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A Simple Model of Ice Segregation
Using an Analytic Function to
Model Heat and Soil-Water Flow

For slowly moving freezing fronts in spil, the heat-transport equation may be
approximated by the Laplacian of temperature. Consequently, potentiai theory
may be assumed to apply and the temperature state can be approximated by an
analytic function. The movemeni of freezing fronts may be approximared by a
time-stepped solution of the phase-change problem, thus solving directly for heat

. flow across a freezing or thawing front. Moisture rransport may approximated by

using an exact solution of the moisture-transport equation assuming quasi-steady-
state conditions, appropriate boundary conditions, and an exponential function
relating unsaturated hydraulic conductivity (defined within the thawed zones) to
pore water pressure (tension). This approach is used to develop a single model of
ice segregation (frost-heave) in freezing soils. Applications to published and ex-

perimental one-dimension soll column freezing dara show promising resulls.

Introduction

This paper reports on the development of a simple two-
dimensional model of coupled heat and soil-water flow ip
freezing or thawing soil. The model also estimates ice-
segregation (frost-heave} evolution. Ice segregation in soil
results from water drawn into a freezing zone by hydraulic
gradients created by the freezing of soil-water. Thus, with a
favorable balance between the rate of heat extraction and the
rate of water transport to a freezing zone, segregated ice
lenses may form.

Predicting the rate of ice segregation in soil is an old
problem that has received much recent attention by a number
of investigators who have attempted to model ice segregation
by means of mathematical models. O’Neili (8] reviews some
of these efforts. Generally, most modeling efforts encompass
modeling equations of coupled heat and moisture transport as
well as a wvariety of ancillary equations that estimate
parameters and attempt to model the complex physics and
thermodynamic processes in freezing zones.

In contrast to these approximate models, a simple model of
ice segregation such as discussed by Outcalt [9] or earlier by
Arakawa [l1], offers advantages over the multiparameter
modeis advanced in the literature. First, a simple model is
easily understandable 1o the practicing engineer, whereas a
relatively complex model such as Guymon and others [3] and
Harlan 4] limits its audience to a specialized few. Second, a
complex model makes it more difficult to determine the
source of modeling errors since there is often an unknown
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interaction between model parameters. The more parameters
imbedded in a model causes greater difficulty in estimating
the uncertainty. However, complex models are needed due to
the nature of the frost-heave process, for which a simple
model may fail to achieve the desired accuracy. Of course,
just because a mode} is complex and multiparameter does not
guarantee the model accuracy.

The ptimary objective of this paper is 10 expand on the one-
dimensional model of ice segregation advanced by Qutcalit [9].

.The proposed model will accommodate two-dimensional

problems and will be based on a simple thermodynamic
balance of heat flow along a freezing front of differential
thickness. A secondary objective of this paper is to introduce

‘a nummerical analog based on analytical function complex

variable theory by fitting a polynomial of the complex
variable potential and stream functions to the prescribed
boundary conditions. The solution is determined by the values
along the domain boundary analogous to the usual BIEM
(boundary integral equation methods).

For ice segregation moving boundary problems where
phase-change latent heat effects dominate the heat transport
process, the heat-balance equations may, in some general
cases, be approximated by the Laplace equation coupled with
the boundary conditions modified 1o include the effects of
phase change. Similar assumptions are made for the Stephan
solution, which has been used for years to calculate the
thickness of ice. To do this, the dynamic component of the
classical heat-transport equation is assumed negligible when
freezing or thawing a soil region. Moreover, it is necessary to
assume an isotropic, homogeneous solution domain.
However, by means of a suitable coordinate transformation
for relatively geometrically simple regions, anisotropic or
even heterogeneous domains may be transformed into a
region in which potential theory may apply. For these types of
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problems, complex variable modeling technigues may be
applied, which may reduce computer storage and execution
times when compared (o classical domain methods.
Generally, in freezing problems we are interested primarily in
the location of the freezing front and in the estimation of heat
and soil-water flux values normal to the freezing front. The
proposed model of ice segregation focuses on these two types
of problems directly.

Discussion of Modeling Approach

The proposed simple model of ice segregation is based on
the one-dimensional model developed in Qutcalt {9] and
extends the two-dimensional BIEM geothermal mode! of
Hromadka and Guymon {3] to include soil-water flow. In the
‘ollowing, a general summary of the modeling assumptions
used in the ice segregation model will be presented.

The model is applicable 1o a saturated or unsaturated soil
which is subjected to constant or stepwise constant upper and
lower boundary conditions of temperature and soil-water
pore pressure. The coupling of boundary conditions to the
modeling domain is resiricied by the capability of the model
to approximate a variation in boundary conditions by time-
averaged steady-state solutions of the governing flow
equations. This limitation of the maodel will become apparent
after the following description of the model development.
Major assumptions employed in the model are:

1 Unsaturated soil-water flow theory applies and the ex-
tended Darcy’s law is valid in the unfrozen soil. Moisture
movement is driven by the total hydraulic head energy
gradient.

2 The classical heat equation applies to the entire soil
system.

3 Soil-water phase change latent heat effects dominate the
heat-flow equation and the transient heat and convention
terms can be considered negligible. This assumption may be
acceptable for problems involving a slow freezing/thawing of
fine-grained soils such as silts. Frost-susceptible soils where
ice segregation is most likely to occur favors this assumption
in that the freezing front propagation is stow. (This assump-
tion may fail for high ice segregation ratio case studies.)

4 The volumetric latent heat of fusion, L, is constant in the
teq;pcrature ranges found in seasonally freezing/thawing
soils.

5 Ice segregation occurs when moisture drawn into the
freezing front exceeds the soil porosity less the unfrozen water
content.

6 Hysteresis is not present and all functions are single-
yalued and piecewise continuous to approximate possible
Jump discontinuities,
fecaing Trome marntsin s sorstes o1 pegligile.  The

8 Ocerpauo s stant temperature, such as 0°C.
ncplemeg, nd  surcharge effects are presently

9 The freezing front separates the problem domain into
completely frozen and completely unfrozen regions

10 Soil-water flow in the frozen re .
assump:lilon may be acceptable for
scasonally freezing/thawing soil where freez
gnly a few months and not for long durasgi‘:gaso cﬁg;ﬁdfﬁz
imposed by a gas pipeline operated continuously at sub-
freezing temperatures.

Il The only soil deformation considered is due 1o ice
segregation and this deformation is lumped vertically above
the freezing front.

12 The problem domain is homogeneous and isotropic.
Nonhomogeneous and anisotropic domains can be rescaied
{for simple cases) into another homogeneous, isotropic
domain.

problems involving a
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gions is negligible. This.

13 The heat and soil-water flow equations can be modeleg
as quasi-steady-state processes for small durations of time,
All time-dependent state variable (dynamic) terms cap be
assumed negligible compared to the dominating phase-change
terms.

The heat flow PDE (partial differential equation) can be
modeled as the simple Laplace relation defined by

k,VIT(x,y)=0; (x,y) O,
K VEIT(x,y)=0; (x,5) e, (0

where convected heat effects are assumed negligible; k&, are
frozen and thawed thermal conductivities; Q,,4Q, are frozen
and thawed subregions of the global domain ©@; and T is
temperature. It can be noted that the freezing-front contour,
I'*, separates {, and ©, and that any homogeneous effects due
to k. and k, are isolated by the various subproblems defined
in equation (1). Domain numerical models generally require
global matrix regeneration due to nonlinear conduction
parameters in a finite element or control volume; this step is
eliminated by the proposed modeling approach. The freezing
contour, I'*, is defined by

M={{xy) : T(xy}=0°C) )

which geometrically represents the 0°C isotherm.
Propagation of I'* in @ is determined by a basic heat-balance
relation

ds
- 3
L ; l“'q,, 3)

where ds/dt is a movement of coordinates on I'* due to the net
heat evolution from the summed heat fluxes, g,, normal to T™*
with the sign convention defined according to ds/dt.

Soil-water flow is considered as vertical only (i.c., a one-
dimensional model). Horizontal flow is assumed to be
negligible. However, a large class of real world problems,
such as roadway freezing problems, are capable of being
modeled by this simple modeling approach. Soil-water flow is
modeled in a two-step analog. First, the soil system is
discretized into vertical finite element sirips wherein a
background steady-state water content (or pore water
pressure) profile is determined for each strip as a function of
the strip’s current boundary conditions (on the top and
bottom). The soil-water flow-conduction parameter, D(8), is
assumed to be a simple exponential function such that a
steady-state moisture flux is readily computed (neglecting
gravity effects-in the soil-water flow PDE) along the strip
boundary

D(#) =ae® 4)

The second process is a soil column dewatering model for
each vertical finite element strip. In this second analog, soil-
water flux is approximated along the finite element strip until
the background steady-state water-content profile is reached.
Figure 1 illustrates these two models used in the total soil-
water flow analog,

The foregoing model assumptions, although restrictive 1o a
total ice segregation model, may be generally attractive for
use on problems involving a seasonally freezing/thawing fine-
grained soil which is frost suceptible. Special boundary

‘considerations of geometry and soil-water flow can be easily

addressed on a problem-by-problem basis. Some of the
model’s advantages are as follows:

1 The model is based on a simple approach for estimating

Ice segregation, which accounts for heat and soil-water
transport,

d 2 The 'frcezing front and frost-heave development are
efined directly without a domain mesh regeneration.
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Fig. 1 Example smbankment showing boundary nodal placement for
heat-transfer equation and finlite strips lor moisture-transfer aquation

3 Nonlinearity of conduction parameters due to phase
change is estimated.

4 For homogenecus problems, fewer nodal points are
required in this model than in domain models.

5 Computer coding requirements are significantly reduced
over numerical models using domain methods.

6 The model requires fewer parameters than domain-
method models which incorporate dynamic terms.

7 The application problem provides an indication as to the
success (or failure) of a model developed from these sim-
plifying assumptions.

Numerical Model Formulation

Soil-water flow in unfrozen soil is modeled by means of
several quasi-one-dimensional submodels of soil-water flow
defined in a vertical strip discretization of the soil matrix
{ocated below the freezing front, I'* (Fig. 1). In the two-
dimensional model, gravitational effects are neglected in the
governing PDE and a simple soil-water diffusivity model is
used in each vertical strip

a
dy
where the soil-water diffusivity, D, is assumed a function of
volumetric water content as given in equation (4). In each

vertical strip, an upper and lower boundary condition is
specified according to

d=8,, y=0(water table) (6a)
6=8,,y=H(T") 6b)

where condition equation (64) reflects a saturated soil (6,
cquals the soil porosity) at the water table, and in equation
{6b) 8, is an unfrozen water content characteristic to the soil
(Guymon and others, [3]). Outcalt [9] assumes @ is linear
between I'* and the water table (which is separated by length
H). In the two-dimensional modei, equation (5) is integrated
to directly calculate a steady-state soil-water flux, v, from the
water table to I'* giving (for 4 and b constants)

D(#) 9 =0 5
dy

y= % (e - ) N

In the limit as the exponent term b approaches zero, equation
(7) approaches the simple linear gradient model used by
Qutcalt [91 a
lim v=— (8, —8,) 8)
t—o H
Equation (8) is used to dewater the soil column in each ver-
tical strip until the specified initial condition soil-water
content profile equals the minimum steady-state water
content profile determined from equations (5) and (6). After
the necessary dewatering of the vertical strip, equation (7) is

Journal of Energy Resources Technology

then used as the minimum value of soil-water flux feeding the
slowly moving freezing front, I'*. In the Outcalt model, an
“‘apparent’’ hydraulic conductivity is required for use of
equation (8) in the unfrozen zone; this calculation is not
necessary for the model of equation (7).

Analogous to the soil-water flow model, the freezing front
propagation is assumed to be slow enough to justify the
elimination of the dynamic heat capacitance term from the
classical heat equation. This allows the calculation of heat
flux, g,, along the freezing front, I'*, to be accomplished by
using a steady-state temperature profile, equation (1), within
the problem domain, Q.

Figure 1 shows an example solution domain. A constant
temperature is specified for T, and 7T, (where T is the
potential function) with the sides of the roadway embankment
problem being specified with values of @ = @, and O,
{where Q is a stream function). Neumann boundary con-
ditions can be used on the left and right sides in determining
@, and Qp, or an equivalent T, and T;. Any of the usual
boundary integral approaches can be used for this problem: a
complex polynomial approximation is used in this model due
to the significant reduction in computational effort when
compared to other BIEM requirements.

Assuming the freezing front location to be defined at some
time #,, the dynamic heat evolution problem is approximated
by solving the Laplace relations (Fig. 1) to estimate the heat-
flux values along the freezing front during a timestep, At. For
example, in the problem studied, timesteps of one day are
used with good results. From the estimated heat-flux values,
the change in the freezing front is calculated from equation
(3). That is, a method to calculate the change in the freezing
front coordinates is to calculate the change in the nodal point
coordinates in the direction of net normal hear flux. For
nodal points located at the midpoint of boundary elements,
the determination of new coordinates at the freezing front
may be estimated by a simple balance between the volume of
soil frozen and the time-integrated heat evolved. Due to the
model’s basic assumption of phase-change effects dominating
the entire heat-transportation process, the freezing front
evolution is slow and the simple freezing front evolution
model was found to be adequate for the problems tested. The
freezing front contour, I'* (Fig. 1), separates an otherwise
simply connected domain @ into a frozen and thawed sub-
domain, &, and £,, respectively. Among any contour C the
steady-state thermal condition assumed in @ (for small
durations of time) implies that

SC 0, ds = SC 0,ds=0 ©)

where ,, Q, are normal and tangential components of the
heat flux along the contour C; and ds is a differential arc-
length. Equation (9) establishes that the temperature function,
or state variable T, is harmonic and satisfies the Laplace
equation

Vir=0; Telly, Q, (10

The harmonic conjugate stream function ( exists in O, and i,
and is related to T by the Cauchy-Reimann equations of
complex variabie theory (Churchill [2])

oT _9Q (11a)
dx dy

g= :?.9 (115)
ay ax

The complex temperature £(z) is defined in each of 2, and
a2, by
(I2a)

(126)

Er(z2) =T (xp) +iQ,(x,))ix,y ) elly
END) =T, (x.y) +iQ, (x.y);(x, ¥} el,
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Fig.2 Complex variabie polar coordinates

By definition, both £,(2) and £,(z) are analytic in their
respective subdomains and can be expanded by appropriate
Taylor-series expansions. As an approximation, a Taylor
series will be developed, centered at the complex plane origin,
which satisfies the specified boundary conditions for both
£,(z) and &,{z), respectively. Letting w{z) denote either
£,(z) or £,{z), w(z) is approximated in its appropriate
subdomain by

w{Z) = (o, +iB,) + (o +if)a+. .. + (e, +i8,)2" {13)

Using polar coordinates (Fig. 2), the Euler formula describes
point z by

z=x+iy=R(cosf+isind) = Re® {14)
and by de Moivre’s theorem
¥ =Rke™ k=0,1,2, ... (15)

Combining equations (13) and {15), expansions for both T(z)
and Q(z) of the analytic function w(z) is given for some
point in {; or £,

T=ay + a, Reosf — 3, Rsind (164)
+ o R2c0s26 - 8, R?sin 24
+ ...
+w,R"cosnd - 3,R"sinnf

Q=0+ 8, Rcost+ o, Rsiné {16h)
+ 3, R?cos26+ o R*sin 26
+ ...

+ B,R"cosnb+ a, R sinnf

where in equation (16), a {k - 1) order complex polynomial
can be determined given 2 values of T or Q for each ap-
propriate subregion.

In the ice segregation model, values of either T or O are
known on the contours I'*, T',, and I';. Consequently, a nodal
point discretization of the boundary of I'y and I'* with

specified values of T or Q at each node can be used to develop.

the (o,,8,) values of the £,(z) polynomial; and similarly, the

same holds for the ¢, (2} polynomial. Specifically, the same °

nqdal point discretization of I'* is used for both the deter-
mination of £,(z) and £,(z), and values of T and heat flux,
4., are determined on I'* by the Cauchy-Riemann relations

T=0°C, (x,y)el” (17a)
9T _ 8Q .
5; - a—x 5 (xiy)él (17b)

where equation (175) holds true due 1o I'* being an isother-
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Fig.3 Six node BIEM model of one-dimensional soll column

mal, and where the sign of the gradient depends on the
direction of the contour tangential with respect to @, or &,
with n being the outward normal direction. '

In subdomain @, a global matrix is developed from
equation (16) based on specified values of either T or Q along
FrandI™

[T, 7 [} ORjcos8, —R;sind, a, |

Q| ! 0 1R,sind, R cosé R

T, 1 OR,cos8; - R,sinf, .oy

Q- = |0 IR;sind, R,cos6, . ... f

Ty I OR,coshy  — Rysindy, aay

(O | |0 1Rysindy,  Ryrcosby B J 118)

where from 2k nodal points, a (¥ — 1) order pelynomial £,(z)
will be developed for {1;. An analogous development applies
for the complex polynomial £, (z}.

The full system is written in matrix form

KT, Q) =0 (19)

where K is a fully populated matrix of known coefficients
from equation (18) and (T, Q) is the array of (7,,0,) values of
the complex temperature £;. Heat-flux values can be
estimated along I'* directly from equation (174}.

For an anisotropic homogeneous problem, the
methodology in equation (19) can be utilized by rescaling the
global problem to accommodate the ratio of horizontal-to-
vertical thermal conductivity values (Myers [71}, and solving
the modified problem in the new (£,7) space.

For homogeneous problems, complexities arise in an effort
to simultaneously solve for the unknowns of £;, shared on the
boundaries of homogeneous regions. Several nodal points are
required interior of € along the boundaries of the defined
homogeneous regions, resulting in a significant inCrease in
computational effort due to the fully populated matrix
requirements of a numerical formulation. In this model, the
method used for noda} point piacement along the boundary
contours is to evenly locate the nodal points and add ad-
ditional nodes uniformiy to the contours until the complex
polynomial coefficients (&;,8;) begin to show negligible
change. Comparison of modeled results to analytic solutions
of several harmonic functions indicated that good estimates
of flux values and unknown 7 or Q values are produced at the
given boundary nodali poirzts.

To show that [wi(z): w(z) = £,(2), £ (z)] satisfies the

Transactions of the ASME



governing Laplace PDE follows from elementary complex
variable theory of analytic functions (e.g., Churchill [2]).
Consideration of singularities occurring within the radius of
convergence of w(z) can be addressed by expanding the w(z)
polynomial about another point interior of @ such that the
boundary of @ = T UT, lies entirely within the assumed
radius of convergence of the true solution of the governing
PDE.

Model Verification

The two-dimensional model was tested against a one-
dimensional freezing column experiment given in Jame [6].
The soil used was a fine-grained Silica Flour, and detailed
heat and soil-water flow parameter data are given in that
study.

The model was applied to the one-dimensional test problem

4

M CALCUL ATION)

FUNIYHIINTL

=11

" M i

t» 6.0 HA. (USED AS INITIAL CONDITION

by using a six nodal point model shown in Fig. 3. A single
finite strip is used to approximate soil-water flow in the
unfrozen subregion. Separate Laplace approximations are
used in each of the frozen and unfrozen subregions. The
initial moisture content of the soil was 15 percent (dry weight)
with boundary conditions as plotted in Figs. 4 and 5.

Difficulty was encountered in the initial portions of the
simulation due to the relative rapid movement of the freezing
front. To avoid this difficulty, the inital condition of the test
was taken to be the experimental results for time at 6 hr.
Although using very small timesteps (0.01 hr) reduced the
approximation error, the computer results continued to
overestimate the freezing front penetration by about 20
percent during the initial 6 hr of simulation.

Figures 4 and 5 compare the experimental results of Jame
{6] for the freezing column and the model results using the six
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Table1 Modeling results and Jaboratory frost-heave data

Domam Ice segregation Eaboratory
Time model '@ tmodel data
(days) {cm) (cm) (em)
5 1.5 1.3 1.6
10 2.9 2.6 2.8
15 39 3.9 3.9
20 4.6 4.8 4.4
25 5.0 5.4 5.0
30 5.2 5.8 5.6
35 5.4 6.0 5.8
40 5.4 6.1 5.8
45 5.5 6.2 58
110 5.6 6.4 58

9 Guymon and athers {3]

nodal point scheme. In this test, no frost heave was predicted
which agreed with the experimental results.

In order to obtain the given results, the soil-water con-
duction parameter had to be reduced to about 0.07 of its value
as determined by the thawed unsaturated conduction
parameter of equation (4). This parameter modification
compares to the reduction values of 0.05 to 0.001 used by
Jame [6] in his finite difference model based on the theory
given in Harlan [4}. Other model hydraulic parameter
modification formulas are given in Taylor and Luthin [10]
and Guymon and others 13} which exponentially reduce the
soil-water flow conduction parameter as a function of ice
content.

From Fig. 5, the total moisture content begins to deviate
from the experimental results as time continued. This
discrepancy was significantly reduced by varying the required
latent heat budget specified at the freezing front domain. The
results of Fig. 5 are based on a constant coefficient of latent
heat of 80 cal/cm?. 1t can be noted that this test case essen-
tially involved only a dewatering of a soil column and,
consequently, is testing only the simple dewatering algorithm
of the solid-water flow modei.

To examine a freezing column preblem where a water table
is of concern, the domain model of Guymon and others [3]
was tested against the model of Fig. 3. Using parameter in-
formation of a Fairbanks silt and identical boundary con-
dition information, both models predicted values of freezing
front penetration into the soil and frost-heave development.
Both modeling results for frost-heave are given in Table .
From Table i, comparable results are produced by both
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models, although the computational effort is significantly
reduced by the proposed model.

Conclusions

A simple numerical model 10 predict ice segregation by
means of a coupled heat and soil-water fiow analysis is
developed. The model can be prepared for use with a
significant reduction in coding over current domain type
models. The model produces reasonable predictions of frost-
heave development and the location of freezing fronts. The
model predicts values of heat and soil-water flux directly at
the freezing front without the regeneration of a global two-
dimensional finite element on fipite difference mesh.

The model is seen to be a strong function of the impedance
factor used to reduce soil-water flow at the freezing front.
Although models use such impedance factors (o approximate
soil-water flow effects in freezing soils, a definite procedure to
estimate such a factor is not given in the literature, However,
this factor may be considered a model calibration parameter
which is determined by attempts to match one-dimensional
column data. After calibration, the model can be used in
approximating two-dimensional problems, where the two-
dimensional domain is composed of the material studied by
the one-dimensional column tests.
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