Galerkin or a subdomain-integration analog previously derived.

Because of the similarity of the three numerical approximations, a single-ele-
ment matrix system for the approximation of Eq. (1) on {}° can be written by
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S¢° + p'(m) & + Q(d* = {0} (49)

where 8¢ is given by Eq. (32); and

AW 1
oy = 5[
P = 5 1)[1 n] (50)
o o S()? (n? - n+3) 3
X =75 [(:m -3 Gni-3n+3) e

The Galerkin finite-element, subdomain-integration, and integrated finite-difference
numerical analogs of Egs. (31), (41), and (46) are given by Eq. (49) for q = (2, 3,
*), respectively.

Extension of the NDI technique to cylindrical coordinates follows directly from
Eqs. (32), (50), and (51). The extension to spherical coordinates follows from the
tetrahedral finite-element determination [4] and the above results.

NODAL DOMAIN INTEGRATION MODEL ANALYSIS

The previous section unified several numerical techniques into a single finite-
element matrix system as a function of the degree of mass lumping, m. The question
remains whether an optimum n factor exists such that the modeling integrated rel-
ative error is a minimum.

In this paper the m factor developed for one-dimensional diffusion problems
[4] is used to test the NDI model accuracy for radial problems where analytical
solutions exist. This technique is based on the Fourier series expansion of a particular
solution to the one-dimensional diffusion equation in a small homogeneous control
volume. That is, the radial geometric contributions are neglected in the development
of 7.

For a control volume R;, the usual process of normalization reduces the one-
dimensional diffusion equation to

6 _ 3 € [0, 1] (52)
— = x ,
x> ot

where 0 is a normalized variable for ¢, and variables x, t are now defined as nor-
malized space and time. It is assumed in Eq. (52) that 6(x = 0) = i—1, 8(x = 0.5)
=0, and 8(x = 1) = 0,.,, where 0, are normalized nodal values.

Using the Crank-Nicolson mid-timestep advancement procedure to approximate
the time derivative, the nodal equation for solution of 6, is

At . - i+ ; i i
g
T [("f“ “0) + 20 (1 - )« (o1 )] 9
J
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where the normalized length iIRJ{l = %; i is the timestep number; and m, is constant
during normalized timestep Ar. Equation (53) evaluates all modeled flux terms at the
mid-timestep. For other time-derivative approximations, such as forward or back-
ward step differencing, a similar difference staternent can be developed. A solution
of Eq. (52) using Eq. (53) at the mid-timestep is

1. o o .
Ox, € = =2 By = 26, + B, sin e ™+ (B, +8)x+ 0, (54)

where € is normalized time measured from the mid-timestep; and where f=1 /2
(8; + 6;""). If it is assumed that all effects of a moving boundary value at the end-
points is equivalent to holding 8 constant at the mid-timestep boundary values, then
Eq. (54) represents an exact solution to the assumed boundary-value problem.

Holding the boundary values of 8 constant at the mid-timestep allows a sim-
plification of the NDI nodal equation to

L8 = (o0 )| = [onlo-9) | o0
IR] Y 2m; + 1) o
Solving for 6, and 6;”' gives
i afl —Ar = = 2 a2 1f. a
B} = 6 —y = - ej_l - 291 + 911.1 -4 + E Gj_l + 9j+1 (56“)

1
2

. 1/, i
(e. ~28,+8,. ) A2 3 (ej_, + ejﬂ) (56b)

Combining Egs. (56a), (56b), and (53) gives ; as a function of the model timestep
size by

4 AKL + ™)
T4 AKL + )

T, (Af) = (57

where the normalized timestep Ar is related to the global model timestep Ar* by

A ar (58)
[=
42[R

where @ is the mean diffusivity (2 = K/§) for R;. From Eq. (57), the mass lumping
factor lies within the range

8
— = (A0 < = (59)

and is seen to be a function of timestep and element size.
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To test the success of the n(A#) selection technique, several radially symmetric
heat transfer (diffusion) problems where analytic solutions are known were modeled.
Additionally, the derived n factors of 2, 3, and = were also tested for comparison
purposes. The measure of accuracy used is a form of the L, norm of the error given

by
1/2
[ J % — o)y dn]
¥

E= (60)
[«
1

where ¢ is the test problem solution; ¢ is the approximation value, and E is the
error of approximation,

In this study, six different boundary-value problems of the heat flow equation
were tested with various values of the timestep (Crank-Nicolson method) and finite-
element size. For each test, nodal values are reset to the exact nodal values after
each timestep advancement in order to better test the approximation error in satis-
fying the flow equation rather than measuring the accumulation of approximation
error. After each timestep, the E error is evaluated and stored for the four considered
7 factor approaches, and the factor that results in the minimum E value (a success)
is noted. Consequently, more than 150 test problems (five timesteps and five element
spacings for each boundary-value problem) resulted in an excess of 20,000 timestep
advancements. By dividing the number of successes by the total number of timestep
advancements, a probability of success for a m factor is estimated. Figure 3 shows
the success probability for the m(Ar) approach as a function of normalized timestep
size and element size. :

It is noted that the redefinition of nodal values to the exact nodal values (ob-
tained from the analytic solution) eliminates the bias in accumulative numerical error
due to a large deviation in any one timestep. Because all the mass-lumped values
provide for a stable and convergent domain numerical technique, the significance in
varying the matrix mass lumping is made apparent in the success of each timestep
advancement. Figure 3 demonstrates empirical evidence that the proposed mass-iumping
scheme of Eq. (37) provides for significant increase in modeling accuracy over each
timestep as compared to the other mass-lumped schemes of finite difference and
finite element.

For larger normalized timesteps (greater than 0.025), all the numerical tech-
niques considered showed similar rates of success and failure in achieving the best
results. Each of the models produced relatively poor results for such large timesteps
and would generally not be used in modeling transient heat flow problems.

CONCLUSIONS

A unifying numerical model can be developed for radially symmetric heat con-
duction problems. The unifying model is based on the straightforward nodal domain
integration method. The resulting model is found to have the capability of repre-
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Fig. 3 Probability of success using Eq. (57).

senting the Galerkin finite-clement, subdomain-integration, and integrated finite-dif-
ference methods by the specification of a single mass matrix lumping factor 7.

The global matrix system composed of the sum of all NDI elements accom-
modates Dirichlet, Neumann, and mixed boundary conditions without the need for
special finite-differencing equations.

An infinity of possible domain numerical methods are possible and can be rep-
resented by the NDI model for specific values of m.

A computer code based on the Galerkin finite-element method can easily be
modified to allow a variable mass lumped matrix system and, consequently, repre-
sent an integrated finite-difference, subdomain-integration, and an infinity of other
domain methods.

An improved mass lumping factor exists (as a function of timestep and finite-
element size) that minimizes approximation error more often than any of the other
domain methods considered. The probability of the proposed optimum mass-lumping
system being the best numerical method is approximately 70% for the normalized
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timestep sizes considered. The improved method is developed based on a linear trial
function model and a Crank Nicolson time advancement approxXimation. Although
only the radially symmetric problem is developed, the extension of the approach to
cylindrical and spherical coordinate problems is straightforward.
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