Modeling steady-state, advective contaminant transport
by the complex variable boundary element method

T. V. HROMADKA II and TIMOTHY J. DURBIN

Williamson and Schmid, Hydrotec Division, Irvine, CA, USA

A model of two-dimensional, steady-state, advective subsurface contaminant transport in ground-
water is developed based on the CVBEM (complex variable boundary element method). The CVBEM
model includes an exact solution of the governing partial differential flow equations classified as
Laplacian or Poisson. The model includes point sources and sinks, distributed sources and sinks, and
the accommodation conditions specified on the problem boundary. Because the numerical technique
is a boundary integral equation method, the computer requirements are small and can be accommo-

dated by many currently available microcomputers.
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INTRODUCTION

Mathematical modeling techniques which have been
developed for use in predicting the extent of subsurface
contamination of ground water, in general order of com-
plexity, fall into three broad categories: (1) analytical tech-
niques; (2} quasi-analytical techniques; and (3) numerical
modeling techniques based on domain methods such as
finite difference, integrated finite difference, or finite
element.

Each of the modeling categories develops a mathematical
statement which satisfies the flow continuity and mass
balance equations. However, as the problem requirements
and conditions increase in complexity, the minimum level
of sophistication needed to model the problem generally
passes between the modeling categories.

For simple time-dependent solute transport within a
domain including steady and uniform ground-water flow,
analytical solutions are available for several one-dimensional
or radial flow regimes. For example, Van Genuchten and
Alves! summarize the mathematical solutions to several
one-dimensional convective-dispersive solute transport
problems. Generally, such mathematical solutions are based
on limited ground-water flow conditions such as uniform
flow. Additionally, the assigned contaminant source mecha-
nism often limits the modeling application to highly
idealized situations. However, for studies which afford
little data for identification of the various flow parameters,
the analytical solution technique can be used to provide
preliminary estimates as to the time scale and the potential
extent of the contamination. '

The second category of modeling techniques utilizes
well-known potential flow theory to develop streamlines of
the underlying ground-water flow (that is, the Laplace
equation). Using analytic functions of the complex variable,
a two-dimensional flow field is modeled by superposition of
flow patterns, sources and sinks, and boundary flow con-
ditions.
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For the type of flow problems where the ground-water
flow field is steady-state and the contaminant transport
moves with the fluid, the quasi-analytical approach pro-
vides a powerful tool for study purposes. However, for
cases where time-dependent boundary conditions and
dispersion-diffusion effects are significant, the needed
minimum modeling sophistication transcends to the third

-category.

Another major limitation of the quasi-analytic technique
is the accommodation of nonhomogeneity and anisotropy
within the aquifer, and the capability to model the under-
lying flow field as a function of the boundary conditions
rather than as a prescribed potential flow field.

The third category of modeling techniques is based on
the well-known domain numerical methods of finite differ-
ence, integrated finite difference, or finite element. Using
such a model approach requires the discretization of the
domain into control volumes or finite elements. Each
element has an associated parameter set which accommo-
dates for the nonhomogeneity of the aquifer, fluid proper-
ties, and contaminant properties. Flow conditions and
desired contaminant transport mechanisms can then be
modeled by the incorporation of various flow subprograms
or bookkeeping algorithms which simulate particular trans-
port processes.

Associated with numerical methods is the complications
of calibrating the model to meet known physical condi-
tions, and the potential for numerical error in satisfying the
governing flow equations and the specified boundary con-
ditions. For example, the analytical and quasi-analytical
technigues exactly satisfy the governing flow equations; in
compatison, the domain numerical methods only satisfy the
governing steady-state flow equations for basic scenarios
such as uniform flow. In use of numerical methods with
more complex flow situations, attention is required as to
numerical stability, choice of discretization, timestep
advancement and timestep size, and the overall accuracy of
the coupled numerical models.

Various domain numerical models are available which
inctude submodels for accommodating particular transport
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processes. A detailed tabulation of 32 such domain models
is given in Javendal and others,? which itemizes the numeri-
cal modeling approaches and ancillary submodels, and
includes transport processes.

A new direction for subsurface contaminant transport
modeling is the use of the complex variable boundary
element method or CVBEM.* This modeling technique
simulates two-dimensional contaminant transport as an
extension of the quasi-analytical approach. That is, poten-
tial flow theory is utilized to develop the underlying
groundwater flow field as provided by sources and sinks
(groundwater wells and recharge wells), but the background
flow conditions are modeled by means of a Cauchy integral
collocated at nodal points specified along the problem
boundary. The technique accommodates nonhomogeneity
on a regional scale (i.e. homogeneous in large subdomains
of the problem), and can include spatially distributed
sources and sinks such as mathematically described by
Poisson’s equation. An early application of the Cauchy
integral for solving groundwater flow problems is contained
in Hunt and Isaacs.*

For steady-state, two-dimensional homogeneous-domain
problems, the CVBEM develops an approximation function
which combines an exact solution of the governing ground-
water flow equation {Laplace equation) and approximate
solutions of the boundary conditions. For unsteady flow
problems, the CVBEM can be used to approximately solve
the time advancement by implicit finite difference time-
stepping analogous to domain models.

In this paper, only the steady-state two-dimensional flow
problem will be considered in a homogeneous domain. The
extension to unsteady flows or nonhomogeneous domains
is referenced to Hromadka? or Brebbia.5 Other real variable
boundary element models are discussed in Liggett,® and in
Liu and Liggett.™® A new development in this paper will be
the solution of the Poisson equation in a homogeneous
domain; this represents the first time that the CVYBEM has
been applied to this class of partial differential equations.

Application of of the CVBEM contaminant transport
model in this paper is restricted to steady-state flow cases
in which solute transport is by advection only. That is, mass
transport by diffusion and dispersion is not included. How-
ever, it is noted that the CVBEM model requires only a
limited quantity of data, and does not require the dis-
cretization of the domain into a mesh or set of control
volumes of finite elements. Additionally, because of the
small number of nodal points 1equired, the computer pro-
gram can be accommodated on most currently available
microcomputers with a FORTRAN capability.

Modeling error evaluation is readily available by use of
an approximate boundary approach. Because the CVBEM
model provides an exact solution to the partial differential
equation, all modeling error occurs in matching the speci-
fied boundary conditions. The approximate boundary is
the focus of points where the CVBEM model achieves the
desired boundary values. Consequently, should the approxi-
mate boundary coincide with the true problem boundary,
the CVBEM model is the exact solution to the boundary
value problem. Equivalently, the error of approximation
is visually demonstrated by the departure between the
approximate and problem boundaries.

CVBEM DEVELOPMENT

For steady-state flow conditions, groundwater flow in a
saturated, homogeneous, isotropic aquifer is mathematically
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modeled by the Laplace equation. The CVBEM has been
shown to be a powerful numerical technique for the
approximation of properly posed boundary-value problems
involving the Laplace equations.® The keystone of the
numerical approach is the integral function:

1 (&) d
o= [0
$—z

(1)

r

where I is a simple closed contour enclosing a simply con-
nected domain £, { is the variable of integration with
{ €T,z is a point in Q; and the direction of integration is
in the usual counterclockwise {positive} sense. The func-
tion G({) is a global trial function which is continuous on I'.
For example, given m nodal points specified on T defined
by co-ordinates z;, f=1,2,...,m, let &; be notation for
the nodal values at node j. Then the m nodes result in m
boundary elements T, i=1,2,...,m where [; is the
straight-line segment between co-ordinates z; and z;4,
(Fig. 1). A linear global trial function is defined by:

m
GEY= Y 8;(N;@; + Njy 1 @y41) (2)

=1
where 8; =1 if { €T}, and §; = 0 if § € [;. In this case, the
functions V; and Ny, are the usual linear basis functions.
In the above, the index situation of f=rm implies that

index (f+ 1) is equal to index 1. From the definition of
G(%) we have:
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The CVBEM continues by using (3) to develop m equations
as a function of the m unknowns associated with the un-
determined nodal values of either ¢ or ¥ at cach node. That
is, @=¢ + iy where ¢ and  are nodal values of the poten-
tial and stream functions respectively. Given m nodes speci-
fied on I';, we necessarily know either ¢ or ¥ (not both) at
cach z;, /= 1,2, ..., m. Then to estimate the remaining m
nodal values, ¢xz) is collocated in the form of a Fredholm
equation by forcing:

Class I:

#lz)) = Re i(z))
Pi(z)) = Im &xz;)

(4a)

e = Flaunent endpoint nodes
© = Element interlor nodes

Figure 1. Boundary elements showing interior and end-
point nodes '
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Class 1I:

®u(zj} = Re (:’(Z;)

Vulzy) = Im axz))
In the above, the subscript u and k refer to unknown and
known boundary _condition nodal values, respectively. Be-
cause ¢A27) = XD, By, Vi, ¥y), then a G(z) is determined
by either (4a) or (4b) for f=1,2, ..., m. The difference
between these two approximations is that the Class |
system results in 2 CVBEM approximator which matches all
the known nodal-point boundary-condition values, whereas
the Class Il system results in an approximation which
equals the CVBEM-estimated unknown nodal-point
boundary-condition values.

Because G({) is continuous on each I, then &xz) is
analytic for all z €£2. Thus ¢Xz) can be written as the sum
of two harmonic conjugate functions by &xz)= ¢(z)+
i{i(z). Both the approximation functions, ¢(z) and xfz),
satisfy the Laplace equation exactly for any z € §.

The modeling approach is to match the boundary condi-
tions continuously on I'. That is, we know values of ¢ or
at each nodal point z; {thus we also know either ¢ or ¥ con-
tinuously along each T}). However, the CVBEM Class 1
approximator generally only equals the boundary condi-
tions at nodal points where the Class I system results in a
a)(z) which may not equal a boundary condition value at
any nodal point. If &(z) equals the boundary conditions
continuously on I, then ¢(z) is the exact selution to the
boundary-value problem.

Nodal equations are determined by taking the limit as
the point z €2 approaches a selected nodal point z; €T
by:

(4b)

I {6y

1=gj 2mJ §—z
r

(5)

The limiting value is also known as the Cauchy principal
value, and by using either the Class I or Class II systems, &
set of m equations results; these equations are solvable for
the unknown nodal values by the usual matrix-solution
techniques such as Gaussian elimination.

FLOW FIELD MODEL DEVELOPMENT

The CVBEM is used to develop a potential function F(z)
which exactly satisfies the Laplace equation in £2 by:

F(z) = oAz) + i g"ln(z*-zf), z€Q (68}
i=1 2aT

where (; is the discharge from well § (of n) located at z;
(i.e. a sink); T is the transmissivity of a confined aquifer,
and &(2), representing the background flow, is a CVBEM
approximator developed for £. It is noted that F(z) is
subject to the boundary conditions:

E(@) = 56(2) + i1 —8) ¥(z), z€ET N

where & = 1 if ¢(z) is known; § =0 if J(z) is known; and
£(z) is 2 boundary condition distribution along I,

But the source and sink collection included in (6) repre-
sents an exact representation of the steady-state flow con-
dition. Thus, £(z) must be modified in order to develop a

&Xz) on £2 by:
PO=t- ) —Lin@-z), €T (@)
2 28T ’

Thus, the flow field representation is developed by collo-
cating ¢X(z) at each node z; € T" according to the boundary-
condition distribution of £*(z). The resulting approxima-
tion F(z) describes the CVBEM numerical model. In (8),
£*(z) is defined according to the real and imaginary parts as
given in (7).

POISSON EQUATION

Given a continuous distribution of sources (such as from
precipitation) or sinks in a flow field in domain §2, the
steady-state flow model of the Laplace equation must be
extended to the Poisson equation:

)

—t =k (9)

axs ay
where ¢ is the flow potential. Equation (9) can be modeled
by choosing a particular solution ¢, such that:

By, 20

ax? 9yt
For example, ¢, = k/4(x*+ y?) is a suitable choice (an
infinity of other particular solutions are available). After

choosing ¢, the boundary-condition function §(z) must be
modified in order to develop (2} on £ by:

k (10)

)= E(Z)“‘i 2_(21 Inz —z;}—¢,(2), z€T(11)
i=1 27T

and now «Xz) is collocated at nodes z; with respect to
£*(2). Thus, the Poisson eguation is exactly solved by:

. n g
Pla)= o)+ 3 ﬁ InG—z)+d,z) (12)

The above procedure is extended to an arbitrary relation
of the form:
a?¢ aZ¢
— + —=flx, (13)
%l 5y fx,»)

by choosing a ¢p such that (13) is satisfied, and proceeding
with the development of a suitable ¢Xz) as described in the
discussion leading to (12).

SOLUTE TRANSPORT

The solute-transport mechanism assumed is only applicable
to the modeling of steady-state, advective contaminants, of
those which move with the groundwater flow. The solute-
transport process is approximated by calculating point-flow
velocities given by the derivative of the potential function
&(z) where:

¢(z) = Re F(2) (i4)

In {14), ReF(z) is the real part of the CVBEM approxi-
mator defined on £2. The extent or boundary of the sib-
surface contamination is then redefined according to the
point values of the flow velocity and the time increment
selected before re-evaluation from the flow velocity field,
Thus:

u:._;.a‘p/eo (153)
ox
— 3¢
=— /8 15b
3 o (15b)
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where (u, v) are (x, y)-direction specific discharges (or seep-
age velocities); and @, is the saturated water content or
porosity of the aguifer material. (A retardation factor, r,
can be included in the denominator of (15) in order to
account for contaminant-transport velocities being less than
the actual fluid velocity or specific discharge.) The deriva-
tives of (15) may be estimated as a finite difference of state
varjable values in the x and y directions, respectively.

The velocity of a contaminant particle is used to esti-
mate the displacement with respect to time by setting:

dx*
—dr =y (162)
d *
—d’f; =9 (16b)

where (x*, y*) are the co-ordinates of the subject contami-
nant particle. Integration of (16) with respect to time
determines the pointwise displacement of a traced con-
taminant particle,

CVBEM MODELING-ERROR ANALYSIS

The specified boundary conditions are values of either con-
stant ¢ or ¥ on each I';. These values correspond to level
curves of the analytic function w(z)=¢+ i{. After
developing a CVBEM approximation <(z), an approxi-
mate boundary I* can be determined which corresponds to
the level curves of ¢Xz)= ¢ + iy which equal the prescribed
boundary conditions on I'. Use of the Class I system is
preferable due to I' intersecting I at each nodal point. The
resulting contourﬁf‘ is a visual representation of approxima-
tion error, and I’ coincident with I" implies that o{z) =
w(z). Additional collocation points are located in regions
where T deviates substantially from I

A difficulty in using this method for Jocating additional
collocation points is that the contour I' cannot be deter-
mined for points z outside of QUT by using ¢xz) as
defined by (1). Thus, an analytic continuation of <&xz) to
the exterior is achieved by rewriting the integral function

{(a) as:
160 &

2miJ {—2
r

“R@+ S @+ -z n—2)
i=1

an

where o; and f§; are real numbers; and In(z —z) is a
principal-value logarithm with branch-cuts drawn approxi.
mately normal to I' from each branch point z; such as
shown in Fig. 2. The resulting approximation is analytic
everywhere except along each branch-cut. The R ,{z) func-
tion in equation (17} is a first-degree reference polynomial
which results to the integration circuit of 2x radians along
D. If «(z) is not a first-degree polynomial (or a linear equa-
tion), then the R (z) can be omitted. .

Qus strategy for determining the location of T'is to sub-
divide each Ty with several internal points (about 4 to 6)
and determine w(z) at each point. Next, I' is located by a
Newton-Raphson stepping procedure in locating where
@(z) matches the prescribed level curve. Thus, several
evaluations of ¢Xz) are needed to locate a single I' point.
The end product, however, may be considered very useful
since it can be argued that ¢xz) is the exact solution to
the boundary value problem with T transformed to I', and
I'is a visual indication of approximation error.
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% ;

BRANCH=-CUT
FROM E,

Figure 2. The analytic continuation of X2z} to the
exterior of (2 UT. (Note branch cuts along T af nodes z;)

o.

60

Figure 3. Triangle domain {potential problem)

For example, Fig. 3 shows a triangle domain with a
specific local co-ordinate system. The CVBEM can be used
to model the Laplace equation with boundary conditions
for the potential given by:

#z €T)=1(x*+?) (18)

The approximate boundary I' is determined by location
of the locus of points where:

#(z) = 41z1? (19)

Figure 4 shows three approximate boundaries correspond-
ing to 6, 12, and 38 nodal points on I where nodes are
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Figure 4. Approximate boundaries for three nodal points distributions
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Figure 5. Contaminant-transport extent as a function of
time (zero background flow)

located according to maximum departures between I' and
I'. Complete details of the approximate boundary tech-
nique are given in Hromadka.?

APPLICATION

As sample applications of the CVBEM technique to a com-
bination of Laplacian and Poisson flows that may include
the background flow and sources and sinks, the problem
presented in Javandel et @l is studied. Figure 5 shows a
completely penetrating groundwater well (discharge
50 m¥h) located in a homogeneous isotropic aquifer of

thickness 10 m. Contaminated water is being recharged
(recharge of 50 m%h) at another well located 848.5m
distance from the supply well. Effective porosity is 0.25,
and negligible background groundwater flow is assumed.
Retardation is assumed to be 1. CVBEM modeling results
are based on the solution of (12).

Shown in Fig. 5 are the limits of groundwater contamj.
nation corresponding to model times of 0.5, 2, and 4 years.
The predicted locations of the contaminant closely agree
with the results given in Javendal et ai.2 (not shown). Addi-
tionally, the CVBEM model predicts a first arrival of con-

RODAL POINTS
/—*

1000 > -+ + *-
4 yeors
INJECTION
500 WELL
e
0
(DISCH.ARGE
~500 § WELL L
Acxenouuo FLOW 1
r
-1000 * -+ » \ » *>
-1000 -500 [+ 500 1000
DISTANCE [m)

Figure 6. Contaminant-transport as a function of time
(45° background flow}
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Figure 7b. Arrival of contaminant at the discharge well
(case study 2)

tamination of time 4.4 years which agrees well with the
Javendal estimate of arrival time (4.3 years) for injected
water to reach the pumping site.

Figure 6 shows the problem of Fig. 5 restudied with the
condition that a uniform background groundwater flow is
evident at a 45° inclination, and a flow rate of fluid is
50 mfyr. In this study, the arrival time of contaminant is
slowed to 4.7 years.

In both cases, the quantity of the arriving contamination
versus time is estimated by simply integrating between the
stream-function Y(z) values according to the contaminant
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arrival times (see (16)). A comparison of the quasi-analytic
estimate of contamination arrival® to the CVBEM estimates
are given in Fig. 7 for both case studies.

It is noted that the CVBEM model reduces to the quasi-
analytic approach for the simple case studies considered.
With considerations of local anisotropy and nonhomo-
geneity, and CVBEM technique provides means for a
significant extension of the above quasi-analytic approach,
enabling this comprehensive study method to be applied
to a much larger class of problems.

SUMMARY AND CONCLUSIONS

Among many applications, the CYBEM can also be used
to develop a model of steady-state, advective, contaminant
transport in groundwater. Because with the CVBEM
approach the Laplace and Poisson partial differential equa-
tions are solved exactly, all modeting error occurs in match-
ing the prescribed boundary conditions. This modeling
error analysis by means of constructing an approximate
error analysis by means of constructing an approximative
boundary where the CVBEM approximation satisfies the
boundary conditions.

The presented model considers steady-state conditions
for two-dimensional groundwater flows. The modeling
technique is not applicable to three-dimensional problems.
However, the modeling approach can be extended to
include various steady-state boundary conditions, regionat
nonhomogeneity and anisotropy, and point or distributed
sources and sinks.

Because the modeling technique is based upon 2 boun-
dary integral equation approach, domain mesh generators
or control-volume (finite element) discretizations are not
required. Nodal points are required only along the problem
boundary rather than in the interior of the domain. Conse-
quently, the computer-coding requirements are small and
can be accommodated by many currently available home
microcomputers.
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