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ABSTRACT: A two-dimensional model of a dam-break flood wave is
developed by simplifying the St. Venant equations to climinate local
acceleration and inertial terms and combining the simplified equations
with continuity to form a diffusion type partial differential equation.
This model is cascaded with a two point probability estimate scheme
to account for uncertainty in the dam break flood hydrograph and
channel roughness. The development and application of the probabi-
listic model is the main contribution of this paper. The approach is
applied to a hypothetical dam break of Long Valley Dam on the
Owens River above Bishop, California.

(KEY TERMS: dam break; two-dimensional flow model; probabilistic
model.)

INTRODUCTION

The solution of the dam-break flood wave problem has
received increasing importance in the U.S. and elsewhere
(Chen and Armbruster, 1980; Katopodes and Schamber,
1983; Katopodes and Stretkoff, 1978; Ponce and Tsivoglou,
1981; Water Resources Council, 1977). There is an increasing
number of well-documented dam-break flood wave phenomena
to compare with theoretical solutions (Land, 1980; Ponce
and Tsivoglou, 1981).

Most but not all theoretical solutions use the method of
characteristics to solve the one-dimensional continuity and
St. Venant equations. Katopodes and Schamber (1983) re-
view several one-dimensional models. Other solution tech-
niques to shallow wave problems are reviewed by Ponce and
Simons (1977). One-dimensional solutions, however, are
only generally applicable to problems where the dam-break
flood wave is confined to a relatively narrow valley.

Xanthopoulos and Koutitas (1976) and Katopodes and
Stretkoff (1978) advance two-dimensional solutions to the
dam-break flood wave problem. Katopodes and Strelkoff
{1978) extend the one-dimensional characteristic equations to
the two-dimensional case and develop several interesting
solutions using a moving grid algorithm. Xanthopoulos and
Koutitas (1976) develop a somewhat navel solution by
asswming the inertial terms to be negligible. Recently

Hromadka, ef gl (1985), used a two-dimensional diffusion
type partial differential equation (p.d.e.} in the dam-break
flood wave problem and solved the equation using a finite
element method, again ignoring inertial terms. This solution
compares well with a well documented one-dimensional code
which is based upon the method of characteristics.

A simple two-dimensional numerical procedure based upon
a diffusion type of p.de. is applied to a hypothetical dam
break of the dam that impounds Lake Crowley above Bishop,
California. In this study, modeling uncertainty is considered
and is grouped into three categories as follows:

1. Uncertainty associated with the choice of model in-
cluding the numerical analog and the spatial and temporal
discretization,

2. Uncertainty associated with initial conditions and pri-
marily boundary conditions; i.., the input hydrograph result-
ing from the dam break phenomena. For example, see Ponce
and Tsivoglou (1981) concerning the problem of assuming an
input hydrograph.,

3. Uncertainty associated with specifying model param-
eters, primarily Manning’s roughness coefficient.

The main contribution of this work is to systematically
consider the combined uncertainty of the input hydrograph
and roughness coefficients by cascading the determinmistic
diffusion type p.d.e. model with a probabilistic mode] based
upon a point probability estimation technique developed by
Guymon, et al, (1981). As the reader will subsequently see,
this technique involves considerably less computational effort
than required by the Monte Carlo technique, which requires
hundreds if not thousands of simulations. Moreover, the
Monte Carlo technique requires an & priori assumption con-
cerning the statistical distribution of uncertzin boundary con-
tions and parameters; the point probability estimate technique
does not.

A two-dimensional solution is tequired for the Bishop,
California, problem because of the nature of the terrain. The
hypothetical problem is as follows. Recent seismic activity in
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the vicinity of the Mammouth Caldera have given some con-
cern for the safety of communities downstream from Lake
Crowley, which is impounded by Long Valley Dam about 15
niles east of the caldera. Long Valley Dam dams Owens
River about 24 river miles above Bishop. This dam is a zoned
compacted earth fill structure about 100 feet in height above
the streambed. The river downstream from the dam is con-
fined in the relatively narrow Owens River Gorge for about
16 river miles, after which the terrain opens onto relatively
flat alluvial slopes that form the upper part of Owens Valley,
At Bishop, the valley widens to about 12 miles where Owens
River turns and flows generally south through Cwens Valley,
which is flanked by the Sierra Nevada on the west and the
White Mountains on the east. The study area location is
shown in Figure 1.

DETERMINISTIC DIFFUSION MODEL

An approximation of two-dimensional wave motion is
described by continuity

aq dq
Xy Y22 1)
ox dy ot

and the so-called Saint Venant equations in two dimensions
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where t = time, x and y (and the subscripts) = orthogonal
directions in the horizontal plane, Q = discharge, q = discharge
per unit width normal to flow directions (specified by sub-
seript), A = cross-sectional area relative to subscripted direc-
tion, z = depth of flow, h = elevation of water surface above
some arbitrary datum (ie., h is the hydraulic grade surface),
g = gravitational constant, and Sg = the friction slope where

S = — 3)
C“R

where R = hydraulic radius, and C is given by Manning’s rela-
tionship for C; i.e.,

6
C = Cm RU 4)

where Cy, = 1.486 for British units and n = Manning’s rough-
ness coefficient. Equations (2) and (3) assume pressures obey
the hydrostatic law and velocities are reasonably uniform in
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Figure 1, Study Area Near Bishop, California.
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the cross-section. Both assumptions are valid for reasonably
;miform and flat inverts where flows are reasonably turbu.
ent.

Typically, Equations (1) through (4) are solved by the
method of characteristics (Cunge, er al, 1983; Katopodes
and Schamber, 1983) which can accommodate flows when
the inertial terms are significant. An alternative method based
upon treating the equations as a parabolic partially differen-
tial system, proposed by Xanthopoulous and Koutitas (1976)
simplifies the problem computationally. Such a diffusion
model may reasonably hold for Froude numbers less than 2,
which results in positive waves being more dispersive (Hen-
derson, 1971). Of course, negative waves already behave in
a dispersive manner., When channels are reasonably steep
and there are no backwater effects, inertial terms may be
neglected in many instances (Cunge, et al, 1983).

To arrive at a single goveming parabolic partial differen-
tial equation the momentum equations, Equation (2) can be
simplified by letting

2
M, =1 [& + 9Qy/A + anQ)’JAX]
gA. L ot ox o

2
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Yws, Equation {2) becomes
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where 8¢ can be calculated from Equations (3) and (4), ie.,
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where K is regarded as a channel flow conduction parameter.
Equations {(6) and (7} may be combined to form

- oh
Qx h "Kx éz_KxMx
= K 8h _
o = K, kM, ®
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Now combining Equation (8) with continuity, Equation (1),
a single p.d.e. is obtained as follows:

i) 8h ) oh oh
. K =1+ = _ = —
ax[ Xax] dy [Ky ay]+s Bat )

where § = KyMy and B = grid width. Note that Ky and K
A y
are also functions of My and My,

Comparisons of approximate numerical solutions of Equa-
tion {9) in one-dimensional form to other standard dam break
solutions, shows that ‘in the type of problem considered
herein, the My and My functions may be set to zero (Hro-
madka, et gl, 1985). Thus Equation (9) may be simplified
to

i % + _a_ _al = Ba_h.

ox [K" ax] ay ! Ky By] ot (10)
where dh/t = dy/dt and from Equations (6) and (7) (letting
My =My = 0)

2/3
= Crnfx Ry

Ky = ———— (11)

Equation (10) is a nonlinear p.d.e. that may be solved by
using numerical techniques such as finite differences or finite
elements with an appropriate iteration scheme to handle the
nonlinear K, and Ky parameters. A rather simple approach
leading to a minimum of computer code is to use integrated
finite differences which yields the difference equation

U~ Uerax * Yy = Quaay = Axy ﬁ_? a2
where the solution dormin is discretized into square prids
such that Ax = Ay and Axy = grid area (a constant for the
solution domain). The computational procedure consists of
calculating the discharge crossing each face of a grid from
Equation (8) where M, =M, = 0. The coefficients, Ky and
Ky, are computed from knowledge of h at time t, and similar-
ly the gradient in Equation (8) may be computed from esti-
mated h at time t. The change in water surface elevation,
Ah, is computed from Equation (12) given a specified At which
must be very small for this simple procedure to be stable;ie.,
At is on the order of 0.001 minutes. Initial conditions for h
are assumed zero, Boundary conditions consist of zero flow
at the edpes of the domain and the dam break discharge at
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the points where dam break discharge enters the solution
domain.

PROBABILISTIC MODEL

Guymon, et al (1981), develop a general point probability
estimation technique as an efficient method of accounting
for parameter and boundary condition uncertainty associated
with a complex porous media flow system. The same tech-
nique may advantageously be applied to the dam-break flood
wave problem. In fact, the method can be applied to any un-
certainty problem as an alternate to the commonly used Monte
Carlo method. The derivation of the point probability esti-
mate technique will only be briefly reviewed here.

In the previous section an approximate deterministic model
was developed to determine flood wave height. For simplicity
this model is represented by

h = h(pl,pz,..-) (13)

where h is a function of parameters and auxiliary conditions
Pi- Suppose the mean value and the coefficient of variation
of the pj can be measured or inferred for M discrete values
of the p;. The statistical properties of the p; are estimated
in the usval way, where the first two moments, the expec-
tancy and the variance, are respectively

.- _1 M
E(p) = p; = M % (pi)j
v, =BG -[E@) 2= X im)-Bi° 4
pi i 1 M 0 17 1
The coefficient of variation is given by
eV = s, /B, as)

Where Sp; is the standard deviation which is equal to the posi-
tive square root of the variance, VPi'

We seek the mean of h and its standard deviation; i.e., we
seek h and s as an example of the use of the probabilistic
technique. Alternatively, we could deal with velocities or
discharge.

Guymon, ef al {1981), show that the N-th moment of h
may be computed from the general relationship

BN =Lty N+ gy N4 N
2
(16)
where there are r parameters and auxiliary conditions to be

nsidered and the notation hy, | indicates all sign permuta-
tions of
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h=h('ﬁlispl,ﬁztspz,...,ﬁrispl) (17)
Equation (16) can be derived by expanding h = h(p;) in Tay-
lor’s series (Guymon, et al., 1981). The mean and variance
of h can be found from the first and second moments com-

puted from Equation (16) as follows:

h = E(h (18)

Vi, = Bl — [EW)? (19)
In this particular application it is assumed that the p; are not
correlated. Guymon, ef al (1981), show that Equation (16)
may be extended to incorporate correlation of the p; using
the convariance statistic.

The point probability estimate technique is a powerful
analysis tool. Prior knowledge of the probability distribution
of the p; are not required; only the mean and coefficient of
variation are required of the p;. Only w! simulations using the
deterministic model are required as contrasted to the hundreds
or thousands of simulations required by the Monte Carlo
method. Moreover, the Monte Carlo method requires some
knowledge of the probability distribution of the p;.

The point probability estimate technique may be extended
to compute confidence limits for the h. Suppose we know
nothing of the probability distribution of h, then Chebeshev’s
inequality may be used; i.e.,

P[Hukshsshgmksh];l—lz (20)
k

For example, if three standard deviations are used, the prob-
ability that the computed h is bounded by * 38y is 89 per-
cent. This confidence would increase if we assumed h is sym-
metrically distributed since Gauss’ unequality applies

P[E—ksh£h£H+kSh]>1—--—%- QD

9k

Using the example of + 3S},, there would be a 95 percent
confidence if Gauss® inequality applied. Assuming complete
knowledge of the distribution of h may narrow the confidence
limits substantially; e.g., one might assume a beta distribution
which has the advantage of an infinite variety of shapes and
includes the normal distribution of a subset.

APPLICATION

The deterministic-probabilistic model was applied to a
hypothetical break of Long Valley Dam by assuming that the
dam-break flood wave would move down Qwens River Gorge
and discharge into the alluvial plain northwest of Bishop,
California. To solve the diffusion type model, Equation (12),
the assumed flood plain was divided into a uniform grid
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system of connected squares one-half mile on a side. Figure 2
shows the grid layout. Each grid is represented by a node in
its center where land surface elevation and roughness coeffi-
dents are specified. Computed water surface elevations are
for each mode. The model was prepared so that mean cross-
sectional velocities and Froude numbers are estimated for
each node.

For convenience, Manning’s n-values were assumed to be
uniform over the solution domain area. There is no difficulty

in specifying a variable n-value and assuming sectional varia-
tion of this value for purposes of the probability model. For
this problem, it was assumed that the mean n-value was 0.040
and that the coefficient of variation was 50 percent, The mag-
nitude of the assumed n-value significantly effects the speed
of the flood wave and to some extent influences the width of
the flood plain simulated.

The input dam break discharge hydrograph was assumed to
be triangular in shape, as shown in Figure 3. As pointed out
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Figure 2. Grid Layout for Finite-Difference Solution
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Figure 3. Assumed Dam Break Hydrograph at Node 35.
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previously one of the most uncertain aspects of flood routing
of dam break floods is the shape and peak discharge of the
hydrograph. For the problem considered here it is assumed
that the hydrograph depicted in Figure 3 is the mean condi-
tion and that the peak discharge can vary by a coefficient of
variation of 30 percent. It was also assumed that the time
to reach a peak (the rising limb time) may vary by a coeffi-
cient of variation of 20 percent. Principal parameters and
their assumed coefficient of variation are summarized in
Table 1.

TABLE 1. Assumed Parameters and Parameter
Coefficient of Variation,

Assumed Coefficient

Assumed of Variation
Parameter Mean Value in Percent
Manning’sn 0.040 50
Peak Discharge 419,688 cfs 30
Rising Limb Time 60.0 min 20

The deterministic model discussed previously was used in
the point probability estimate model assuming three uncor-
related parameters are of significance: roughness, dam break
flood peak, and time to reach peak discharge. Only eight
simulations were required to determine solution statistical
means and other moments, As an example, the mean and
variance of the maximum compuied water depth were solved

for. Other variables, such as velocity, could also be included
in this scheme as well as other moments, such as skew. Results
are shown in Figures 4 through 7,

Figure 4 shows the maximum flood plain inundation. The
solid line is the mean and the dashed lines show plus-one
and minus-one standard deviation. Assuming Gauss’ inequality
applies, it is estimated that the confidence that the flood
plain lies within the dashed lines is 56 percent. The com-
puted flood plain boundaries are slightly skewed south of
the main river because of the way the grid was drawn. Each
grid center point represents a computation point. This minor
problem illustrates the need to more carefully lay out a com-
putational grid,

Figure 5 shows a cross-section of the maximum water
depths drawn northwest to southwest, roughly through the
southern edge of Bishop. The computed mean and plus-
and minus-one and three standard deviation lines are also de-
picted. Again if Gauss’ inequality applies, the confidence
that the maximum water depth is between plus and minus
three standard deviations is 95 percent. It should be noted
that Figure 5 does not depict water surface profiles at a
specific time but rather shows the maximum water surface
levels which occur at various times. In particular, the water
surface on the right bank near Bishop, occur at a later time
than those in the main floodway of Bishop River.

As can be seen from Figures 4 and 5, a rather wide range
of roughness coefficient and input dam break flood hydro-
graph does not significantly affect the extent of the flood
plain. Varying these factors do, however, substantially affect
the speed of travel of the flood wave and local discharge per

&

=

HOP

Figure 4. Dam Break Flood Plain (solid line = mean; dashed line = plus odmiries one standard deviation).
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Figure 5. Cross-Section of Maximum Flood Depths Near Bishop.

unit width values. These discharge per unit width values are
a measure of the destructive nature or danger of the flood,
which is not only a function of depth but of velocity as well.
Figure 6 depicts the extent of the dam break flood wave
assuming various values for Manning’s-n, inflow peak dis-
charge, and hydrograph rising limb time. As can be seen,
there is a considerable variation in the distance traveled by
flood waves.

The two-dimensional nature of the problems depicted by
Figure 7 which shows velocity vectors for a flood wave at 3
hours where the n-value is assumed to be 0.060, peak in-
flow assumed to be 293,782 cfs, and rising limb time is
assumed to be 72 minutes.

The diffusion mode! is probably much better where water
depths are larger, and has a larger relative error where com-
puted water depths are very small. In these cases, however,
the absolute error is only in fractions of a foot and are in
areas of little overall importance in assessing the actual flood
danger, To illustrate this point further, maximum average
computer water depth ranges and their average coefficient
of variation in these ranges are tabulated in Table 2, That is,
this table shows a summary of the results from the point
probability estimate technique. This table suggests that
parameter variability affects the shallower water depths more
and also the possibility that the deterministic diffusion model
ased is less accurate for shallower water depths.
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TABLE 2. Comparison of Computed Maximum Depth
Ranges and Average Coefficient of Variation.

Average Coefficient of
Range of Maximum Number of Variation for Indicated
Depth in Feet Grids Depth Range in Percent
0.001- 0.5 31 126
0.05 - 1.0 10 94
1.0 - 20 10 82
20 - 50 15 50
5.0 -10.0 22 35
10,0 -15.0 18 29
CONCLUSIONS

The deterministic two-dimensional diffusion model of a
flood wave is an approximation of an actual flood wave. How-
ever, the simplifications to arrive at this model, mainly ne-

"glecting inertial and local acceleration effects, may be warranted

in some cases where two-dimensional flow effect are important.
In view of the uncertainty associated with the input dam-
break flood hydrograph and channel roughness coefficients, a
more sophisticated solution may be of limited value. Most
of these uncertainties can be simply dealt with using a two-
peoint probability scheme that was presented herein. This ap-
proach is a powerful tool in assessing confidence limits of
solutions where parameter means can be reasonably assumed
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Figure 6. Maximum Extent of Flood Wave Travel at Indicated
Times for Various Values of Manning’sn Value.
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Figure 7. Flood Wave Velocity Vectors at 3 Hours for n = 0.06 and Qpeak = 293,782 cfs.
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and their coefficient of variation estimated, or even guessed
at, as was the case here.

LITERATURE CITED

Chen, C-L. and J. T. Armbruster, 1980. Dam-Break Wave Model: For-
mulation and Verification. J. of the Hydraulic Division, ASCE
106(HY5):747-767.

Cunge, J. A, F. M, Holly, J1., and A. Verwey, 1983. Practical As-
pect of Computational River Hydraulics. Pitman Publishing, Inc.

Guymon, G. L., M. E. Harr, R. L. Berg, and T. V. Hromadka II, 1981.
A Probabilistic-Deterministic Analysis of One-Dimensional Ice
Segregation in a Freezing Soil Column. Cold Regions Science and
Technology 5:127-140.

Henderson, F. M., 1971, Open Channel Flow. Macmillan, New York,
New York,

Hromadka JI, T. V., C. E. Berenbrock, R. R. Freckleton, and G, L.
Guymon, 1985. A Two-Dimensional Dam-Break Flood Plain
Model. Advances in Water Resources 8:7-14,

Katopodes, N, D. and D. R. Schamber, 1983. Applicability of Dam-
Break Flood Wave Models, J, of Hydraulic Engineering, ASCE
109(5):702-721.

Katopodes, N. D, and T. Strelkoff, 1978. Computing Two-Dimensional
Dam Break Flood Waves. J. of the Hydraulic Division, ASCE
104(HY9):1269-1288,

Land, L. F., 1980. Mathematical Simulation of the Toccoa Falls,
Georgia, Dam-Break Flood. Water Resources Buhletin 16(6):1041-
1048,

Ponce, V. M. and D. B. Simons, 1977. Shallow Wave Propagation in
Open Channel Flow. J. of the Hydraulic Divisien, ASCE
103(HY12):1461-1476.

Ponce, V. M. and A. ). Tsivoglou, 1981. Modeling Gradual Dam
Breaches. [. of the Hydraulic Division, ASCE 107(HY7):829-838.

akkas, J. G. and T. Strelkoff, 1973, Dam-Break Flood in a Prismatic
Dry Channel. J. of the Hydraulic Division, ASCE 99(HY12):2195-
2216,

Water Resources Council, 1977. Proceedings of a Dam-Break Flood
Routing Modal Workshop. Bethesda, Maryland, October 18-20,
Xanthopoulous, T. and C. Koutitas, 1976. Numerical Simulation of a
Two-Dimensional Flood Wave Propagation Due to Dam Failure.

Journal of Hydraulic Research 14(4):321-331.

265

WATER RESQURCES BULLETIN



