COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 53 (1985) 149161
NORTH-HOLLAND

APPLICATION OF THE CVBEM TO NON-UNIFORM
ST. VENANT TORSION

T.V. HROMADKA II and G.C. PARDOEN
Civil Engineering, University of California, Irvine, CA 92717, U.S.A.

Received 21 March 1984
Revised manuscript received 16 April 1985

The complex-variable boundary-element method, or CYBEM, is used to approximate the stress
distribution associated with non-uniform St. Venant torsion problems. By specifying either the normal-
or tangential-force equilibrium equation in terms of the warping function or its conjugate, a Laplace
equation results which is immediately tractable by using the CVBEM. A comparison of modeling
results to known solutions indicates that the modeling technique is a useful approach for the estimation
of interior stresses as well as for the evaluation of modeling error by means of an approximate

boundary determined by the CVBEM approximation function.

0. Notation

a, b characteristic dimension of cross- W approximate solution of Laplace
section, equation,
¢ nondimensional coefficient 0 <<¢ < 2 solution domain,
0.5, &, weighting function for polynomial
G shear modulus, interpolation function for ele-
G, global trial function of degree k, ment J,
H; complex logarithm function for i approximate warping function,
element j, (x. vy} warping function,
P% polynomial interpolation function ; complex constant for element j,
of degree k for element j, I’ simple closed contour on complex
R*"' complex polynomial of degree k - plane,
1, I; straight line segment for element /|
s; local coordinate for element j, I’ approximate boundary,
w warping displacement, & approximate conjugate function,
x x-coordinate of point on cross-sec- &(x,y) conjugate function,
tion from center of twist, 8 angle of twist/unit length,
y y-coordinate of point on cross-sec- Tez» Ty:  Shear stress,
tion from cenater of twist, ¢, ¢ dummy integration variable.
z nodal point on complex plane,

1. Introduction

The complex-variable boundary-element method (CVBEM) is a new approach for mathe-
matically modeling two-dimensional potential problems [1]. Based on complex-variable
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theory, an approximation function is developed by using a contour integration function based
on the Cauchy integral equation. The resulting approximation function is analytic over the
problem domain (i.e. possesses derivatives of all orders) and, therefore, both the real and
imaginary parts exactly solve the Laplace equation over the problem domain.

Unlike other boundary integral methods, the CVBEM can be evaluated as to the error of
approximation. Numerical methods develop primarily two sources of error; namely, errors in
solving the governing partial differential equation and errors in satisfying the boundary
conditions continuously. Domain methods such as finite elements or finite differences
generally generate both types of errors in modeling potential problems, and the evaiuation as
to the modeling accuracy is typically estimated by comparing the change in estimated results
by increasing the number of nodal points. Real-variable boundary-element methods typically
satisfy the governing equation describing a potential (i.e., Laplace equation), but do not satisfy
the boundary conditions continuously. Again, the error is estimated by increasing the number
of nodes and comparing computed results. The CVBEM, on the other hand, provides for a
unique error-evaluation technique which is easy to use. Because the CVBEM approximations
exactly satisfy the Laplace equation, there is no error in solving the governing equation.
However like the other numerical methods, the CVBEM approximation does not satisfy the
boundary conditions continuously. But unlike the other numerical methods, the CVBEM can
develop an exact representation of the modeling error by the determination of an ‘ap-
proximate boundary’ where the CVBEM approximation exactly satisfies the boundary con-
ditions. That is, the approximate boundary is the locus of points where the CVBEM
approximation meets the boundary condition values.

Using the approximate boundary, the analyst easily evaluates the accuracy of the CVBEM
model. Should the CVBEM approximate boundary coincide with the actual problem boun-
dary, then the exact solution to the boundary-value problem has been achieved. Generally,
however, the usual procedure is for the analyst to determine the approximate boundary for a
given nodal point placement scheme on the problem boundary. In regions where the
approximate boundary differs significantly from the true boundary, more nodes are added and
another approximate boundary developed. In this fashion, the analyst develops a highly
accurate approximation analogous to an adaptive integration technique,

The approximative boundary error analysis technique provides a powerful modeling
capability which sets the CVBEM apart from the other boundary and domain numerical
methods. Usually the analyst develops an adequate CVBEM approximation within 5 or 6
attempts. Because the constructed version of the prototype is generaily accepted to within a
certain construction tolerance, the CVBEM analysis is typically terminated when the ap-
proximate boundary meets the construction tolerance criteria. Thus, the CVBEM model
provides the exact solution for a probable construction of the prototype.

2. Numerical modeling approach

The complex-variable boundary-element method, or CVBEM {2}, can be used to develop
an approximation function w(z) which is analytic in the domain of definition, £. Con-
sequently, &(z) can be expressed as @(z)= ¢(z)+if(z) where $(z) and i(z) are two-
dimensional harmonic conjugate functions which satisfy the Laplace equation exactly in (2
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The approximation function a‘)(z) is developed by collocating the Cauchy integral equation at
nodal points defined on the simple closed boundary, I". For m nodal points, m linear equations
are generated which can be solved by the usual matrix solution techniques, such as Gaussian
elimination. The resulting CYBEM approximation can then be used to calculate values of the
potential function and other quantities of interest such as stresses in the interior of 2.

3. CVBEM development

3.1. Discretization

Let I be a simplie closed contour composed of straight line segments. Let {2 be the simply
connected domain enclosed by [, where I is subdivided into m complex-variable boundary
elements (CVBE) by

r=0r,. (1)

i=1

Define (k + 1) equidistant nodal points in each I such that z,, and z; ., are the endpoints of
I; (Fig. 1 shows the global and local nodal numbering conventions). The global nodal
coordinates are related to local nodal coordinates by z;, = z; and z; ,+1 = Zj41,1 = Z;41. If One
defines complex numbers @; at each node z;, then degree-k complex polynomials P%(z) are
uniquely defined on each boundary element I,

3.2. Approximating functions
A global trial function of order k is defined by

"
— k
Gk(z)—ZSJPj(z), zer, 2)
i=1
where
5 = {1 , z€&€Iy,
710, otherwise
i, k=1 @i, B,z Bjl
Zjk+ Zjk 2j k-1 Zia %2 i
. — — —o .
241 Fj %
Tj+! @j
LEGEND

* ELEMENT ENDNODE
o ELEMENT INTERIOR NODE

Fig. 1. (k + 1}-node boundary-e¢lement I'; nodal definitions. @ element endnode; O element interior node.
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G (z) is continuous on I and

lim Gk(Z):w(Z)-

max|;|-~0

where it is assumed that w(z) is analytic on 2 U " and that each @ = w(z;).
Consider the approximation function @, (z) defined by

I [ G()dS
bulz)= 5= [ L O ser, zen.
r
From equation (2},
{—z {—z
r 4

On each [, define a local coordinate system by
Z,}'—‘Q{.S})=Z,-(Z,-+1—2,‘)S;, Q’,-E[},Oﬁsjfél.
It follows that

PO _ [ Pi(s)ds

{—z 5=
Q

ri

where P4(s;) = P5((s). and y; = (z ~ 2))/(2j..— z;) for z € I,
Equation (7) is solved by factoring (s, — v,) from P} (s;). Let P’ (s;) be of the form

K
PT(SI): Z aus;, O=ss;=1,
i=0

where the a; are complex constants. Division of P4(s;) by (s; — ¥;) gives

lP‘? Vds
J’_Mz R \z)+ Py, H,,

S Y
where R}7!(z) is a complex polvnomial of degree k — 1. and

Z)q.;_z‘_ d.'+](2)
=Ln
Zi—Z d;(z)

I"Ij= Ln +i6}'+1_}'(2’).

(4)

(5)

(6)

(7

(8)

®)
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Note that d;(z) = |z — z;| and ;.. (2) is the central angle between points z,, z,.,, and z. Fig. 2
shows the special case as z approaches I' in the limit.

From equations (4), (5), (7) and (8), summation of the CVBE contributions from the m
boundary elements gives

2mide(2)= 2 R Nz)+ 2 P4(y)H, (10)
with R*"'(z) =X R} Y(2), equatibn (10) simplifies to

A 1 k-1 > pk L

wk(2)=ﬂ“i‘[R (Z)"“Z,Pj(%)Hf.]- 1)

In (11), it is noted that the P’(y;) have the form of the assumed shape functions on each ¥
Letting node z, be on the branch cut of the complex logarithm function Ln(z — ¢) such that
z€ {2 and { €T (see Fig. 3), then (11) can be expanded as

1 1
G(z) = %R*“‘(z) “5 DAY z-z)Ln(z- 2)+ Pk(z), (12)

IyrJ

Fig. 2. CVBEM linear trial function geometry.
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BRANCH CUT

g &,

Fig. 3. Branch cut of the function Ln(z - ¢{), { €T

where 457" is a polynomial of degree (k — 1) defined by

' (P’f (v)— P;‘L---I(TJ‘—I))
(z = z)

k-1 __
Ad =

; (13)

and Ln(z — z;) is the principal value of the logarithm function. From the continuity of G, ({), it is
seen that at the nodal coordinate z;,

Pj(y) = Plaly-0=0 (14)

and that (z — z;) is a factor as shown in (13). In (12), the P, (z)-term appears due to the circuit
around the branch point of the multiple-valued function Ln(z ~ {).
Letting

1
R¥*(z)= = R*'(z)+ Pu(2),
2m
then

lz)= R*(z)wﬁgd}‘“‘('z )Lz 2). (15)

From (15), it is seen that &, (z) is continuous over {2 and has removable singularities at each
boundary-element endpoint (nodal coordinate z, j=1,2,..., m). That is, R*(z) and 4] are
continuous complex polynomials, and

lim(z-z)Ln(z- 2)=0, ie &d(z)=R"(z).

=z

Note that since o, (z) is analytic in®(2 then @ (z) = #(z)+1if(z) where $(z) and f(z) are
two-dimensional potential and stream functions which satisfy the Laplace equation exactly
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over f2. By forcing the approximation values of d(z) to be arbitrarily close (within some £) to
the boundary-condition values of w(z) on I, then it is guaranteed by the maximum modulus
theorem that the approximation of w(z) is bounded by |w(z)— &(z)| < ¢, for all z € (2.

Because the CVBEM results in a two-dimensional function which is an exact solution to
the governing partial differential equation on (2, convergence of &, (z) to w(z) is then achieved
on 2 U I" by forcing convergence on I". This is shown from (3) and (4) by

Ii G () d
lim Gi(e)dé ’“a"l”?*" O g"# w({}d 2 16
maxlrjl—'or {—z iz - -2 = Trlw(z). (16)
r r

4. Modeling strategy

The numerical modeling strategy is to first use the CVBEM by collocating (15} at each
nodal point specified on I" (in the limit as z approaches I from inside 2). Generally, only one
nodal value of either ¢ or ¢ is known at each nodal point. Consequently for m nodes specified
on [, there are 2m values of {¢;, ¥}, and only m nodal values are known as boundary
conditions. Collocating (4) at each node generates m equations for the m unknown nodal
values. The resulting m X m matrix system results in the determination of the @ (z) ap-
proximator which is analytic in {2. That is, d(z) operates on the 2m nodal values {6}, ¢;} and
the coordinate z. ‘

The second step is to develop an analytic continuation of the d:(z) approximator by using
equation (15), which matches the specified and computed 2m nodal values of I'. The advantage
of using (15) is that the Cauchy integral of (4) has the property that

& (z), zEQNUT,

“9={g" " Lzaur @

The need for using equation (15) becomes apparent when determining the approximate
boundary which is associated with the CVBEM approximator functions, @, (z).

The third step is to develop an approximate boundary, I, upon which &.(z) satisfies the
problem boundary conditions, For stress-free boundary conditions, I' is the collection of points
defined by

F=1{z:(z) =127}, (18)

where &(z)= ¢(z)+if(z). Also |z]>= x*+ y* where |z| is measured from a selected central
point in {2 If I' coincides with I, then necessarily &(z)= w(z) on 2 UT. The utility of the
approximate boundary concept is in the evaluation of the approximation error. Instead of the
analysis of abstract error quantities, the goodness of approximation is determined by visually
inspecting the closeness-of-fit between I’ and I'. In those regions, where I’ deviates sub-
stantially from I, additional nodes are placed to reduce the approximation errors from using
the selected shape functions.
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5. Examples

As an example of the complex-variable boundary-element method consider the twisting
behavior of a homogeneous, isotropic shaft of an arbitrary, but uniform, cross-section that is
fixed at one end and subjected to a twisting couple at the other end. If the force and
deformation behavior is of interest at some location somewhat removed from either end, then
the stress and strain characteristics of the cross-section are described by either of the following

equations [2]:

PP(xy) PP y)

T 0 (19)
P (x y)  °d(x y)
+ =0,

The quantity ¢(x, y) is the warping function of the cross-section whereas ¢(x, y) is the
conjugate function of ¥(x, y). If the warping function is known over the cross-section, then the
out-of-plane warping displacement and the in-plane shear stresses can be calculated from the
expressions

w=0y(x,y), T.=GO {i‘g%i’—y)—y}, 7. = GO {f%ﬂu}. (21)

In the above expressions 8 is the angle of twist/unit length, G is the shear modulus, and x, y
denote the coordinates of a point located from the center of twist. Furthermore it should be
noted that z represents a coordinate axis and should not be confused with the complex
variable z = x +iy. If, on the other hand, the problem is posed in terms of the complementary
function ¢(x, y) then the shear stresses are determined from

n,=69{§ib%ﬂ_y}, r,,z=Ge{~%+x}. (22)

While the form of equations (19) and (20) are identical, a solution strategy emerges
depending on the manner in which the boundary conditions are specified. If the boundary
condition of zero normal stress around the perimeter is posed, then a Neumann boundary
condition, i.e. specified normal derivative, best describes the problem. In such a case the
nonuniform torsion problem is best posed in terms of the warping function ¢(x, y). If, on the
other hand, the problem is posed in terms of zero shear stress around the perimeter, then a
Dirichlet boundary condition, i.e. specified functions, best describes the problem. In such a
case the problem is best posed in terms of the complementary function ¢(x, y). While either
solution method is well adapted for solid shafts, it is generally more convenient to operate
directly with the warping function (x, y) rather than its conjugate ¢(x, y) for hollow
cross-sections.

The purpose of the following two examples is to compare the complex-variable boundary-
element method with established solutions [3] for shaft cross-sections of smooth and sharp
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corner profiles. In each of the application problems, the aforementioned modeling strength is
used to develop a @(z) approximator over each domain and an associated approximate
boundary I" is determined for comparison with the true boundary I' by using the expression
@(z) given in (15). In each application, nodal points were added at regions of high discrepancy
between " and I after an initial modeling attempt. Using the modified nodal point placement,
further attempts were made to develop a @(z) which better fit the specified boundary
conditions. The resulting approximate boundaries are shown with the actual boundaries in the
figures. : ‘

Consider first the torsion of a solid elliptical cross-section with major axis a and minor axis
b. The shear-stress-free boundary condition can be expressed in terms of the conjugate
function ¢(x, y) expressed on the boundary as

$(x, y) = 2(x*+y?). (23)

The conjugate function ¢(x, y) as well as the shear stresses can be shown to be

b(x, y) = 3(x*+ y?) - a’b*(x*/a* + y*/b* — 1)(a* + b?) 24)
Te: = —GOQRyad(a*+ b?), (25)
7. = GOQxbH/(a’+ b?). (26)
y
'}
T Distance betwean the exact and opproximate

boundary hos been magnified 10 times

?

Approzinate  Boundary

375

N
o

o X

& & & & &0

a=6.25 -

-

Fig. 4. Approximate boundary for the elliptical section.
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Fig. 5. CVBEM relative etror for quarter elliptical section.

Fig. 4 displays the approximate boundary for the elliptical section whereas Fig. 5 shows the
relative error

[(d’ calculated ~ 45 exm:t)/ ¢ exact ]

for the 28-node model. A quarter model was chosen to take advantage of the problem
symmetry as well as to demonstrate the imposition of ¢ boundary conditions along the
exterior curyed edge and ¢ along the interior straight edge. Table 1 summarizes the exact and
computed warping function and shear-stress values at points in 2.

Ong of the distinct modeling advantages bf the CVBEM is knowing where to deﬁne more
boundary nodest If one compares the computed boundary profile with that of the actual
continuum being modeled, then it is a relatively routine task to add more nodes in the area of
large approximate boundary discrepancy to obtain a closer approximation to the actual profile.
Another advantage of CVBEM is the knowledge that the solution is exact for the boundary

Table 1

CVBEM vs. exact results; St. Vanant torsion—a quarter of the elliptical section model
x y ] é Ad Tz Taz AT Tyz Pz ATy
1 1 10.3400  10.3767 0.35% -1.4706 -1.5 2.00% 0.5294 0.5 555%
3 1 12.2224 12.2821 0.49% —-1.4706 -1.5 2.00% - 1.5882 1.6 0.74%
5 1 15.9871 16.0281 0.44% -1.4706 -1.5 2.00% 2.6470 27 2.00%
1 2 9.6341 9.6763 0.38% -2.9421 ~29 1.40% 0.5294 0.5 5.55%
3 2 11.5156 11.5588 0.37% -2.9412 -3.0 1.40% 1.5882 1.6 0.74%
5 2 15.2812 15.2966 0.10% -2.9412 -2.9 1.40% 2.6470 26 1.78%
1 3 8.4577 8.5070 0.58% -4.4118 —4.4 0.27% 0.5294 05 555%
3 3 10.3400 10.3738 0.33% -~4.4118 -4.4 0.27% 1.5882 1.6 0.74%
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that results from the solution technigue. Obtaining more refined results is associated with
simply obtaining a closer agreement of the approximate boundary with the true boundary. An
additional programming advantage of the CVBEM is that although the model is one-
dimensional (the boundary), it solves the two-dimensional Laplace equation with a relatively
small amount of computer input. Further programming advantages such as small program size
lend such a solution technique towards a microcomputer solution.

]
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Fig. 6. Triangular section geomeiry.
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Fig. 7. CVBEM approximate boundary for 1/6 of the triangular section.
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Fig. 8. CVBEM relative error for 1/6 of the triangular section.

As a second example, consider the sharp-edge equilateral triangular section shown in Fig. 6.
The shear-stress-free boundary condition can be expressed in terms of the conjugate function
¢(x, y) expressed on the boundary as

d(x, y)=3(x*+ y?). 27)

The conjugate function ¢(x, y) as well as the shear stresses can be shown to be

$(x, y) = (x* = 3xy)/2a + % a?, | (28)
Tw: = —GO{y + 3xy/a}, 29)
7. = GO{(3y* — 3x%)/2a + x}. (30)

Fig. 7 displays the approximate boundary for the triangular section whereas Fig. 8 depicts
the relative error [(@cacuiated — Pexact)/ Pexact] vETsus the perimeter coordinates for the 17-node
model. Again, the relative error decreases as the number of nodal points are increased. Table
2 summarizes the exact and computed warping function and shear-stress values at various
points,

Table 2
CVBEM vs. exact results; St. Venant torsion-—a sixth of the trangular section model
x y & é Ag Tes Fer ATe Ty Fyz ATy
05 0.25 0.6719 0.6820 1.50% -0.375 —0.35 6.67% 0.40625 04  1.54%
0.5 0.50 0.6250 0.6355 1.68% —0.750 - =0.70 6.67% 0.50000 05  0.00%
0.5 0.75 0.5469 0.5560 1.66% -1.125 -1.15 2.22% 0.65625 06 857%
1.0 025 0.8021 0.8150 1.61% —0.500 —0.45 10.00% 0.53125 05 5.88%

1.0 0.50 0.7280 0.7196 1.15% —1.000 -1.00 0.00% 0.62500 0.6 4.00%
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6. Conclusion

The complex-variable boundary-element method has been demonstrated to be a viable
analyses technique for nonuniform St. Venant torsion. Because the CVBEM approach results
in an approximation function which exactly solves the Laplace equation, the only modeling
error occurs in matching the prescribed boundary conditions continuously. However, the
CVBEM offers a unique error analysis technique based on attempting to match an ap-
proximate boundary (where the CVBEM solution satisfies the boundary conditions) to the
true problem boundary. When the approximate and true boundaries coincide, the CVBEM
has developed the exact solution to the boundary-value problem.
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