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The complex variabie boundary element method (CVBEM) is used to determine approximation furtc-
tions for boundary value problems of the Laplace equation such as occurs in potential theory. By
determining an approximative boundary upon which the CYBEM approximator matches the desired
constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution
throughout the interior of the transformed problem domain, Thus, the acceptability of the CVBEM
approximation is determined by the closeness-of-fit of the approximative boundary to the study

problem boundary.

INTRODUCTION

Use of complex variable analytic function theory for
developing approximations for two-dimensional potential
problems has proved to be an effective tool for numerical
analysis. Hromadka and Guymon® use a Cauchy integral
formulation to study boundary value problems of the
Laplace equation as applied to heat transfer and slow-
moving boundary problems, In another paper, Hromadka and
Guymon® generalized the boundary integral approach into
a complex variable boundary element method (CVBEM).

Because the CVBEM develops an approximation func-
tion which is analytic throughout the interior of the problem
domain, then necessarily the approximator solves the
Laplace equation exactly throughout the interior of the
domain. Consequently, the goal of the CVBEM approxima-
tion is to match the boundary condition values continuously.

Due to the imprecise trial function assumptions, the
CVBEM results in an error of approximation in matching
the boundary conditions. This error is manifested as a
relative error distribution on the boundary. Should the
boundary conditions be a set of constant values (stream or
potential functions), then the CVBEM approximator can be
used to locate those co-ordimates which coincide with the
boundary condition values. These co-ordinates result in an
approximative boundary upon which the CVBEM approxi-
mator satisfies the boundary condition values continuously,
and yet satisfies the Laplace equation exactly throughout
the interior enclosed by the approximative boundary.
Should the approximative boundary coincide with the
problem boundary, then the CVBEM approximator is the
exact solution to the boundary value problem.

In this paper, the CVBEM will be briefly developed {the
reader is referred to Hromadka and Guymon?® for a com-
plete derivation). The approximation function is defined
as a Cauchy integral, resulting in a finite series of products
of complex polynomials and logarithms, The CVBEM will
then be applied to potential problems where the exact
solutions are unknown. In order to evaluate the CVBEM
approximation accuracy, an approximative boundary s
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determined (a discussion of the approximative boundary
and its existence is given in Hromadka®) by matching the
known boundary condition values (level curves) with the
corresponding level curves of the approximator. The CVBEM
approximator is the exact solution to the subject potential
problem with the problem boundary transformed into the
approximative boundary. The engineer can then easily
evaluate the accuracy of the CVBEM approximator by
visually examining the closeness of fit between the problem
boundary and the approximative boundary. In this paper,
the approximative boundary corresponding to a CVBEM
approximation function is determined for several potential
problems of interest including ideal fluid flow, groundwater
seepage, and heat transfer. From the several applications it
is shown that the approximative boundary concept is an
effective and easy-to-use means of numerical error evalua-
tion for the CVBEM.

CYBEM DEVELOPMENT

The CVBEM is derived in detail in Hromadka and Guymon;*
therefore, only the major steps in developing 2 numerical
model will be presented. Let T be a simple closed polygonal
contour composed of straight line segments. Let §2 be the
simply connected interior of I". Subdivide T into m complex
variable elements (CVBE) by I'= Ul j=12,...,m On
each Ty define (k + 1) equidistant nodal points such that
zj,1 and Zj, g+ are the end-points of T}. Figure | shows the
global and local nodal number conventions. The global
nodaf co-ordinates are related to local nodal co-ordinates by
Zj,1 =27 and z; ga1 = Zj41,1 = Z;41. Define complex num-
bers wy; at each node zj;. Then order & complex poly-~
nomials }}‘-"(z) are uniquely defined on each Fy, and an order
k global trial function is defined by

m
Gilz)= Y §Pf@)z&r (1)

j=1
where §; =1 for z&€ 1}, and 8; =0 for z ¢ I;. Then G4(z)
is continuous on [ and

im Gi(z) = w(Z) (2)
maxli}.(ao
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Figure 1. (k +1)-Node boundary element T; nodal
definitions

where in (2) it is assumed that w(z)} is an analytic function
which satisfies the potential problem on QUI, and that
each (.1-.7”' = CA.)(ZJ")

Consider the H), approximation function @(z) defined
by the boundary integral (in the usual positive sense of
integration)

dJk(z)=—l-_- —G—kg)—ds; zglzcQ (3)
2mi §—z
r
Using (2)
Ge®)dS _ [ZPF®IHE o [PFO &
J {—z -z - Z-! {—~z )
i

On each I, define a local co-ordinate system by
=zt Gen—z08 HED, 0s5<1 (5)

Then by rearranging terms in (5) and substituting into (4)

(6)

fP}‘(:,—) ds; _ J‘P,-"(s,-) ds;
-2 5§
] i
where ij(s}) =P‘,~k(§’i(s,)), and v = (z —2)/{2; 4, —z;). Equa-
tion (6} is solved by factoring (s; — %) from P}‘(s,-) giving
1

PE(s)) ds; ~
[ RS e rpaertops, o)
i Y
£5=0

!

where RF™!z) is a k—1 order complex polynomial;
PF(y;) is the order k polynomial of (1) with v, substituted
into the argument; and

dizhy
szln ( ’d L )) + IBI-H”,-(Z)

/

In the above, dj(z) = |z —z;1, and 6;,4 ;(z) is the central
angle (Fig. 2) between points {zj, z;,y, 2.
Summing the m CVBE contributions along [ gives

2midge) = TRETIO+ TPFH,

Letting

!
R¥1z2)=— Y RE-V2),
@)= TR
the CVBEM approximation becomes

1
O(z)=R* Yy + - EP,!C('Y,;)H; (8)

In (8), it should be noted that the Pf(y,-) are of the form
of the assumed trial functions on each T}.

Letting node z, be on the branch cut of the complex
logarithm function In{z —§) where zE€Q and { €T (see
Fig. 3), then (8) can be expanded as

N )]

Oplz) = R*~ Y7y - %‘ZA," 1z =) n(z =z )+ P,’f,(z)
9}

where AF ™ is an order (k — 1) polynomial defined by

k
et (Pfk('Yj)_Pj—]('Yj—l))
Aj = —
(Z 2’]-)
and In{z -~ z;) is the principal value of the complex logarithm
function. From the continuity of G"‘(Q‘}, it is seen that at
nodal co-ordinate 2, PF(y) = Pf_i(%;_) and that (z — z;)
is a factor of Af % In (9), the PX(z) term appears due to

(24000

Zz

Figure 2. CVBEM linear trial function geometry for point
Z2=2;

BRANCH-CUT

7|

Zm

Figure 3. Branch-cut of in(z — ) function, ¢ €T
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the complete circuit about the branch point of the multiple
valued funcuon In(z — .

Letting R¥(z) = R¥~1(z) + PX(z), then the final form
of the CVBEM approximator is

-
Gx(z) = R¥z)— L Y Af Mz —zp)Inz — ) (10)
2m i3y

From the form of (10), Gy (z) is analytic on §2. Thus
xl2) = d(z) + iY(z) where ¢(z) and §(z) are two-dimen-
sional potential and stream functions which both solve the
Laplace equation exactly on §2. Thus, by forcing ¢ (2) to
be arbitrarily close {€) to the boundary condition values of
w(z) on T, then it is guaranteed by the maximum modulus
theorem that | w(z) — @(z) | e forall z € 2.

THE CVBEM APPROXIMATION FUNCTION

Because the CVBEM produces an exact solution to the
Laplace equation on §2, then convergence of w,(z) to w(z)
is achieved on £ UT by minimizing the approximation
error on [, That is,

) lim G

. J‘ £(£)d§ J~ maqur}]__,o k() d¢

lim —_— T —_——
maxll"ﬂ_.g g— 2 ;- Z

-Js8

r

=2mw(z) (11}

However, we are limited to a finite number of nodal points
and boundary elements on [, Therefore if (z) is not an
order k (or less) complex polynomial, then

1 m
E(z)enk(z)—,,—m_ T ANz —zpn(z —z) (12)
<M 5=

and a residual error E(z) is to be minimized on ", One
method of reducing £{(z} on I is to compare the Xnown
boundary condition values of wi(z;) to the approxlmauon
values @w(z;) and locate regions of large deviation? Addi-
tional nodal points are then specified at these large relative
error locations, resulting in a reduction of E(z) by adaptive
integration. Specifically, a typical application of the CVBEM
is to assume that at each nodal point either ¢ or ¥ is speci-
fied (or normal gradients of ¢) and, consequently, part of
the problem is to determine these unknown nodal values.
For w(z) analytic on QUT and @ = w(zy), then ¢; +
iV = ¢ + Y. The usual case is that only one value of
#;i ot Yjy is specified, thus we can write

wj; = Aég + 4§, (13)

where the symbol A is notation that & = 1 if the associated
variable is ¢, and A =1{ if the associated varible is \/; and
k, u are notation for the known and unknown nodal values,
respectively, Then the modeling strategy is to reduce the
known values of | A&, — Aé,| on [; that is, to determine
the CVBEM approximator ¢»(z) such that the boundary
values are arbitrarily close to the known boundary condi-
tions, A€,

THE APPROXIMATIVE BOUNDARY

Consider the boundary value problem of the form V?¢=0
on $UT with boundary conditions of constant ¢ or W (or
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normal gradients of ¢) along portions of I'. Then T" can be
envisioned as the set of points z defined along the various
level curves (lines of constant ¢ or W) composing the pre-
scribed boundary conditions. For this type of problem, a
transformation T(z) exists which maps TUQ onto the
upper half plane, where an exact solution to the transformed
problem exists. Except for a few types of boundaries, how-
evet, T'(2) is not readily determined.

Analogous to the above transformation, T(2}, the CVBEM
approximator w(z) can be used to plot level curves corre-
sponding to the values of the prescribed boundary condi-
tions. The resulting approximative boundary T and its
associated interior € form a domain such that &(z) satisfies
the new boundary value problem exactly on 22T, That is,
had the problem boundary been of the shape " then &(z)
would be the exact solution. Addmonally, as the distance
lIZ—zIl approaches zero {for z el and zE€T), then
| w(z)— &(z)| becomes negligible?

Thus a more visual representation of approximation
error is available by generating I and examining the close-
ness-of-fit to the problem boundary I'. This approximative
boundary concept is illustrated by the following potential
problem applications.

Application I. Groundwater seepage
The equation of flow continuity in a two-dimensional

saturated groundwater flow regime is
o, av

=0 (14
ox ay 14)

where (v, vy) are x and y direction soil-water flow rates,
respectively. Assuming Darcy’s law applies,
3¢ B
—ky N 15
ax’ 7 Y ay (13)

where ¢ is the total energy head; and (%, &) are hydraulic
conductivities in the co-ordinate axis direction. By rescaling
the domain, (14) and (15) can be combined as
3¢ ¢
TStz 0 {16)
ax*  ay
which indjcates that the Laplace equation applies through-
out the groundwater flow regime. Additionally, there exists
a stream function ¢ which is the harmonic conjugate of the
potential ¢ such that the Cauchy-Riemann equations are
valid
3 oy 99 3
—=—, - —= _f (7
dx ay dy  dx

Thus, there exists an analytic function w(z) = ¢(z) + iy (z)
which describes the groundwater {low regime.

ln this application the flow regime is approximated for
the case of an excavation protected by impermeable sheet-
pile walls such as shown in Fig. 4. Intuitively, the sheet-pile
walls necessarily define flowlines whereas the static satur-
ated groundwater phreatic surface defines equipoentials.
The base of the domain is prescribed to be impermeable
(zero flux). The objective is to determine an approximator
w(z) which equals the known boundary condition values
continuously. Figure 4 shows a CVBEM {64-pode} model
which develops a <(z) approximation function. Because
w iz} does not match the known boundary condition values
continuously on I, an approximative boundary I' (dashed
lines) is determined by plotting level curves corresponding
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Figure 4. Application No. 1 pmblem definition and
CVBEM approximative boundary T (dashed line)

to the prescribed boundary conditions. Figure 4 contains
I’ superimposed on I'. From the figure, ©(z) is the exact
solution to the problem redefined on T'. R

Examination of the differences between I" and T reveals
that the only major discrepancies occur in the slight
shortening of the sheet-pile walls {(about 1%), and the
rounding of all right angles on . Consequently, I' is an
adequate geometric approximation of the true boundary,
I, and «{z) is an adequate approximation of the true
solution, w(z).

Applicarion 2. 1deal fluid flow
Ideal fluid flow in two-dimensional flow regimes is
mathematically described by the Laplace equation where
velocity components are defined by
99 3¢
Uy =— -, D, =— —
* ax' 7 oy
where ¢ is a velocity potential. The CVBEM can be applied
directly to approximating two-dimensional steady incom-
pressible flow (irrotational). The corresponding stream
function relates the velocity components by

(18)

ay Y
. ==, o, =— ]9
ey’ 7 ax (19)

Thus,  also satisfies the Laplace equation.

In this application the CVBEM is used to develop an
approximation function of ideal flow down an inclined sur-
face, over a rise of unit radivs, and then onto a horizontal
surface. After developing the CVBEM approximator @(z),
an approximative boundary T is developed by plotting the
level curves of @(z) which correspond to the boundary
conditions of the problem. Figure 5 iilustrates the applica-

tion problem domain, boundary conditions, and a CVBEM

approximative boundary T’ for a 48-node w(z) approxi-
mation. .
The major geometric differences between I' and T arise

* in the rounding of all right angles on I, and the smoothing

of the circular rise. However, this smoothing seems to
better approximate viscous flow effects than the abstract
model of ideal flow. Consequently, the d(z) approximator
may be considered a more appropriate model of viscous
fluid flow than the true solution w(z). Should T" need to be
closer to I, addition of nodal points is all that is required.

Application 3. Steady state heat flow

Analogous to the development of equation (16), Fourier’s
law relates heat flow to the spatial gradient of temperature
by

a9 & o¢
Tax’ L4 Tay

where (g, q,) are the appropriate directional heat flow
rates; ¢ is temperature; ang k¢ is the thermal conductivity.
For steady state conditions, continuity of energy results in
the Laplace equation. Finally, a stream function ¢ exists

(20)

="

* such that the complex function w(z)=¢(z)+ iy (z) is

analytic throughout the problem domain.

In this application, the temperature and heat flow rate
distributions are approximated by a - 30-node CVBEM
approximator <X(z}. Figure 6 shows the problem boundary
I and the corresponding approximative boundary, I.

This application illustrates the general tendencies of the
CVBEM in approximating wi{z) on 2 UT with the function
&{(z) defined on QUT. From Fig. 6, a rounding of all
corners on T is shown on I'. Nevertheless, the boundary
I" may be adequate for most analysis purposes (with w(z)
being the exact solution of the boundary value problem
redefined on QU

DISCUSSION OF PROBLEM RESULTS

The applications considered in this paper demonstrate the
utility of determining an approximative boundary corre-

wag -~
[STRE AMLINEY
P10 ~———s

Figure 5. Ideal fluid flow problem. The approximative
boundary ¥ is plotted as dashed lines

Figure 6. A steady state heat transfer problem. A CVBEM
approximative boundary U is plotted as a dashed line
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sponding to CVBEM approximation functions, The ap-
proximative boundary ' is developed by plotting the level
curves of constant potential (or stream function) which
match the boundary condition values on the problem
boundary I'. Consequently, this technique is applicable only
to boundary value problems which have level curves for
boundary conditions.

The error of approximation is directly manifested by the
departure of the approximative boundary from the prob-
lem houndary. Where large spatial discrepancies are observed,
additional nodal points are added to increase the approxi-
mation accuracy. The approximative boundary can often be
argued to better represent the ‘as-built’ or a more realistic
problem boundary than the defined problem boundary.
This latter idea is especially valid in large scale civil engin-
eering studies where angle points may be actually con-
structed as rounded edges.

To illustrate the CVBEM approximation results within
the interior of the problem domain, Figs. 7 and 8 show
groundwater seepage problems with the approximated
boundary, and several streamlines and lines of the constant
potential plotted. Because the maximum approximation
error magnitude € must occur on the boundary, interior
values of ©(z} necessarily differ from w{z) (in magnitude)
by less than e.

CONCLUSIONS

The CVBEM develops an approximation of the analytic
solution function w(z) defined on QUTI. The CVBEM
approximator «3(z), however, is the exact solution to the
Laplace equation boundary value problem redefined on
UT. Consequently, the success of the CVBEM can be

/-I'

20

ro
4]

1o 1516

Figure 7. Plot of streamliines and potentials for soil-water
Sflow through a homogeneous soil
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Figure 8. Plot of streamlines and potentigls for soil-warer
flow beneath a dam. {Note that the vertical and horizontat
scales differ}

readily inspected by evaluating the closeness-of-fit of the
approximative boundary I to the problem boundary I,
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