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The Complex Vatiable Boundary Element Method or CVBEM provides a highly accurate means of
developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical
approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points
on the boundary by means of collocation. The accuracy of the approximation depends upon the
nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined
approximation functions, four techniques for selecting additional collocation points are presented,
The techniques are compared as to the governing theeory, representation of the error of approxima-
tion on the problem boundary, the computational costs, and the ease of use by the numerical analyst.
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INTRODUCTION

The numerical solution of two-dimensional sieady state
heat transfer problems generally is approached by use of a
domain method such as finite differences or finite elements.
These methods approximately solve the governing partial
differential equation (Laplace equation) and the boundary
conditions. Generally, the error of approximation is un-
available to the numerical analyst for use in locating
additional nodal points in order to develop subsequent
improved approximations.

The Complex Variable Boundary Element Method or
CVBEM! develops an approximation function &(z) which
exactly satisfies the two-dimensional Laplace equation.
Consequently, there is no numerical error in the approxi-
mation of the governing partial differential equation.
However, the CVBEM <(z) function generallty does not
satisfy the boundary conditions continuously on the
problem boundary, T (if it did, then &(z) is the problem
solution). Thus the approximation error appears as the
discrepancy in matching the prescribed boundary con-
ditions. Should this error be known to the numerical
analyst, a refined approximator function could be subse-
quently developed by the means of specifying additional
nodal points (or points of collocation) on I where the error
is considered large.

In this paper, four methods for representing this
approximation error are considered and compared as to
computational costs, the error representations, and ease of
interpretation. Through application of the technigues to
steady state heat transfer problems, the considered
methods’ error representation are demonstrated.

CVBEM DEVELOPMENT

The CVBEM hag been shown to be a useful numerical
technique for the approximation of properly posed
boundary value problems involving the Laplace equation.}
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The keystone of the numerical approach is the definition
of the integral function

1 jG(f)dsT )
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where ' is a simple closed contour enclosing a simply
connected domain £2; § is the variable of integration with
£ €Tz is a point in ; and the direction of integration is
in the usual counterclockwise (positive) sense. The function
G($) is a global trial function which is continuous on I,
For example, given m nodal points specified on I" defined
by co-ordinated z;,/=1,2,...,m, let &y be the notation
for the nodal vatues at node f. Then the m nodes resuit in m
boundary element I}, j=1, 2,...,m where I} is the
straight line segment between co-ordmates z; and Ziv1 A
linear global trial function is defined by

G =Y 8;(N;a;+ Ny &jay) V3]
j=1

where 6; =1 if { €T and §; =0 if { ¢ [}. In this case, the
functlons Njand N, are the usual lmear basis functions.
In the above the mdcx situation of j=m implies that
index (j+ 1) is equal to index 1, From the definition of
G ($) we have

'FME

G _ J‘ G(f) a

J‘G(S') a§
[

Uty T

I(N wf+Nj+le+l)d§

3)

The CVBEM proceeds by using (3) to develop m equations
as a function of the m unknowns associated with the un-
determined nodal values of either ¢ or ¥ at each node.
That is, = ¢+ i where ¢ and ¥ are nodal values of
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the potential .and stream functions respectively. Given m
nodes specified on Iy, we necessarily know either @ or ¢
(not both) at each z;, j=1,2,...,m. Then to estimate the
remaining m nodal values, ¢3(z) is collected in the form of a
Fredholm equation by forcing:

Class I:
Bulz)) = Re b(z) s
Vi(z;) = Im @ (z;)

Class 1I;
$u(z)) = Re &(z)) (ab)

Vylzg) = Im @(z))
In the above, the subscript U/ and k refer to unknown and
known boundary condition nodal values, respectively.
Because (z;) = @(dx, du, Vi, Yy), then a &(z) is de-
termined by either (4a) or {(4b) for j=1, 2,...,m. The
difference between these two approximations is that the
class [ system results in a CVBEM approximator which
matches all the known nodal point boundary condition
values whereas the class II system results in an approxima-
tion which equals the CVBEM-estimated unknown nodal
point boundary condition values, From the above, the
class I matrix system solves for a Fredholm equation of the
first kind whereas the class If system solves for a Fredholm
equation of the second kind.

Because G({) is continuous on each [ and also on the
union of the [}, then the integral function of (1) for &(z)
is analytic for all z € §. Thus >(z) has complex derivatives
of all orders for z € §2 and @(z) can be written in terms of

two harmonic conjugate functions by &(z) = ¢ (2) + i (2).

Both the approximation ¢(z) and ¥ (z) functions satisfy
the Laplace equation exactly for any z € Q. '

The construction procedure continues by attempting 10
match the boundary conditions continuously on I'. That is,
we know values of ¢ or ¥ at each nodal point z;, Thus we
also know ecither ¢ or ¢ continuously along each Ij.
However, the CVBEM class 1 approximator generally only
equals the boundary conditions at nodal points whereas
the class 11 system results in a <(z} which may not equal
a boundary condition value at any nodal point. If &(z)
equals the boundary conditions continuously on I', then
& (z)is the exact solution to the boundary value problem.

Nodal equations are determined by taking the limit as
the point z € £ approaches a selected nodal point z; by

1 {G(D)d
c:J(ZI')= lim -— ©) i:
z—zj 2mi : {—z

(5)

The limiting value is also the Cauchy Principal Value, and
by using either the class 1 or II systems, a set of m
equations results which are solvable for the unknown nodal
values by the usual matrix solution technigques such as
Gaussian elimination.

COLLOCATION POINT DETERMINATION

The main purpose of this paper is to compare the effective-
ness in reducing approximation error from the CVBEM by
use of four error analysis techniques for the locating of
additional collocation points on T'. These technigues can
be implemented as a separate computer process internal to
the main CVBEM system program. A description of the
techniques considered are in the following:

Method 1

A plot of relative error in matching boundary conditions
continuously on I is obtained by subtracting the approxi-
mator function values (along ") from the known boundary
condition values. Since only one of conjugate functions
(¢ or Y} is known as a boundary condition at a point, this
refative error plot is a representation of the mixed
boundary condition fit. If the class I system is used, then
further computation effort is needed due to this type of
relative error being zero at nodal points. Thus, interior
values of (z) are computed on each I}. I the class II
systern is used, however, this relative error is determined to
be usually nonzero at nodal points, and is readily deter.
mined. After the determination of the relative error plot
(in matching boundary conditions), additional collocation
points are located near the points of larger error. Should
the error be zero on each I}, then (z) satisfies the Laplace
equation and also the prescribed boundary conditions, and
& (z) s the solution to the problem.

Method 2

Generally, the prescribed boundary conditions are values
of constant ¢ or ¥ on each I;. These values correspond to
level curves of the analytic function w(z) = ¢ + Y. After
determining 2 Gfz), it is convenient to defermine an
approximate boundary I" which corresponds to the Jevel
curves of &(z)= ¢ + iy which are specified as the pre-
scribed boundary conditions. Use of the class 1 system is
preferable due to I intersecting " at each nodal point, The
resulting contour I" is a visual representation of approxima-
tion error, and T coincident with [ implies that &(z) =
w(z). Additional collocation points are located at regions
where I" deviates substantially from I,

A difficulty in using this method of locating collocation
points is that the contour I' cannot be determined for
points z outside of QW T, To proceed, an analytical
continuation of w(z) to the exterior is achieved by re-
writing the integral function (1) in terms of

1 [GE)dE m .
-2;". (- =R (@) +]§l (op + i)z —2z;) In(z —2)

' (©)
where o; and §; are real numbers; and In(z — z;) is a princi-
pal value logarithm with branch-cuts drawn normal to T’
from each branch point z; such as shown in Fig. I. The
resulting approximation is analytic everywhere except on
each branch-cut. The R ,(z) function in equation (6} is a
first order reference polynomial which results due to the
integration circuit of 2% radians along I. If wx(2) is not a
first order polynomial, then R (2} can be omitted in (6).

Implementation on a computer is direct although con-
siderable computation effort is required. One strategy for
using this technique is to subdivide each I with several
internal points (about four to six) and determine &(z)
at each point. Next, ' is located by a Newton-Raphson
stepping procedure in locating where <w(z} matches the
prescribed level curve, Thus, several evaluations of w(z)
are needed to locate a single I’ point. The end product,
however, may be considered very useful since it can be
argued that <&(z) is the exact solution to the boundary
value problem with [* transformed to I', and I' is a visual
indication of approximatijon error.

Method 3

This technique includes features from beth methods 1
and 2, and yet involves a significant reduction in computa-
tion effort over method 2 alone. First, the relative error

Engineering Analysis, 1985, Vol, 2, No. 2 101



Locating CVBEM collocation points for steady state heat transfer problems: T. V, Hromadka Ii

BRANCH-CUT
FROM 2

Figure 1. The analytic continuation of &(z) to the
exterior of 2 UT. Note branch cuts along I" at nodes z;

distribution of method 1 is determined along I" between the
known function (¢ or ) of w(z) and the corresponding
approximation of @(z). The next step is to weight the
relative error determined above (designated as e(z) for
z €1') by the tangential gradient of the function conjugate
to the local boundary condition variable, For example if
¢ is known on [}, then for z €T}, we have e(z)=¢—¢.
This relative error is weighted by 3y/ds which is deter-
mined directly by finite-differences of < (z). From the
Cauchy-Rieman relations,

oy 3¢
A 7
as on 0

and an estimated distance of departure d(T, I, z) (see Fig,
2a) between the approximative boundary ' and the
problem: boundary I at point z € I is given by

a"]
)/ ®)

In (8) the error e4(z) has a subscript notation that the error
considered is for the ¢ function. A similar relationship
holds for a specified e, (z) error function by

3¢
f‘v(z)/a“s‘ '

The final form of error used V(z)is

eé(z)/
2 s @ i i .
eyiz) 5 if ¢ is known at z

In the last step, additional collocation points are defined at
locations where V(2) is a maximum.

An advantage of method 3 over method 1 is that more
weight is given to the relative error which also has a large

d(l,T,z) =~

d(i, I, z)~

|
—|, ifg¢isknownatz
as

Viz) = ©)
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distance of departure between T" and I". Similarly, method
3 provides an improved definition of the error associated
with the approximative boundary of method 2 by including
the description of whether e(z) is large or small and I" has
a large departure from ' simply due to a small normal
gradient of the specified boundary condition variable.
Figure 2 iilustrates a geometric interpretation of V(z) as a
‘point area of error’ in the CVBEM approximation. From
the figure, the positive area at point z, equals one-half of
the quantity defined in the relations given in (9}, Also
shown in the figure is the actual approximation value
¢(n) as a function of normal distance (n) from point
2o €T (in the example, ¢ is the known boundary condition
function).

Method 4

Because G ($) is continuous on T, w(z) is analytic in §2.
Thusforz€ Qandz ¢

- 1 J‘G(Ddi’ B! j‘cb(f)di’
w(z)=— ==
2mi {—:z

t—z 2mi
r

(10)

But for zy€ T, the limit as z > I’ (where z € §2) can be
determined and an error E(z,) is defined by

J‘ GE) &

§—12¢

1 Gz d 1
E(zo):z]in:z;; (0) {_

f"_ZD 21”‘
r

L S e——
— = o
— 2P,
— = Bnos
1 ~
K3 ~~
=

Zo ™~ |_\
DISTANCE FROM 2,

Figure 2b.  Area of error at point zo €T
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or simply
1 [ {GGo)— o]
Eiz)= lim — | ———————~ ~ (11
(20) z—l}:azml f"‘Zo ( )
Collocating £(z;)=0 for j=1, 2,...,m determines a

class T or II system of equations (analogous to the
previously discussed systems) which are used to estimate
values for the unknown nodal variable function. The
objective in this method is to obtain a global trial function
such that in the limit G(zq) = W(zo) for all z4 €T, Thus
additional collocation points are located on [ where
|G (z0) — (20} is a maximum,

A comparison of method 4 to method 1 indicates that
method 4 involves approximately the same computational
effort as method 1, yet method 4 includes an error contri-
bution for both the potential and stream functions. Thus a
total error magnitude is provided by this technique which is
not immediately available by the other three approaches.

Table 1 summarises the main features of the four con-
sidered collocation point location techniques. Included in
the table are estimates of the computational effort (in CPU
time) expressed as a ratio of the considered technique
versus method 1. It is noted that although method 2
(approximative boundary) provides a convenient represen-
tation of the error of approximation, it requires a compu-
tational effort about 15 times at large as any of the other
techniques,

APPLICATIONS

The use of the methods discussed for locating additional
collocation points on I' is demonstrated by application of
the CVBEM for solving two steady state heat transfer
problems. The problems considered each involve a different
geometry and set of boundary conditions of the Dirichlet
class. The analytic solution to the problems are included in
Fig. 3. Each solution satisfies the Laplace equation and is

PN

Figure 3. Application problem geometrics and exact solu-
tions for remperature, ¢fx, y). Top: {a) ¢x, y)=[(x*—
3xy*)/2a + 2a%/27, Below (b} ¢x, yj=(x*+y*)j2—
a‘lb?.(xz/al + yZ/bZ __”/(az +b2)

defined as a function of a local co-ordinate x — y system
with an origin specified as shown in the figures. One the
problem boundaries, I, the potential function or tempera-
ture is also a continuous function of position defined by

Table 1. Features of collocation point location techniques
Method number 1 2 3 4
Error analysis approach Relative error of known  Approximate boundary  Error area Total relative error

Collocation point locating
criteria

Computational effort

Representation of error

CVBEM class type used
for estimate of unknown
nodal values

Evaluation of «3(z) 2t nodes

Evaluation of <(z) at points
within Iy

Includes contributions of
both harmonic functions

Approximate ratio of computa-

tional effort with method 1

boundary condition

Maximum value of error

Single point evaluation
of &z}

Relative error plot of
boundary condition
match

Maximum departure
between I’ and T

lteration of d;(z) for
each point of T

Plot of [ for comparison
with T

No

About four to six
No

1700%

Maximum point area of
error

Four to six evaluations
of iz} for ¥

Plot of relative error area
along T

1

Yes
No

120%

Maximum value of error

Single point evaluation of
Wi

Plot of total relative error

1G{z) — wiz))

II

110%

Engineering Analysis, 1985, Vol 2, No. 2

103



Locating CVBEM collocation points for steady state heat transfer problems: T. V. Hromadka Il

L

RELATIVE ERROR (210%)
<

WYY

Figure 4a.

Boundary relative error plot (method 1)
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Figure 4b, Approximate boundaries for three nodal point

distributions {method 3)
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Figure 4c.  Area error plot along boundary {method 2]
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Figure 5a.
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Figure 5c.  Area error plot along boundary (method 2)
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Figure 5d.  Trial function error plot along boundary (method 4}

$z €D) =1’ +y%) (12)

From (12), it is seen that the boundary conditions are not
level curves; consequently, the determination of an approxi-
mative boundary TI' (for method 2) requires further
definition. In these applications, the problem is approached
by using the statement

I'={z:¢(z)=3(x*+ y?) =127} (13)

The strategy of working with level curves (ie. ¢ = ¢ for
z€I},j=1,2,...,m)follows analogously.

The two applications illustrate the development of
CVBEM approximation functions which exactly satisfy the
governing partial differential equation (Laplace equation)
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in £ and approximately satisfy the boundary conditions
which are continuously specified on I'. The subsequent
figures illustrate the several error evaluations along T for
evenly spaced nodal placements for each problem
boundary.

The various descriptions of error in approximating the
boundary conditions all indicate regions on I' where
discrepancy is large. Additional nodal points would be
specified at these locations of large deviation, and a refined
CVBEM approximation function developed. This process
is repeated until the analyst is satisfied with the error
distribution on I'.

From the figures, methods 1, 3 and 4 provide similar
abstract representations of the error in approximation.
However, method 2 results in a visual representation of
approximation error which is directly interpretable by most
numerical analysts. Often it can be argued that the mathe-
matical description of the precise problem boundary I'
is not achieved due to the construction of the prototype,
and that the approximate boundary I’ may actually
represent a more probable end product. Because @(z) is
the exact solution of the boundary value problem with I
transformed into I, then the selection of a I' has the
advantage of also being associated with the generating
w(z) solution. From the Table, however, method 2 requires
nearly 15 times the computational effort as the other
methods considered.

DISCUSSION

From the applications, the CVBEM approach provides a
very useful tool for the numerical approximation of
boundary value problems of the Laplace equation such as
occurs in steady state (or even quasi steady state problems
such as a slow moving interface which occurs with freezing
or thawing) heat transfer processes. The CVBEM also is
easily tractable to various error evaluation strategies for the
subsequent location of additional collocation points on the
problem boundary. These techniques are especially useful
in a computer-aided-design environment where the plots
of approximation error along I' or the approximate
boundary I' superimposed on T' are made visible to the
analyst on the computer CRT screen immediately upon
determination, The computer program then continues by
either prompting for the user to specify additional nodal
point: co-ordinates on I, or by internally locating an
additional fixed number of nodal points based on the
location of @ maximum deviation.

It is noted that since the CVBEM reduces to two real
variable line integrals, the real variable Boundary Element
Methed or BEM? can also utilise the presented techniques
for locating additional collocation points.
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CONCLUSIONS

Four methods for locating additional collocation points for
use with the CVBEM applied to steady state heat transfer
problems are presented. Three of the methods considered
utilise (1) relative error in matching the boundary con-
ditions, (2) the relative error area in matching the boundary
conditions, or (3) the relative error between the global trial
function (defined on the boundary, I'} and the approxima-
tion function evaluated on I', The above methods involve a
variation in computational requirements on the order of
20%. The second method considers an approximative
boundary ' upon which the CVBEM approximation pro-
vides an exact solution to the boundary value problem with
I" transformed to I'. This method is easily interpretable by
a numerical analyst and is especially suited to a computer-
aided-design environment, However, the computational
effort is about 15 times the effort required for the other
three methods.

The applications presented illustrate the utility of the
CVBEM in developing highly accurate numerical sotutions
to steady state heat transfer problems on regular and irregu-
lar two-dimensional surfaces.

Symbol Description

x,y Cartesian co-ordinates (two-dimensional)

z z=x+iy

i i*=—1

«wi(z)  analytic solution to boundary value problem

&, ¢ potential and stream functions corresponding to
w=g¢+{y

w(z) CVBEM approximator

¢y L=¢+iP

Q problemn domain

r problem boundary

r approximative boundary

¢ contour integral variable

Zg atbitrary point

2 nodal point (collocation point)

I; boundary element

H,s normal and tangential co-ordinates on contour

e(z) relative error function

ea{z) ¢ — relative error

ey,(z) ¥ — relative error
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