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A two-dimensional model of coupled heat and moisture flow in Jrost-hequing soils
is devel_oped based upon well known eguations of heat and moisture Slow in soils.
Numerical solution is by the nodal domain integration method which includes the

integrated finite difference and the Galerkin finite element methods. Solution of the
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phase change process is approximated by on isothermal approach and
phenomenological equations are assumed for processes occurring in freezing or
thawing zones. The model has been verified against experimental one-dimensional
Jfreezing soil column data and experimental twa-dimensional soit thawing tank data
as well as two-dimensional soil seepage data. The model has been applied to several

simple but useful field problems such as roadway embankment freezing and frost

heaving.

Introduction

Numerical modeling of coupled heat and moisture trans-
port in freezing and thawing soils has been the subject of a
number of investigations generally beginning in the mid-
1970's (Harlan, [14] and Guymon and Luthin, [13]).
Modeling efforts reported in the literature primarily deal with
one-dimensional heat and moisture transport. These models
and numerical models of frost heave are reviewed by
Guymon, et al. {t2), Hopke [15], and O’Niell [26] among
others. While one-dimensional models of soil freezing or
thawing are adequate for a large number of applications, two
or three-dimensional models are required for many problems,
e.g., buried pipelines, roadway berms, and embankments on
permafrost.

The purpose of this paper is to present a dynamic two-
dimensional numerical model of coupled heat and moisture
transport which is generally applicable to freezing and
thawing soils. The model includes the ability to estimate frost
heave and thaw consolidation for simple but useful
geometries. Some of the problems associated with such
modeling exercises are reviewed.

Theory

The theory of heat transport in freezing soils and their
thermal properties have been the subject of investigation since
before the turn of the cemtury, e.g., Stefanm {27]. Recent
definitive works on this topic are Lunardini [23] and Farouki
[6]). As a result, the deterministic equations of heat transport
in moist soils are well established; i.e., in two dimensions
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where variables are described in the Nomenclature, The
density parameters are relatively precisely known for
modeling purposes. The latent heat parameter, L, is a func-
tion of temperature and salinity and can be assumed to be
constany for dilute solutions with temperatures less than
--20°C (Anderson, et al. [1]). The latent heat term only
contributes to equation (1) when soil regions are undergoing
freezing or thawing. The remaining parameters, X and C,,,
are functions of the volumetric fractions of each material
constituent and soil structure, among other factors. There is
some variation in computed parameters depending upon the
method of measurement or computation. DeVries [5) method
of estimating these parameters is often used, e.g., for C,,

where C; = volumetric heat capacity of jth constituent and 8,
= volumetric fraction of jth constituent. A similar equation is
used with and without a particle contact function for thermal
conductivity. Equation (1} is nonlinear since the Ky and C,
parameters depend upon the amount of ice and water
coexistent in a freezing and thawing soil. Additionally,
equation (1) is coupled to equations describing the moisture
state of a soil and soil freezing characteristic relationships
such as discussed by Anderson, et al. [1].

Similarly the theory of water movement in unfrozen
isothermal soils is well advanced; e.g., Bear [2]. A deter-
ministic equation for moisture transport in nondeformable
saturated or unsaturated porous media is
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In unsaturated soils K is a function of negative pore water
pressures (soil water tension) and, hence, equation (3) is
nonlinear. Depending on the orientation of the x and py
coordinates, the temporal term in equation (3) may be zero or
a function of the total saturated thickness multiplied by a
storage coefficient. The moisture sink term for a freezing soil
accounts for the conversion of liqujd water to ice; i.e.,

bi %
0. Of

One must consider three general regions in a freezing or
thawing soil to apply equation (3). The unfrozen zone, which
for instance may be between an advancing freezing front and
a water table, will be adequately described by eguation (3)
assuming moisture movement is by connected liquid water
films (in this case S=0). In the freezing zone, a zone of finite
width depending on material type and perhaps other factors,
equation (3) may apply and §=0. A major difficulty in ap-
plying equation (3) in a freezing region is determining the
hydraulic conductivity parameter. Nakano, et al. [24] has
demonstrated that the presence of ice in soil pores
significantly affects the transport of water in soils. The
hydraulic conductivity of partially frozen soi! is much less
than for unfrozen soil. Jame [21] and Taylor ard Luthin [28)]
using data developed by Jame, indicated that unfrozen
hydraulic conductivity had to be reduced in a freezing zone in
order to adequately model the thermal and soil moisture
regime of freezing horizonta! columns. They assumed a
phenomenological relationship of the form

K=K,10 & (5

where K = freezing soil hydraulic conductivity, Ky = un-
frozen soil hydraulic conductivity, 6, = volumetric ice
content, and E = a calibration factor such that £, =0. For
fully frozen soil, it is generally believed that unfrozen water
may move as liquid water films primarily in response to
hydraulic gradients, In this case it may be assumed that § = 0.
Whether this flow may be represented by Darcy’s law is not
established nor are there definitive data available on frozen
soil hydraulic conductivity.

Because unsaturated soils are common to freezing and
thawing problems, some means of relating unfrozen water
content and total hydraulic head or pore pressure is required.
This is accomplished by developing the usual s0il moisture
characteristics which for clays and silts is hysteretic. For
convenience, it is usnally desirable for modeling purposes to
assume that this relationship is single valued, removing the
problem of incorporating memory in models. Further, it is
convenient to express this experimental relationship as some

S=L 4

form of mathematical function. While numerous such
relationships have been proposed, it was found that Gardner’s
{71 relationship fits many soils of general interest, i.e., the so-
called frost-susceptible soils. Water content is related to pore

pressure as follows: 0
g=—2 6
Aluln+1 ©
A and n = regression fit coefficients which depend on soil

type, density, and other factors.

Model Development

Since 1979 the U.S, Army, Cold Regions Research and
Engineering Laboratory (Guymon, ¢t al. [9]) has been
developing a one-dimensional model of frost heave, thaw
consolidation and thaw weakening, applicable to roadways
and airfields. Guymon, et al. (12} and Berg, et al. [4]
presented the concepts of a modeling approach and early
verification and sensitivity results, Subsequently, Guymon, et
al. [10) presented additional verification results, and
Hromadka, et al. [17] presented a detailed evaluation of
model sensitivity to the choice of numerical analog. Guymon,
et al. {11} evaluate parameter sensitivity and develop a
probabilistic model which is cascaded with the deterministic
one-dimensional model. Finally, Hromadka, et al. [16]
present data on freezing of an airfield embankment and
results from the two-dimensional model discussed herein.
Because the foregoing cited references explain modeling
concepts in detail, only a brief discussion of the two-
dimensional model will be presented in the forthcoming.
Maodel assumptions are as follows:

1 Moisture flow occurs in unfrozen zones by liquid water
films driven by hydraulic gradients and may be estimated by
Darcy’s law.

2 Moisture flow in frozen zones is negligible.

3 Sensible heat transport in all zones is governed by the
heat transport equation.

4 Phase change effects may be decoupled from the
governing transport equations and approximated as an
isothermal freezing process.

5 Unfrozen zones are nondeformable, and in freezing
zones or frozen zones, deformation is due to ice segregation
or lens thawing only.

6 Soil-water pore pressures in freezing zones are
governed by an unfrozen water content factor determined
from soil freezing characteristics.

7 Hysteresis is not present.

8 Salt exclusion processes are negligible.

9 Constant parameters (¢.g., porosity) remain constant
with respect to time; i.e., freeze-thaw cycles do not modify
parameters.

Nomenclature
u#, = overburden pressure ex-
K, = saturated hydraulic con- pressed as equivalent
Ay,m = parameters describing un- ductivity of unfrozen soil hydraulic head
saturated hydraulic conduc- Ky = thermal conductivity v, = velocity flux computed from
tivity of unfrozen seoil L = volumetric latent heat of Darcy’s law
A,.n = parameters describing soil fusion of soil water x,y = Cartesian coordinates
moisture characteristics for (assumed to equal bulk ¢ = total hydraulic head
unfrozen soil water)} p: = density of ice
C, = volumetric thermal con- n = npormal coordinate p. = density of water
ductivity t = time 8; = volumetric ice content of soil
C, = volumetric heat capacity of T = temperature #, = unfrozen water content
water T, = freezing point depression of factor for frozen soil
E = calibration parameter water 4, = porosity of soil
K, = hydraulic conductivity for u = pore water pressure ex- #, = volumetric unfrozen water

unfrozen soil
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pressed as hydraulic head

content of soil
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10 Freezing and thawing processes in a two-dimensional
medium occur in such a way that there are no internal shear or
stress forces developed between different zones.

11 Excess pore pressures from consolidation are negligible
and overburden and surcharge effects are primarily
responsible for modifying pore-water presures in freezing
zones provided ice segregation is occurring. Otherwise the soil
matrix supports overburden and surcharge pressures.

The equations for the two-dimensional model are sum-
marized in Table 1. The moisture flow equation is solved
using total head as the state variabie rather than using pore-
water pressure as is customary in much of the fiterature. The
motivation for using total head is that the numerical analog
“stiffness’” matrix will be symmetrical, reducing computer
memory requirements. The convective terms of the heat
transport equation are approximated as a space-time average
from a previous solution timestep so that these terms may be
included in the numerical analog load vector term. Thus the
numerical analog ‘‘stiffness’” matrix will be symmetrical,
reducing computer memory storage requirements.

Latent heat terms are typically handled by the so-called
apparent heat capacity approach (Luikov [22]). While there
are no theoretical problems in using this approach for models
that incorporate heat transfer alone, Hromadka, et al. [18]
show that for coupled problems, the vse of the apparent heat
capacity concept may lead to inconsistent models with un-
desirable restraints on parameters and solution discretization.
For these reasons, an isothermal approach is used to ap-
proximate phase change effects (Hromadka, et al. [18]).

The algorithm is based on a simple control volume ap-
proach. A volume of freezing soil is not allowed to reach a
subfreezing temperature until the latent heat of fusion of all
available water for freezing in a control volume of soil is
exhausted. However, if this procedure is used for a large
region of soil, it is difficult to determine the location of the
freezing or thawing isotherm. Because there is a large dif-
ference in mechanical strength properties between frozen and
unfrozen soil, the locations of the freezing isotherm is im-
portant and the freezing or thawing isotherm must be
relatively precisely defined. This is done by using a pseudo
apparent heal capacity approach. The numerical analog mass
matrix diagonal terms are weighted so that phase volumes are
undergoing soil water phase change.

DeVries [5] relationship given by equation (2} is used to
compute the heat capacity and thermal conductivity of the
soil-water-air-ice mixture. Solution of equation (3) requires
that the relationship between pore-water pressure and water
content be known where the temporal term is replaced by the
term [38,/0u) [36/3r]. The partial, 96,/du, is determined
from equation (6). Additionally, this same relationship is used
to relate hydraulic conductivity to pore-water pressure; i.e.,

—_ KO 7

Ku) = w31 @

where A, and m are parameters for a given soil. Hydraulic

conductivity in freezing =zones is estimated by the
phenomenological relationship given by equation (5).

Pore-water pressures at freezing fronts, which largely

determine the hydraulic gradient toward a freezing front, are

determined by

u=u(f,) &

where #,=a constant unfrozen water content factor.
Although equation (8) is dependent on temperature (An-
derson, et al. [11) and perhaps pressure, a constant value is
used in the current version of the model. If ice segregation is
not occurring, the overburden and surcharge are assumed to
be supported by the soil matrix, If ice segregation is oc-
curring, then negative pore-water pressures given by equation
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(8) are modified by adding overburden and surcharge
pressures u, (expressed as equivalent hydraulic head), to
equation (8); i.e.,

up=u(8,) +u, )]
where u; is the pressure near the ice lens-water interface. The
water film on the ice lens is presumed to support the total
overburden and surcharge weight. While excess pore
pressures, u,, may be added to equation (9), we have found
that these pressures are very small for frost-susceptible silts
and sandy silts and may be conveniently neglected. Equation
(9) simulates the physical processes that are assumed to occur
at ice segregation fronts. Qverburden and surcharge stresses
reduce negative pore-water pressures given by eguation (8),
and thus reduce hydraulic gradients and moisture flow toward
ice segregation fronts.

Auxiliary equations are required for boundary and initial
conditions in order to solve the problem. Required initial
conditions are soil-water temperatures, ice content, and pore-
water pressures. While any type of boundary conditions may
be incorporated (c.g., a soil surface heat budget simulatar),
we have generally used a functional relationship for soil
surface temperatures based upon the U.S. Army, Corps of
Engineers n-factor approach (Berg {3]). For pore pressure
boundary conditions, the model assumes no moisture flux at
frozen boundaries and nses a specified time-varying pore-
water pressure at other boundaries.

Parameters required in the multi-parameter model are
summarized in Table 2. Other required parameters such as the
latent heat of fusion of water, heat capacities of ice and water,
and density of water are taken from standard thermodynamic
tables.

Numerical Analog

The nodal domain integration method is used to solve the
heat and moisture transport equations given in Table 1. This
method has been presented in detail by Hromadka, et al. [19]
and elsewhere and will only be briefly reviewed here,

The solution domain is discretized into finite elements,
similar to the finite element procedure. For this model,
triangular elements are used where the state variable is
represented by linear trial functions. Depending upon how
one defines a subdomain of integration for the partial dif-
ferential operator, various numerical analogs may be
developed; e.g., Galerkin finite element analog. Hromadka,
et al. [19] showed that an infinity of numerical analogs exist
where the uncoupled linearized heat transport or moisture
transport equations, given in Table 1, may be represented by
the elerment matrix equation of the form

Ko+ P (1) ¢;=10} (10)

Equation (10) is for the moisture transport equation and
where K = a symmetric banded conduction matrix identical
to the usual stiffness matrix for linear trial function triangular
elements, P?(y) = a symmetric banded capacitance matrix as
a function of a mass weighting factor #, ¢; = a vector of
unknown state variables at nodal points, and ¢; = a vector of
the time derivative of the unknown state variables. Matrix
P* (9)is given by

(86, /0u)cA° 7 11
= —(4/—F— I g1 (11
= 3(nt+2) 1 b oq)
where ¢ = a particular triangular element and A¢ = the

element area. When 5 = 2, the usual Galerkin finite element
formulation is obtained for a linear trial function ap-
proximation. When n = 22/7 (approximately ), a sub-
domain integration formulation is obtained. When g—o0, an
integrated finite difference formulation is obtained.
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Table 1 Deterministic model equations'®
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Phase

Liquid moisture

Energy state transport change Sensible heat transport

Soil region

Freezing surface

T{( =Ty

Ty

=0

a¢/dn

boundary

3

Kr9olT=C

0

38
at

Va=0

T<T,

u(B, + 60/

u=

Frozen

1, 8;=8,-0,
0 6 <8,—4,

|

8

Freezing

or
thawing

u{f,) <u<0

Kyvle

80,

T> Tf

Unfrozen

at

u(d,) <u<up

Unfrozen surface

()

@ Gee nomenclature for a definition of symbols. Ancillary relationships are described in text.

U

boundary

Table 2 Parameters required for the two-dimensional frost
heave model

Parameter
nA.,

Description

characterize volumetric water content versus pore water
pressure relationship for unfrozen soil

K saturated hydraulic conductivity for unfrozen soil

A g characterize soil DOre water pressure Versus hydraulic
conductivity relationship for unsaturated unfrozen soil

E corrects unfrozen pqsatpratcd hydraulic conductivity for
hydraulic gonductzvrty in partial frozen soil in freezing
zone (a calibration factor)

&, soil porosity

2, unfrozen water content factor in freezing or frozen soil
{minimum soil water content assumed to coexist with ice)

K, thermal conductivity of soil

P density of soil
freezing point depression of soil water

Hromadka and Guymon [16] show that n may be a function
of time and that the best choice of a # depends upon the
nature of the problem studied. For example, where sharp
wetting fronts may occur in a porous media seepage problem,
the integrated finite difference formulation generally results
in less relative error than the Galerkin finite element for-
mulation.

The derivation of equation {10} requires that parameters be
held constant in each subdomain or element; however,
parameters may vary from subdomain to subdomain. Ad-
ditionally, each nonlinear partial differential equation is
linearized where parameters are held constant for a small time
interval. This procedure is in lieu of an iterative scheme 1o
account for nonlinear parameters. This procedure is often
valid for soil problems since the soil water phase change
effects result in a damped system of partial differential
equations.

For the entire solution domain, matrix equation (10) is
assembled in an appropriate manner to form the system
matrix eguation

Koo, +P(n)d;=10] (12)

where X and P(n) are square banded symmetric positive
definite matrices, ¢; and &; are, respectively, unknown nodal
state variables and their temporal derivative, and F; is a
vector of known boundary conditions.

Solution of equation (12) is by a fully implicit: approach
which is reguired to solve problems where a frec water surface
exists within the solution domain (Neuman, [25}); i.e.,
equation (12) becomes

(K + P () Angy ™o = Poj/ Ar=F}%

where Af = ap appropriate timestep interval.

The solution procedure for both uncoupled equations of
state (given in Table 1) is to use equation (13) to solve for the
state variables ¢ and T. At specified intervals Ar*, where
At* = At, all nonlinear parameters are recomputed, using the
necessary ancillary relationships discussed previously, and the
system matrices are ‘“‘updated.”’ Ice contents and secondary
variables are computed at this time. Latent heat effects and
total lumped ice segregation quantities are evaluated at each
Ar timestep. Boundary condition information is updated at
each Af* interval.

The numerical model, FROST2B, is coded in FORTRAN
IV for use on mini-class computers. The mode! includes a
front-end humanized, interactive data preparation program,
PROTOQ‘, and a color graphics output program, ROAD. The
model is coded in a modular form allowing easy
modifications to a general class of problems. This version is
for an arbitrary cross section and does not permit the

(13)
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Flg.1 Comparison of one and two-dimensional rmodel solutions at the

end of 18 hr of freezing an initially unfrozen vertical column of moist
soifl, Solid line Is for 2-D model solution and dashed line is for 1-D model
solution.

calculation of frost heave, A second version (D) is for a
roadway embankment and permits frost heave calculations.
FROST2D includes a mesh generator in order to keep track of
differential frost heave at the roadway and embankment
surface. All versions are capable of dealing with a layered soil
profile.

Model Verification

Because of the nonlinear nature of the ¢oupled problem and
the model selected to represent frost heave, the only available
method of verification is comparing model results to
prototype data which may be a physical laboratory model or
field situation. Even this approach is not entirely satisfactory
because of uncertainty associated with boundary and initial
conditions and parameters that arise in the model. While most
of the parameters imbedded in the model have some presumed
physical meaning and can be evaluated in a laboratory, the E-
parameter {see equation (5)) can only be determined by
calibration of the model. Sufficient calibration efforts may
suggest a way of predetermining £ in the future.

Linearized decoupled problems may be solved analytically
to determine the accuracy of models. Because spatial and
temporal discretiation interact with model errors, these
problems need to be studied at the same time. Most analytical
solutions of freezing soil or bulk water are for one-
dimensional columns. Thus, accuracy of a two-dimensional
model may be studied by solving column problems oriented in
the x direction and then in the y direciton. This procedure was
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Fig. 2 Free water surface positions 1 hr after lowering ditch water
ieval for an unfrozen isothermal sandy soil. Finlte element grid is
shown and equlpotential lines are dashed. The water surface ling is
solid for experimental, dot-dashed for Vauelin, et al. [30] solution, and
dashed for 2-D model solution.

followed through several tests for both unsaturated soil
moisture transport and heat transport, with and without
phase change. For heat transport alone, errors in the position
of isotherms and particularly the freezing isotherm were less
than 8 percent for relatively fine spatial discretization and
fairly large timesteps. Errors could be reduced to less than 3
percent for smaller timesteps. Unsaturated soil moisture
transport in a vertical column was evaluated by comparing to
a quasi-analytical solution as discussed in Guymon and
Luthin [13). Close agreement was obtained depending
primarily on how frequent nonlinear hydraulic conductivity is
updated in the model.

Additionally, the two-dimensional model was compared to
one-dimensional model solutions and one-dimensional
laboratory soil column tests, The one-dimensional model has
been extensively verified against soil column data and field
data (Guymon, et al. {10]; Guymon, et al. [11]; and Guymon,
et al. [9]). Figure I shows an example comparison for a
coupled heat and moisture transport problem involving
Fairbanks silt, In this example, the column top was subjected
to a - 5°C temperature at time zero and the column bottom
was maintained at the initial condition temperature of 1°C. A
water tzble was maintained at the column bottom.

The two-dimensional model was tested against a number of
isothermal unfrozen soil dam problems involving unsteady
seepage with a free water surface. Figure 2 shows an example
comparison of a model solution to experimental data and a
solution of Vauclin; et al. [30] for the phreatic surface for an
unsteady ditch drainage problem. Experimental data and
theoretical solutions compared favorably. Figure 3 shows an
example of a dam seepage problem where a dynamic model
solution is compared to Uginchus® [29] steady-state
theoretical solution.

Two-dimensional verification of the heat transport model
has included comparison with ficld data for a laboratory sand
tank. In the first case model solutions were compared to
sparce thermistor data for the summer and various winter
times of the year at eight locations in a roadway located west
of Fairbanks, Alaska. Boundary conditions were only ap-
proximately known and thermal properties of the different
embankment materials were approximated from textural
classification information. A second comparison was made
with freezing data for the Deadhorse runway, Alaska; ex-
cellent results were obtained, Guymon, et al. {9]. In all cases,
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Fig. 4 Comparison of experimental (sclid lines) and simulated
(dashed lines) soil temperatures for soll tank model

estimated temperatures were within 1 °C of measured tem-
peratures. The position of the freezing isotherm was ac-
curately estimated, errors being only a fraction of a foot in
most cases.

The sand tank model consisted of a 3.92-m wide by 1.28-m
deep tank of sandy silt that is over 4-m long to simulate two-
dimensional thawing arocund a buried small diameter hot pipe.
The embankment is initially frozen from the surface down by
means of cold plates. Sides and bottoms are insulated to
minimize heat loss. The upper boundary condition and pipe
temperature boundary conditions are known. Side and
bottom boundary conditions are assumed to be zero heat flux.
Soil thermal parameters and initial soil ice contents were
assumed. Because of symmetry only half the tank was
analyzed, where at the pipe centerline, zero heat flux in the x
direction was assumed. A comparison of modeled and
measured soil temperatures after one-day of initiating hot
fluid flow in the buried pipe is shown in Fig. 4. As time
progresses, the solution at the bottom of the tank deviated
somewhat from measured temperatures, primarily because of
inaccurate representation of the bottom temperature and heat
flux conditions.
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Fig. 5 Simulated soll ice content after 6-mo of freezing from a buried
chilled pipeline. (ce contents are shown by cireled numbers. The finite
element grid is shown.

Verification of the two-dimensional model for uncoupled
moisture transport alone or uncoupled heat transport aione
has demonstrated that these two important components of the
overall model are accurately modeled. In particular, the
isothermal freezing approach provides a relatively accurate
and e¢conomical prediction of freezing and thawing
phenomena. Rather large spatial discretization may be used.
Unfortunately, we do not have a good data set for a two-
dimensional frost heave prototype situation in order to
further verify the modei. However, one-dimensional data is
available as described by Ingersoll and Berg [20]. One-
dimensional solutions using the two-dimensional model are
identical to results achieved by the one-dimensional model
which can accurately simulate unrestrained and restrained
frost heave.

Evaluation of parameter errors and numerical anpalog
errors have been extensively dealt with previously for the one-
dimensional model (Guymon, et al. [}1) and Hromadka, et al.
[17]}. Similar to the one-dimensional model, the two-
dimensional model is sensitive primarily to hydraulic con-
ductivity parameters. Some success has been obtained in
calibrating the E-parameter using split record tests. This, is,
the E-parameter may be calibrated using a 1-yr sequence of
data, and without modification of parameters, following a
one-vear sequence of frost heave data may be reliably
evaluated. Thermal parameters may be apprgximated without
large error in results. This is primarily due to the fact that
latent heat effects largely dominate the thermal regime of a
freezing or thawing soil. It is emphasized that the model has
been primarily tested against frost susceptible silts and dirty
gravels. Additionally, the method of dealing with surcharge
and overburden appears to only apply for relatively low
overburden pressures (i.e., 4, <60 kPa). .

Example Applications

The first problem considered is a buried chilled pipeline, 1.2
m in diameter. The problem domain i5 4.3 m, by 3.1 m in the
horizontal and vertical dimensions, respectively. The soil is
assumed to be a homogeneous Fairbanks silt with an initial
homogeneous temperature of 0.5°C and pore pressure head
of —70 cm. Initial ice content is assumed to be zero
throughout the soil region. The pipeline is assumed to be
buried 1.2 m below the ground surface. The groundwater
table effects are modeled by assuming a constant pore-
pressure head of —70 cm 0.6 m below the bottom of the pipe.
The solution is assumed to be symmetrical about the vertical
centerline of the pipe. A constant thermal boundary condition
of —2°C and .5°C is assumed at the top and bottom of the
study region, respectively, The pipe surface is assumed to
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Fig. € Simulated frost heave In a roadway embankment for indicated
days after surface freszing started. Coordinates shown are em. The
position of the freezing isotherm is shown as a solid line. The computer
generated finite element grid is also shown. Dashed lines are for a 1.2
kPa surcharge. Solid lines are for zero surcharge.

remain at a constant temperature of — .5°C, Overburden
effects are not considered, and the total simulation is for 6
mo, Estimated ice contents at the end of a 6-mo period are
plotted in Fig. 5. Cross-hatched areas indicate regions in
which ice conternts exceed the assumed soil porosity and ice-
segregation may be occurring. Dotted areas indicate where ice
contents are approaching the assumed porosity.

Results of the two-dimensional model are somewhat
verified by assuming a one-dimensional problem at the
vertical soil region furthest from the pipe. Comparison of
one-dimensional model results to the pore pressures and
temperatures computed by the two-dimensional version of the
model were found to be in close agreement.

Frost heave is not estimated in this example because of the
unknown effects of overburden and pipe interaction with the
freezing soil. Also, the interaction between soil regions where
ice segregation may be taking place and other soil regions is
not known. For complicated geometry such as is considered in
this example, only the heat transpaort and moisture transport
aspects of the model are valid. However, the tendency for ice
segregation to occur can be qualitatively evaluated with the
model.

A second example is a roadway embankment where it is
assumed that seil interaction problems are minor and frost
heave may be estimated. Figure 6 shows the soil solution
domain for half of a roadway and the simulated frost heave at
two different overburden values and for various cays after
initiation of freezing. Parameters for Fairbanks silt were
assumed. A horizontal water table exists in the embankment
as shown. Soil surface temperatures were assumed to be a
constant —20°C and soil bottom temperatures were assumed
to be a constant 1°C. Horizontal transport of moisture or
heat at the solution domain sides was assumed to be zero.

As an approximate check, a one-dimensional solution,
using the one-dimensional model, was compared to two-
dimensional solution results ar the roadway centerline and the
right side of the solution domain. Centerline solutions
compared very closely while right-side solutions using the one-
dimensional model were about 0.5 cm of heave greater than
estimated with the two-dimensional model. However, the
solutions were tending to converge after 30 days. The reason
for this discrepancy may be that relatively large elements were
used in the two-dimensional model. The results appear to be
conceptually correct. The water table position strongly in-
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fluences simulated heave. A rather small surcharge restrains
frost heave somewhat. At the roadway edge, frost heave is
reduced due to more rapid freezing caused by the surface
geometry. At the embankment toe, frost heave is larger than
for other areas for times up to 15 days because surface
geometry results in less heat extraction.

Discussion

A two-dimensional model of coupled heat and moisture
transport in freezing or thawing soil is presented. For simple
but useful geometries, frost heave or thaw consolidation may
be estimated. The model is based upon well known transport
equations to estimate heat and water transport for a soil
freezing or thawing problem. Because the model is based
upon incomplete theory for freezing zones, phenomenologicai
relationships are also employed.

This results in a major limitation of the model since one
phenomenological parameter {E) must be determined from
laboratory freezing experiments or field data on a freezing
soil. Guymon, et al. [9] found that the E parameter may be
reasonably evaluated for field cases provided a number of
freeze-thaw cycles are included in the data.

Other parameters required for the model, such as soil
porosity and density, can be routinely determined in the
laboratory. However, hydraulic parameters such as un-
saturated hydraulic conductivity and the unfrozen water
content factor, 8,, require specially equipped laboratories to
determine them. Although there are such laboratorics, their
need is somewhat of a limitation to the routine employment of
the model by the geotechnical cadre. In an effort to minimize
this problem the U.S. Army-CRREL is attempting to analyze
a large number of soils with the hope that this data may be of
value in estimating sophisticated parameters without con-
ducting costly tesis. Some of this data is summarized in
Guymon, et al. [9].

Conclusions

A multiparameter two-dimensional model of coupled heat
and moisture transpert for frost heaving soils is feasible based
upon the concepts presented herein, However, because of a
lack of detailed knowledge concerning forces between in-
teracting freezing and unfrozen soil masses, this model is
limited to simple geometries. Models that would be applicable
to more complex geometries will require substantially more
research. The model proposed here can accurately’ predict
frost penetration and heave (for simple geometries} provided
laboratory or field data are available for calibration of
sensitive parameters, primarily hydraulic conductivity. In the
examples presented herein, we have chosen to calibrate a
phencmenological parameter that reduces unfrozen hydraulic
conductivity in freezing zones,
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