A two-dimensional dam-break flood plain model
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A simple two-dimensional dam-break model is developed for flood plain study purposes. Both a
finite difference grd and an irregular triangle element integrated finite difference formulation are
presented. The governing flow equations are approximately solved as a diffusion model coupled to
the equation of continuity. Application of the model to a hypothetical dam-break study indicates
that the approach can be used to predict a two-dimensional dam-break flood plain over a broad,
flat plain more accurately than a one-dimensional model, especially when the flow can break-out of
the main channel and then retumn to the channel at other downstream reaches.
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INTRODUCTION

The probable flooding damages which may occur due to a
dam failure is of concern 10 many civil engipeers and
planners. Not only do such studies provide a source of
information for insurance and flood control studies, but
the actual planning process for the construction of a dam
site can be modified by the results of such a predictive
analysis,

Generally, such dam-break studies can be completed by
either scaled hydraulic models or by use of computer
simulation. The most cost effective approach is to
approximately solve the governing flow cquations of
momentum and continuity by computer simulation,
where several situations can be considered by a fraction of
the cost of a scaled prototype model.

For water courses in which flows can be classified as
one-dimensional, several models are presented and
verified in the literature. One widely used one-
dimensional model which is utilized in this study is the K-
634 model version developed by Land'2.

However for flow conditions which are uuly two-
dimensional, such as occur when massive dam-break
flows exceed the water course channel capacities and
excess flows break out and travel away from the water
course, then a one-dimensional approximation may be
inappropriate.

In this paper, a simple two-dimensional dam-break
model is developed and applied to a hypothetical dam
failure situation where channel break out flows are a
major factor in the determination of a flood plain. The
model is based on a diffusion approach where gravity,
friction, and pressure forces are assumed to dominate the
flow equations. Such an approach has been used earlier by
Xanthopoulos and Koutitas® in the prediction of dam-
break flood plains in Greece. In those studies, good results
were also obtained in the use of the two-dimensional
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model in predicting one-dimensional flow quantities. The
diffusion model has also been used to successfully model
one-dimensional channel flows*. In another paper,
Hromadka® considers a one-dimensional diffusion model
and concluded that for low-to-moderate velocity flow
regimes (i.e., less than approximately 25feet/sec), the
diffusion model is a reasonable approximation of the full
dynamic wave formulation.

In this paper, two versions of the two-dimensional
diffusion model are presented. A finite difference grid
model is developed which equates each cell-centered node
to a function of the four neighbouring cell nodal points.
Additionally, the finite difference model is extended to an
integrated finite difference analog based on irregular
triangles using a nodal domain integration (NDI) control
volume definition for each node. Both models are used to
generate hypothetical flood plains, and these results are
compared to a similar study based on the one-
dimensional K-634 model.

A comparison and analysis of model results shows that
the two-dimensional diffusion approach provides a more
reasonable representation of two-dimensional flow effects
than does a fully dynamic one-dimensional madel, and
that the diffusion model affords an easy-to-use predictive
tool for the estimation of dam-break flooding depths over
two-dimensional flood plains.

STUDY AREA DESCRIPTION

The Owens River drains the rugged eastern slopes of the
Sierra Nevada Range, the Beniton Range, and the western
slopes of White Mountains located in Inyo County,
California (Fig. 1). The head waters of the Owens River
flows into Lake Crowley {formed by the Long Valley
dam). The dam is an earthen type, 126t in height with a
crest length of 595ft, and a total storage capacity of
183,465 acre-feet of water. Downstream from Long Valley
D¥am, the Owens River is constrained in an incised canyon
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Fig. 1. Dam-break study location

of volcanic Bishop tuff formation. The river flows through
the gorge to the canyon mouth, seventeen miles
downstream from the dam. The river encounters several
hydroelectric power plants in reaching the canyon mouth.
However in this study, the effects of these obstructionsin a
dam-break analysis is assumed minor due to the relative
magnitude of the flood volume compared to the volume
afforded by each power plant.

Through the first several miles downstream from the
canyon mouth, the river meanders through alluvial fans
with a slope of 50 ft per mile. Four miles downstream from
the canyon mouth, the river enters Owens Valley which is
a flat alluvial valley with a slope of only 10{t per mile.{The
basin elevations range from 4300ft to 3800ft). The river
curves around the City of Bishop about 17 miles down-
stream from the canyon mouth, and then meanders
through Owens Valley for another 40 miles until it reaches
Tinemaka Reservoir. Figures 1 and 2 illustrate the study
location and vicinity.

One-dimensional analysis approach

In this section, the one-dimensional dynamic wave,
implicit dam-break model K-634 developed by Land* % is
used to investigate a hypothetical dam failure and
resulting flooding along the Owens River.

The K-634 model routes a flood hydrograph through a
reservoir with a water level initially below the position
where a breach in the retaining dam is assumed to occur.
The routing of this hydrograph is accomplished by one of
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two procedures; namely, a hydrologic method (storage-
continuity), or a hydraulic method such as discussed in
Land!-Z. When the water level in the reservoir reaches a
preselected level, a breach in the dam is assumed to begin.
The breach begins with a zero width, and widens and
deepens during a specified time of failure. At the end of the
failure, the breach is fully developed and 35 assumed to
remain constant for the remainder of the simulation. The
breach flow rates are computed based on a trapezoidal-
shaped critical flow area. The outflow hydrograph at the
dam is computed as the sum of the initial flow through
dam structures and the flow through the breach.

The dam-break flood is then mathematically routed
downstream by solving the one-dimensional Saint Venant
flow equations using a nonlinear implicit finite-difference
algorithm.

One-dimensional model data requirements

The K-634 data requirements fall into three categories.
(1) In the reservoir: surface area versus elevation tables, or
channel geometry and roughness; (2) at the dam: breach
shape, duration of breach development, dam outlet
structures stage-outflow ratings, and water-surface
elevation when failure begins to occur; and (3) in the
stream: channel geometry, roughness and state of flow
(e.g. subcritical of supercritical). The upstream boundary
condition for routing the flood downstream is the dam-
break outflow hydrograph. The downstream boundary
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condition is a dynamic stage-discharge relation which is
computed from the full dynamic flow equations.

The one-dimensional mode! grid schemetization is
shown in Fig. 2, The channel geometry of the reach of tiver
was defined by field-surveyed cross sections where, for
each section, a maximum of eight elevation versus top
width data pairs were specified. Due to the relatively flat
topography perpendicular to the main channel (see Figs. 2
and 6}, the upper most portions of the channel cross
sections were assumed to have a mild gradient. This
modeling assumption resuits in a false confinement of
channel flows due to a fictitious boundary being assumed
on both sides of the channel. Consequently, predicted
flood plains will be approximate at best, and requires
additional interpretation. The effects of this modeling
assumption will be further discussed in a subsequent
section.

Mathematical formulation for rwo-dimensional model
The Saint Venant equations for two-dimensional flow
may be wriiten as

éq. dq, ¢H
4= Yy 90 g 1
x oy Tar 1
0, 6, @ oH
x =0 )
a +5;Qx/Ax+a—nyQy/A,.+QAx(Sfx+ e @)

%0,

d é oH
L ekl R 3
pe +—-Qay oA, + ax—Q,,Q,/A,-{-gAy(S”+ 6y) 0 (3

where Q,,0Q, are flow rates in x,y-directions; Q.4 flow
rates/length in x,y-directions; A,,A,, directional cross-
section areas; S,.S,,, directional friction slopes; Xy,
spatial and temporal coordinates; g, gravity; H, watet
surface elevation; where, for a grid discretization {Fig. 3),
Q. equals the product of ¢, and the grid width, &. The
equation of continuity (equation (1)) is based on the
assumption of constant fluid density with zero sources or
sinks in the flow field. The x- and y-direction momentum
relations {equations (2) and (3)) assume hydrostatic
pressure distributions.

The local and convective acceleration momentum
terms can be grouped together such that equations (1), (2)
and (3) are rewritten as

b3}
mz+(sz+£)£0, Z=X,y {4)

where m, represents the sum of the first three terms in
equations (2) and (3), and divided by g4,. Assuming the
friction slope to be approximated by steady flow
conditions, the Manning’s equation in inch-pound units
can be used to estimate

R ©)

where A,,4, are directional flow areas; R,.R,, directional
hydraulic radii. Equation (5) can be rewritten as
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Fig. 3. Grid element nodal molecule
Q:z_‘: —'Kza_H—szz: Z=Xx,y (6)

0z
where
1/2
KFE—SEAZREB/Q{{%*"IZ s oz=xy (7}
n 0z

Hromadka®, Akan and Yen®, and Xanthopousos and
Koutitas® assume m, and m, are both negligible, resulting
in the simple diffusion model

éH
z az

Qz= —-K {8)

In equation (6), m, can be retained in either the full form,
or can include either the local of the convective
acceleration component. However, Hromadka® showed
that for one-dimensional dam-break flood waves on flat
plains where flow velocities are generally below about
25 ft/sec m, is generally small, and the loss of accuracy
incurred by setting m,=0 may be considered acceptable
when considering the modeling errors due to the wide
range of model parameter variability which occurs in this
type of analysis as a result of the assumed dam-break
mode of failure, failure rate and shape, watershed friction
factor distribution and variation during the dam-break,
and other factors. Nevertheless, m, can be included in
equation (6} resulting in the complete Saint Venant
formulation; however, the resulting computer computa-
tion effort increases by approximately 50% due to the
cross-product evaluation of the convective acceleration
terms and the local acceleration term approximations.

The proposed two-dimensional dam-break model is
formulated by substituting equation (8) into the
coentinuity equation giving

o oH & oH oH

e P )
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If the momentum term groupings were retained, equation
{9) would be written as

8 OH 0 oH o oH
dx Tox dy Ydy o (1)

where A is the nodal control volume area and

é d
S= a—x{mex) + av{Kymy)

and K,.K, are also functions of m,m, respectively.

Numerical model formulation (grid elements)

For uniform grid elements, the numerical modeling
approach used is the integrated finite difference version of
the nodal domain integration (NDI) method. For grid
elements, the NDI nodal equation is based on the usual
nodal system shown in Fig. 3. Flow rates along the
boundary I' are estimated using a linear trial function
assumption between nodal points. For a square grid of
width

Qlr,= — (K fr JH— H /8 (1)

where

Koir. = {I.486(AR2f3jn}rE/\(H5—-HC /512 D=0
xfFg =

_ (12)
0; D<OoriH;—Hq <1073
In equation (12}, the terms A, R, and nare evaluated at the
average flow depth defined by D=(Dg+D.)/2, and
n=(ng+nc)2. Additionally, the denominator of K, is
checked such that K, is set to zero if |[Hy—H(| is less
than a tolerance such as 1073 ft.
The model advances in time by an explicit approach

Hi+1 =,K:'Ht' (13)

where the assumed dam-break flows are added to the
specified input nodes at each timestep. After each time-
step, the conduction parameters of equation (12) are re-
evaluated, and the solution of equation (13) reinitiated.
Using grid sizes with uniform lengths of one-half mile,
timesteps of size 3.6 sec were found satisfactory.

Numerical model formulation (irregular triangle elements)

The simplex triangle element can be subdivided into
nodal domains such as shown in Fig. 4. The total
assemblage of triangle elements results in NDI control
volumes for each nodal point such as shown in Fig. 4.
Assuming a linear trial function on each simplex element,
the x- and y-direction flow terms are computed by

oHN

where K, is evalnated similar to equation (12) at the
triangle centroid («), and |I',| is the length of the NDI
boundary projected on the y-axis (see Fig. 5). Hromadka
and Guymon® show that the assemblage of NDI flow rate
terms result in an element conduction matrix system
K;H*+K;H® which is identical to the well known
Galerkin conduction matrix for the simplex element.
Integrating the linear trial function on each nodal domain



Fig. 4. NDI control volumes

results in the mass matrix
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where the superscript () refers to simplex element (e); A% is
the element area; and # is a mass lumping factor. Using
n=(2,22/7,20) results in a Galerkin, subdomain integra-
tion, and an integrated finite difference algorithm,
respectively.

In the applied model, 5= oo was used with the explicit
time advancement of equation (13). At each timestep, K,
and K, are evaluated at each triangle element’s centroid,
and flux terms are computed from equation (14). The
change in the nodal value of H is then estimated directly
from the timestep duration of net inflow into the NDI
control volume.

As stated before, the total momentum term groupings
of (m,,m,) can be retained in the diffusion model, using an
iteration approach in the explicit model until an
acceptable balance of values is achieved between
timesteps.

Two-dimensional model data requirements

Both of the two-dimensional models require only the
natural ground topography and estimated Manning's
friction factor for data input. Consequently, the diffusion
model will provide useful dam-break flood-plain
estimates with only minimum data requirements which
are usually readily available. For the grid medel, a nodal
molecule associates the central node to the north, east,
south, and west nodal points. Zero flow boundary
conditions are easily accommodated by entering a zero
for the appropriate nodal molecule position. The nodal
point elevation is based on an estimated average elevation
for the assumed grid cell.

Dam-break flood plain model: T. V. Hromadka 11 et al.

The NDI triangular element model requires nodal
point coordinates and elevations,and averaged triangular
element friction factors.

Both models include a critical depth (specified)
boundary condition whereby flow depths may be
assumed to correspond to critical flow conditions.

Finally, the inflow hydrograph may be specified at one
or more nodal points, In this study, the form of this
hydrograph was specified as the change in flow rate per 5-
minute unit period. This time derivative of inflow is used
to provide a smooth inflow hydrograph stepped
according to the specified mode] time step.

CASE-STUDY RESULTS AND DISCUSSION

The K-634 modei was initially applied to the steep canyon
reach immediately downstream of the assumed dam-
break. The modeling results indicated negligible
attenuation of the flood wave peak and, consequently,
subsequent studies of the two-dimensional plain were
assumed to have the dam-break located at the down-
stream point of the canyon, neglecting the effects of the
long canyon reach.

Applying the K-634 model to computing the two-
dimensional flow was attempted by means of the one-
dimensional nodal spacing shown in Fig. 2. Cross sections
were obtained by field survey, and the elevation data used
to construct nodal point flow-width versus stage diagrams
for use in the K-634 model. A constant friction factor
(Manning’s) of 0.04 was assumed for study purposes. The
assumed dam-break failure reached a peak flow rate of
420 000 cfs within one hour, and returned to zero flow 9.67
hours later. The resulting K-634 flood plain limits is
shown in Fig. 6. As discussed in a previous section, a slight
gradient was assumed for the topography perpendicular
to the main channel. The motivation for specifying such a
gradient was to limit the channel floodway section in
order to approximately conserve the one-dimensional
momentum equations. As a result of this assumption,
fictitious channel sides are included in the K-634 model

=

Fig. 5. Projection of nodal domain onto y-axis
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study which results in an artificial confinement of the
flows. Thus a narrower flood plain is delineated (such as
shown in Fig. 6) where the flood flows are falsely retained
within a hypothetical channel confine. An examination of
the flood depths given in Fig. 9 indicates that at the widest
flood plain expanse of Fig. 6, the flood depth is about 6-
feet, yet the flood plain is not delineated to expand
southerly, but is modeled to terminate based on the
assumed gradient of the topography towards the channel.
Such complications in accommodating an expanding
flood plain when using a one-dimensional model are
obviously avoided by using a two-dimensional approach.
The two-dimensional diffusion models were applied to
the total flood plain area using the grid and triangular
discretizations shown in Figs, 7 and 8, respectively, The
same inflow hydrograph produced by the K-634 model
was used for both two-dimensional simulations. Again,
the Manning’s friction factor of 0.04 was used. The
resulting flood plain is shown in Fig. 7 for the i-square-
mile grid model. The 168 triangular element NDI model
resulted in a similar predicted flood plain (Fig. 8).
Comparisons of predicted maximum water elevations
are shown in Fig. 9 which plots K-634 modeling resuits
and the two-dimensional modeling results. The two
approaches are comparable except at points shown as A
and B in the figure. Point 4 corresponds to the predicted
breakout of flows away from the Owens River channel
with flows traveling southerly towards the City of Bishop.
As discussed previously, the K-634 predicted flood depth
corresponds to a flow depth of 6 feet (above natural
ground) which is actually unconfined by the channel. The
natural topography will not support such a flood depth
and, consequently, there should be southerly breakout
flows such as predicted by the two-dimensional models.
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With such breakout flows included, it is reasonable that
the two-dimensional models would predict a lower flow
depth at point A.

At point B, the K-634 model predicts a flood depth of
approximately 2 feet less than the two-dimensional
models. However at this location, the K-634 modeling
results are based on cross-sections which traverse a 90-
degree bend. In this case the K-634 model will over-
estimate the true channel storage, resulting in an under-
estimation of flow depths.

In comparing the various model predicted flood depths
and delineated plains, it is seen that the two-dimensional
diffusion model produced more reasonable predictions of
the two-dimensional flood plain characteristics which are
associated with broad, flat plains such as found at the
study site than the one-dimensional model. The two-
dimensional model affords approximation of channel
bends, channel expansions and contractions, flow
breakouts, and the general area of Iinundation.
Additionally, the two-dimensional modeling approach
allows for the inclusion of return flows {to the main
channel} which result due to upstream channel breakout
flows, and other two-dimensional flow effects without the
need for special modeling accommodations which would
be required when using a one-dimensional model.

Model sensitivity

The sensitivity of the overall modeling approach is
illustrated for the case of K-634 by examining the three
parameters of nodal spacing, Manning’s 5, and dam-
break time of failure. The base run values are a nodal
spacing of 0.25 mile, Manning’s friction factor of 0.04, and
a 1-hour dam-failure duration.
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Fig. 8. Floodplain and triangle layout for two-dimensional diffusion model (108 nodes)
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Fig. 9. Comparison of modeled water surface elevations

Table !. K-634 sensitivity analysis

River Mile
20 84
Maximum Mazximum
flowrate Maximom flowrate Maximum
{cfs) elevation {cfs) elevation
Node spacing
0.25 mi* 408038 4208.80 384717 4098.58
0.30 mi 412266 420898 386164 4098.60
0.40 mi 412082 420911 385878 4098.59
0.50 mi 412129 4209.12 384828 409899
Time of fatlure
0.50 hr 420301 4209.04 388965 4098.64
10 hr* 408 038 4208.80 384717 4098.58
1.5 hr 400352 4208.66 380050 4098.4%
1.75 hr 399380 4208.64 377584 4098.45
20 hr 394846 4208.56 374338 4098.39
Manning’s n
0.04* 408 038 4208.80 384717 4098.58
0.045 411221 4209.82 382273 4099.35
0.05 410386 4210.74 378310 410005

* Base run used for flood plain study purposes

It can be seen in Table 1 that the most sensitive
parameter is the friction factor, followed by the relatively
insensitive parameters of time of failure and the nodal
spacing. Similar sensitivity is found for the diffusion
models.

CONCLUSIONS

A simple two-dimensional diffusion model was developed
which can be based on either a finite-difference gnid or a
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NDI irregular triangular element discretization. The
keystone of the two-dimensional model is the diffusion
version of the Saint Venant flow equations. Application of
the model to the prediction of two-dimensional dam-
break flood waves over broad, flat plains indicate that the
diffusion model provides a significant advantage over the
corresponding one-dimensional models in the study of
flood plains such as occurs from a dam-break. The two-
dimensional model is simple to use, requires readily
available data, and does not need special modeling
techniques to approximate two-dimensional flood flow
effects.
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