Numerical mass balance for soil-moisture

transport problems

T. V. HROMADKA I and G. L. GUYMON

School of Engineering, University of California, Irvine, CA, 92717, USA

The Galerkin finite element method coupled with the Crank-Nicolson time advance
procedure 1s often used as a numerical analog for unsaturated soil-moisture transport
problems. The Crank-Nicolson procedure leads to numerical mass balance problems which
results. in instability. A new temporal and spatial integration procedure is proposed that
exactly satisfies mass balance for the approximating function used. This is accomplished by
fitting polynomials continuously throughout the time and space domain and integrating the
governing differential equations. To reduce computational effort, the resulting higher order
polynomials are reduced to quadratic and linear piece-wise continuous polynomial
approximation functions analogous to the finite element approach. Results indicate a
substantial improvement in accuracy over the combined Galerkin and Crank-Nicolson
methods when comparing to simplified problems where analytical solutions are available.

INTRODUCTION

Finite element techniques have been applied to numerical
solutions of moisture transfer in soils by a number of
investigators"”. A substantial amount of work has been
done on the efficiency and accuracy of finite element
Galerkin techniques®>%. In the case of moisture transfer
in unsaturated soils, the equation of state is non-linear
and generally in order to apply the finite element method
the governing differential equation of state is linearized by
forcing parameters 1o be constant within each finite
element. Hromadka and Guymon® investigate the
numerical effects of various approximations for determin-
ing the constant parameters, but assume that the time
derivative term is'approximated by the Crank-Nicolson
time advancement routine. In this paper the coupled
numerical analogs based upon the Galerkin finite element
method and Crank—Nicolson method are examined in
respect to satisfaction of mass balance in the governing
equation of state. A numerical modification to the finite
element analog of moisture transfer in a horizontal soil
column is presented, and extensions to moisture transfer
in a vertical soil column and a two-dimensional soil
system are included.

TRANSPORT ANALOG

Horizontal infiltration of water into a homogeneous soil
column of length Lhaving an initial water content 8, and
suddenly subjected for time >0 to a greater constan{
water content #; at x=0 is described by:

o a0 8¢
5;[0“” a}a M

§=0, r=0 0<x<L

=0, t>0 x=0 (2)
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where (! is the dimensionless soil volumetric water con-
tent; x is the horizontal spatial coordinate; ¢t is time; and
D(6) is the soil water diffusivity.

The finite element appreach vsed to solve equations (1)
and (2) is the Galerkin version of the weighted residual
process”. The solution domain is discretized into the
union of n finite elements by:

L=UL, (3)

The water content is utilized as the state variable and is
approximated within each finite element by:

f(x, 1)=3 Nx, 0, (4)

where N is the appropriate [inearly independent shape
functions: 0, s the state variable values at elemental-nodal
points designated by the general summation index .
The Galerkin technigue utilizes the set of shape fun-
ctions as the weighting functions, which indicates that the
cotresponding finite element representation for the in-

filtration process is

af, a0 amn 3
'HELD{Q) &J r—-afdex ={) (5)

Integration by parts expands equation (3) into the form:

a0 oN, a0

s L

" a0
i; {D(G) =N

(6)

where S, is the external endpoints of the one-dimensional
finite element, L;. The first term within the braces negates
to zero for interior elements and also satisfies the usual
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Figure 1. One-dimensional nodal domain. @ =nodal
point number 1; R =nodal domain number 1; L ~column
length

specified (or flux type) boundary conditions of the pro-
blem for exterior finite elements. The remaining integral
term is solved by substituting the appropriate element
approximations and shape functions into the integrand
and solving by numerical integration. The non-linear
nature of the partial differential equation, however,
generally introduces difficulties in integrating equation
(6). It is customary to deal with this problem by assuming
the diffusivity function to be constant within each finite
element during a finite time interval, At (e.g. Guymon and
Luthin*). The Crank-Nicolson time advancement ap-
proximation has been widely used?® to solve the time
derivation of equation (6). The time derivative could also
be approximated by the Galerkin technique!; however, it
does not appear to be advantageous®.

The Crank—Nicolson formulation reduces equation
(6), where values of soil-water diffusivity are assumed
constant within each finite element, into a system of linear
equations expressed in matrix form as:

Al i+1 . éf i
{P +3 s}e = {P 5 s}o (7

where P is a symmetrical capacitance matrix and is a
function of element nodal global coordinates; § is a
symmetrical stiffness matrix and is a function of element
nodal global coordinates and constant finite element
diffusivity coefficients (during time step Ar); Az is the finite
time step increment; and 0% is the vector of nodal state
variable approximations (volumetric water content) at
time steps k=1, i+ 1.

Hromadka and Guymon® show that the numerical
expressions of the combined equations (6) and (7) results
in an incorrect balance of mass for each nodal solution. To
correct the mass-balance relations, the time-integrated
influx of moisturc was equated to the net integrated
spatial variation of moisture content. For the special case
of a Galerkin linear shape-function approximation (with
the Crank-Nicolson time advancement procedure), a
modified finite element capacitance matrix was deve-
loped; however, a detailed mathematical analysis of the
matrix modification was not presented. The following
discussion addresses the mathematical development of
the modified finite ¢lement capacitance matrix (for so-
lution of equation (1)) and extends the modifications to
include the so-called convection-diftusion class of equa-
tions (i.e., a vertical soil column problem), and finally

develops a two-dimensional horizontal moisture trans-
port analog.

MATHEMATICAL DEVELOPMENT

Assume the soil column is discretized into » disjoint
domains by n nodal points as shown in Fig. 1 where:

Rlz{x|0€x<&} \
2
L;_ L;
R,-s{xuw,-)— L <x<x(aj)+—2i-}
(8)

— Ly
R, =<x|x(6,)— p <x<L
R=U R, ]

i=1

where 8, is the value of state variable at spatial increment j
and L;is the redefined spatial length between nodal points
0 05 o |

The solution of equation (1) within each nodal domain
determines n equations:

8 20 80 )
o [D(B) T] ~ 2. R,
ax Ox ot

i 3
[D(G) ?E} =ﬂ9; xeR,

ox Jx at

e

(9}

dJ og | a8

—| DO |==-

ax[ ( )6x:| a0 ¥<Rs )
Using a local coordinate system defined by:

a_y
dx (10)

Ry={y0<y<l}

the system defined by equations in (9} can be integrated to

give:
el 807, ] ([ (o0 ]
‘. T ldyd —— dydt
[ {5 o0y o JJao
Al R, At R,
el af o0
J j Ei[m)@y}dydt B f j P a
Al g, At g,
el . a8 o
Jjay [D(O) ay]d ydt f '[ N dyde
AL R, B _m R, _l

where the temporal integration is assumed to occur over a
time-step increment of Az. Equation (11) can be rewritten
as:
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’—(k +1)a2 hy ] I e+ 1 )AL ]
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ot
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where k is the temporal time step increment.
The state variable, @, can be approximated spatially
throughout R by the Ritz formuiation; ic.

Dix, tg)= Z N {x)0, {13
i=1

where N, is the appropriate polynomial spatial shape
function and 8 is the state variable value at nodal points
designated by the general summation index j.
Additionally, let & be approximated temporally by:

k+1
Y M0 (14)

m=-1

0% (xg, 1) ==

where M, is the appropriate polynomial temporal shape
function and 8™ is the state variable value at nodal points
designated by the general summation index s m=0
indicates the initial condition, m= —1 indicates the
condition at time step { — At).

Equations (13) and (i4) can be combined as:

Bx, t)= 'i N {x)g%
(15)

k+1
Z Mmem

m= =1

where the ¢ are known values of the state variable for
time steps (—1,0,1, ..., k).
Combining equations (12) and {15) yields:

— — -

’-—Ik+1JA1 i ! (ke +1)Az

el [fo ]}
de g d
k\! { ay [ j L1} ku‘& y
(& + 1)Ar I I k +'J. AT
(‘?9 .
dt = (2] d
J { b } f{ | }y (16)
kAr 0 O kA
(k + 1)a1 . i I ! (k+;.}ﬁl
o6 a
;] d
{ ®Jf f{ ' }y
| e C | E KAt ]

The solution of equation (16) wlere water content is
approximated by equation {15} results in increasing
computational effort as the time solution progresses. By
approximating water content both spatially and tem-
porally by sets of piecewise continuous polynomials, the
numerical effort is considerably reduced.

For discussion purposes, let the l; be uniform throug-
hout R, and soil-water diffusivity held constant during
time step Ar,

=Ax:i=1,2,...,n
[=1,=Ax/2 i

oD
—5:0: kAr<r<tk+1)A1

Then for water content characterized by parabolas both
spatially and temporally:

. 0y=20,+0,), T8, -38,-0,
Dy, Io)=[4’ 2(A;)Z—‘ZJ)JZ+[ A b2 ]y+00

{18)

Byo )= [ A IA%

where (8, #,, 0,) represent typical nodal points separated
by the constant spatial increment Ax; and (6°, 61, 62
represent typical nodal points separated by the constant
temporal increment At. The spatial gradient of water
content is evaluated by:

60-—201+82J [49‘~38°u92] 0
¢ —— e+ 0

00! 3
{—?y =(07 - 05)/Ax

0

00 |
S ) =01 0p)/Ax
oyt

oo i—x) "

where the starred terms represent functions of time as
defined by equation (18). In order to coincide interpolat-
ing parabolas between nodal points, the average of al!
interpolating parabolas within a nodal domain are used.
Accordingly, interior nodal points may have up to five
nodal points contributing to each nodal point’s pumerical
solution.

—

(19)

NUMERICAL MODEL VERIFICATION

The proposed numerical scheme was applied to the
normalized soil moisture transfer problem:

629 69
— LxXS
R O=sx<1 (20)
with boundary conditions
HO, t)=(1, t}=0 >0 (21)
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and initial condition
0(x, 0)=1 (22)
The exact solution is the well-known series expansion:

sin 3nx
3

2.

o

4 b4
0(x, r):E(sin mxe” e ) (23)

For the normalized soil moisture transfer problem, the
numerical approach of equations (16) and (18) reduces to
the following set of linear equations:

At

oAy | (082084 363)+ 800} — 203 + 01+

A,’
5(02 — 202 +0)) -;,4-§ § (02 + 607 + 3863 + 607 — 02) —

(= 05+ 601 + 386} + 665 — 0)) (24)

The first set of braces equals the net integrated influx of
moisture between time steps At and 2At (superscripts 1
and 2, respectively): the second set of braces is the
integrated variation of water content during the time
advancement. For f=4(At)/(Ax)?, equation (24) may be
rewritten as:

— 05+ 07(6-- 58)+ 0338 + 108) + 03(6 — 5F) — 82

=~ B0 =209+ 03) + 016+ 8) + 0338 — 168) +
46+ 80)— (6L +05) (2%)
where superscripts and subscripts refer to temporal and
spatial coordinates. Appropriate integration with respect
to space and time on column-end nodal domains gives for

the global matrix system (with specified boundary
conditions)

[ 0 o G o-"
B-5H 10 (5-5H) -1 0 0
-1 -5 (84108 (5-5H) -1 0 0|
0 1 =58 GS+100)  6-56 1 0‘ o
} 0 0 -1 5256 41+ 10/) 1335 |
Lo ] [0 0 0 1 i
I 0 0 o a .o -f
BB (- 168+41)  (RE+5) -1 0 0o .. 0
-1 (6+8  (8—168 6+8H 1 0 0
=1 90 —1 GHRA (3B16B) (GHEH 1 ... 0 [g -
o 0 : L (548H (81 -16f) (3+85)
0 0 o 0 0 1 J

3
=3
=)
=
o

|1 -2 1 0 .. J
- |
','; LR 0‘ I {26)
e o .. 1 -2 v
L o0 a o g

where ¢ is the vector of nodal water content values at time
steps j=0, 1, 2 of Af mcrements.
Equation (26) can be simplified by assuming all in-

110 Advances in Water Resources, 1980, Volume 3, September

terpolating parabolas within a defined nodal domain to
be coincident. Thus, for interior nodal domains the
appropriate integrated relations become:

At
IZ(Ax}{_ (67 — 2609+ 0%) + 80 — 20 +01) +
A
S(02 — 202 +02)) = 2_;‘ {02 = 2202 + 0% —
(0} + 2205 + 04} (27

where the first and second set of braces represent the
integrated moisture influx and integrated variation of
water content, respectively, between time steps At and 2Af
(superseripts j=1, 2). For y=2(At)/{Ax)* and appropriate
integration with respect to space and time on column-end
nodal domains, the global matrix system corresponding
to the numerical approximations of equation (20) by
equations {16) and (18) is:

r 1 0 i 0 0 -l
0
g

(L—5) 22+ 109 {1-5n 0 |
a (=51 (224100 (-5 [ &
| L
¢ .. 0 0 =S @0 0-5)
‘_ 0 0 0 0 4 [
| 1 o 0 0 0 o 1
1+8) (22—16y)  (1+8y) 0 o |
3 o (I+8;)  (22—167) (1+8p 0 j #
| :
|0 0 [ 0 (1+8y) (22160 (1+ky)
L o ¢ i I i ¢ !
0 0
1 —~2 1 o
0 ; 10 .
7l ’ o 28
V- 61 -2 1
0 .. 0o 0 o ol

where specified boundary conditions are included.
Equation {28) can be further simplified temporally by
letting:

a0 0

o Ar

(29)
Then, combining equations (27) and {29)

1
sy L3 = 01)~ (07 = 03)+ (0} = 0}) (6} - 6})]

=%—}[(0{-—-229§+6§)—-(01+229;+9;)] (30)

which results in the modilied capacitance matrix
formulation®:

_ Ax[11 1
P(modiﬁed):z_;‘.L “J (31)

To determine the numerical effectiveness of solving the
normalized soil-water transfer problem by the formu-
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" Table 1. Comparison of numerical maodel* results at x =050

Finite Nodal Finite Nodal
glement domain Exact element integration
Time method? integrationi solution error (%) error (%)

0.01 0.887 0.901 0.999 11 9
002 0.786 0.333 0.975 19 15
0.03 0.697 0.763 0918 24 i7
.04 0.618 0.700 D.846 27 17
0.05 0.548 0.641 0.772 29 17
0.06 0.486 0.588 0.702 28 16
0.07 0.431 0.538 (3.637 32 16
008 0.382 0.493 0.578 34 15
0.09 0.339 0.452 0.524 35 14
0.10 0.301 0.414 (474 36 13
G.il 0.267 0.380 430 38 12
012 0.237 0.348 0.390 39 11
Q.13 0.210 0319 (.333 40 10
0.14 0.186 0.292 4.320 42 9
15 0.165 0.268 0.250 43 8
0.16 0.146 0,246 0.262 44 6
0.17 0.130 0.225 0.238 46 $
Q.18 .15 0.206 0.215 47 4
019 0.102 0.189 0.195 48 3

2

0,20 0.091 0.173 0.177 49
Three nodal point discretization.
Equation (32).
Simplified version of nodal integration using equation (28).

At %

lations of equations {24}, (27), and (30), a Galerkin finite
element analog to equation (20) was also determined for
comparison. The Galerkin finite element-matrix for-
mulation (for a finear polynomial shape function approxi-
matjon) numerically approximates the normalized pro-
blem of equation (20) within each finite element by:

00 Sf0  1[1 =)o Ax[2 1[4
Ol e B i bt
(32)

where S and P are clement stiffness and capacitance
matrices and ({}, 8} and (0.0 ) refer to the element nodal
and dynamic nodal moisture content values for an
element of length Ax.

By comparison, the modified finite element-matrix
system for equation (31} is:

(61 - X o1 11 —1)8
sfofpmsanealg =37 ks
Ax[ 11 116,
2_4[1 11}{0} (33)

Results from application of equation (11} to the pro-
blem defined by equation (20) are shown in Table 1. The
matrix system of equation (28) is used to better compare
numerical resulis to the linear approximating function
resulis of the Galerkin approximation (linear polynomial
shape function) of equations (7} and (32). The numerical
approximation was based on a three nodal discretization
of the one-dimensional domain in which two of the nodal
points are specified as boundary conditions; thus the
matrix systems reduce to a single linear equation for btoh
numerical approximations. From Table 1, it is seen that
for this problem the numerical approach of equation (28)
provides increasingly accurate results whereas the finite
element approximation progressively gives poorer appro-

ximations for the same level of spatial discretization.
Additionally, the numerical approach of equation (28)
produces similar approximations to those obtained by
revising the Galerkin capacitance matrix in accordance
with equations (7) and (33).

For further comparison, the nodal domain of equation
{20} was discretized by five nodal points. Comparison of
numerical solutions by the Galerkin finite eiement ap-
proach, equations (7) and (32); the revised finite ¢lement
capacitance matrix approach, equations (7} and {33}, and
the numerical approximation given by equation (26) to
the exact solution at x =0.50 are shown in Table 2. Again,
the nodal integration approach provides significant im-
provement over the finite element method. From Table 2,
the finite element matrix system revised by equation (31)
gives similar results to the model of equation (26) for time
greater than 0.06. However, for the initial instability to the
numerical system (due to the boundary conditions} the
numerical approach of equation (26} provides better
approximations.

EXTENSION TG ONE-DIMENSIONAL
CONVECTION-DIFFUSION EQUATION

The second order linearized partial differentiai equation:

N oo ot
Tax Tax 36f‘

¢ 00

k xeR (34)

&x

applies to a vertical unsaturated soil column problem
where the k, are the appropriate hydraulic parameters.
Discretizing the domain into uniform nodal domains R in
accordance with equation (8), equation (34) can be
integrated spatially within each nodal domain to give:

: Gll o)
T

L4

7]

Table 2. Comparisor of numerical model* resulis ar x=0.30

Finite Revised Nodal

element capacitance integration Exact
Time method ¥ matrix} per (26) solution
0.01 1.041 0.989 1.023 0.999
0.02 0.970 0.941 0.936 0.975
0.03 0.881 0.876 0.887 0.918
0.04 0.796 (1807 0.812 0.846
0.05 0.718 3.739 0.741 0.772
0.06 0.637 0.674 0.674 0.702
0.07 0.583 0.614 0.613 0.637
0.08 0.525 0.558 0.557 0.578
0.09 0.474 0.508 0.506 0.524
0.10 0.427 0.461 0.460 0474
0.13 0.385 0.419 0.41% 0.430
012 0.347 0.381 0.379 (0.390
0.13 0.312 0.346 0.345 (.353
0.14 0.282 0.314 0.313 .320
0.15 0.254 0.285 0.284 0.290
0.16 §.229 0.259 0.258 0.262
0.17 0.206 0235 0.235 0.238
0.18 0.186 0.214 0.213 0215
Q.19 0.167 0.194 0.194 0195
020 0.151 0.176 0.176 0.177

*  Five nodal point discretization.
t  Equation {32).
% Equation (33).
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Table 3. Comparison of nimerical model results for a vertical column

Solution x=0 x =50 Error x
=100
Exact i 0.276 0% 0
Finite element method 1 0.429 55%, 0
Integration 1 0.342 24% 0

Assuming the &, to be constant within each nodal domain
during a time step Ar, and integrating with respect 1o time

gives:
ag ‘
[ (kl = )d:+ j (kze )d::( J kﬂdx) (36)
At A :

T, t T, R, r,
where I'; and I, are the spatial and temporal boundaries.
For ¢t approximated spatially and temporally by equation
(18), and assuming coincident parabolic interpolation
functions within each nodal domain R;, the resulting
expression for an interior nodal point 8, between nodal
points (0, 8,) is:

A0+ A0+ 4,62=B,0)+ B,0] + B,0) +
C, 85+ C,87 + C,67 (37
where
Ay =k + Sk, {At/Ax)— Sack,
Ay, =22ky 4+ 100k,
Ay == kg — Sko(At/Ax) - Setk,
B, =8ak, — 8k (At/Ax)+k,
B, = — 16ak, + 22k,
B, = Bak, +8k,(At/Ax)+k,
O = —k o+ k{Ar/Ax)
C,=2ak,
Cy= ko —ky(At/AX)

and where o =2AA(Ax)*

Disregarding the coincident parabolic mnterpolation fun-
ction assumption, a soil-moisture transfer mass balance
would occur by averaging all possible parabolic in-
terpolations within each R, Accordingly, for a typical

nedal point 4, interior to the sequence of nodal points (8,
Qla 8_]& 04)5

1 5 5 1
Ola o= 160 801+803_T6 0, {38)

whereby equation (38) can be appropriately combined

with equation {28) to give the complete mass balance
formulation.
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A numerical advantage of equation (37) to a [inear
shape function finite element (Galerkin) formulation with
a Crank—Nicolson time step advancement process was
found. The two methods were compared o the exact
solution of the problem

30 a8 a0
ky FAaLCF Mgt (39)

with conditions,
00, t)=40,, t>0
Hao, 1j=0, >0

B(x, 0}=0, 0<x<wo
The well known solution to equation (39) is the
expression:

6 1 x—k,t xky | L] x4k,
0, = 2{erfch4 Py ] + exp[zl}erfclrkml ,2}}
(40)

where & and &, are assumed constant. Equation (39} was
solved for arbitrarily selected values of k, =2.5, k,
=0.0625. A time step At =25 was used and equation (39)
was modelled by assuming that

6100, =0,  0<r<250 (41)

in order to obtain a finite one-dimensional domain, For
comparison purposes, a two clement discretization of
element size equal to 50 was used. A linear shape function
Galerkin approximation i accordance with equations (6)
and (7) was used for comparison purposes. For a total
time equal to 250, the numerical results are shown in
Table 3. Comparison of both numerical methods in-
dicates consistent approximation improvement by using a
model based on equation (37).

EXTENSION TO TWO-DIMENSIONS

The two-dimensional mathematical model for horizontal
soil water transport in a rectangular domain R, where
water content Is the state variable is given by:

ol a6 a0 68
}[Dw)i)} LD() J  (x, YER (42)
ox éx | oy

Analogous to the one-dimensional case, the domain is
discretized into #n rectangular nodal domains by r nodal
points as shown in Fig. 2,

R=UR, (43)

i=1

Application of equation (42) to each R; gives

P[D{()——J f[Dt )‘WJ ‘;f (. M) e R, Vr  (44)

0x

Integrating spatially and temporally on each R, gives:

, September



Numerical mass balance for soil-moisture transport problems: T. V. Hromadka and G. L Guymon

Figure 2. Two-dimensional nodal domain. (1)=nodal
point 1; R, =rodal domain number 1; AX ~ x-direction

n
increment; AY ~ y-direction increment; R= U R,
i=1

gl a0 (e "
j _[ J-EI:D(O)(}X—}dxdydt + '[ f JE;[D(G)%}JMIW
At R

Arg,
{45}
&t .
-=JAJ‘J\5Edtdxdy i=12...n
R, Ar
or
it
y D(G)ﬁ dydi + D(G}gfif dxde
J ox ay
At AY r, Ar AX r,
(46)
= ( 5{9 }dxdy i=12 ...n

AXAY T,

where (AX, AY, At) are the spatial and temporal incre-
ments respectively and ({I',, T, T,) are the spatial and
temporal boundaries respectively. For a finite element
domain discretization, assuming soil water diffustvity
constant within each finite element during a time step Az,
equation {46) can be written as:

AY
o0
— ¢
}m { {Dax de) '+
T, AY/2 r,
}dx)dt

AY/
() e

ox
A0

Axf2 Ax

J(] il | o5

Ar 0 r, AxtZ r,
= J J{H }dydx 47
AX AY T,

A pumerical analog can be derived by considering the
normalized two-dimensional horizontal moisture transfer
model similar to equations (20), (21). (22),

0 0 30

sitaiTes  OSx<LOSy<t w4

Assume § to be approximated spatiaily by parabolic
interpolating functions, and temporally by a linear in-
terpolating function. The temporal term of {46) is given
nuinerically by considering Fig. 2; i.e.

AXAY
.( V(dedy: W(Hl + 93 + 07 -+ 99 + 2202 + 2294 +
AX AY

220, + 220, +4844.) (49)
The integrated x-direction influx is:

AY

’2’2@((61 =20, +8;+226,— 440, + 2205 + 0, - 205+ 0,)

{50)
Similarly, the integrated y-direction influx is:
AX
'22;‘5’(9‘ 0B+ A 220, 4220, — 20,—2d, —440,)
(51)

Combining equations (50) and (51), the net integraied
influx is, for AX =AY

1
ﬁ-(al +100,+ 0, + 100, — 440, + 100 + 0, + 108, + 8,)
(52)

For identical constant spatial increments, the solution
of equation (46) reduces to the one-dimensional problem
of equation (20) for zero y-directional influx. From Fig, 2
and equations (49) and (52), the problem simplifying
assumptions arg:

a0 |

AX =AY

0,=6,=9, >

8,=0,=t

03=86=09} (53)

By substitution, the matrix system defined by equations
(49) and (52) reduce to the matrix system defined by
equation (30).

CONCLUSIONS

The mathematical analysis leading to numeripal analogs
that preserve mass balance in a horizontal soil transport
problem is presented. Extensions from the one-
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dimensional horizontal soil-transport model to the so-
called lincarized convection—diffusion equation is also
presented. Comparison of numerical results to the ap-
propriate finite element numerical solutions indicate
significant improvement when utilizing the mass balanced
schemes.

Extension of the one-dimensional approach to two
dimensions is additionally included. Although only the
rectangular domain is analysed, application of the im-
proved model to irregular domains is accomplished by
using the usual finite element matrices for non-
rectangular regions, and including the mass-balanced
matrix systems for the remaining rectangular regions.
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