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ADJUSTING THE NODAL POINT DISTRIBUTION IN
DOMAIN GROUNDWATER FLOW NUMERICAL MODELS

7. V. Hromadka II and T. J. Durbin

U.S. Geological Survey

ABSTRACT

A procedure for anticipating the relative error which results
from a domain model of groundwater flow is presented. The
procedure uses the complex variable boundary element method to
develop steady-state solutions within the groundwater basin
(or portions of the basin). These steady-state solutions are
used for comparison with the domain model approximation, and a
relative error distribution is determined. The nodal point
distribution is adjusted to increase the nodal density in re-
gions of large error, and likewise decrease the nodal density
in regions of smalil error. The resulting nodal distribution
is found to produce associated transient problem solutions
comparable to approximations generated by increasing the total
number of nodal points.

INTRODUCTION

A popular method for approximating groundwater flow effects is
by means of numerical modeling. Generally, domain methods such
as finite element and finite difference are used, although
collocation methods and boundary integral equation methods have
a1so been employed. In the domain methods the problem domain
is discretized by nodal points into control volumes or finite
elements. The choice as to nodal point placement s usually
dased on the judgment and experience of the hydrologist,
senerally, the nodal point density is increased in regions
where the state variable (e.g. water surface) is anticipated to
‘ary rapidly with respect to either space or time. Additional
Placement of nodal points is governed by the interface between
Yissimilar materials or boundary condition specifications (e.qg.
vuifer fractures, groundwater wells, etc.). A complete

-"esentation of such domain numerical methods is given in
vinder and Gray (1977)
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In this paper, the main objective is to report on a procedure
for identifying regions within the problem domain where the
nodal point density needs to be increased in order to increase
the numerical accuracy. The basis of the procedure is to
examine the accuracy of the numerical model in predicting
steady-state conditions where various boundary value problem
conditions are considered. In order to examine the steady-
state predicted values, the CVBEM (complex variable boundary
element method) (Hromadka and Guymon, 1984a; Hromadka, 1984)
is used to develop nodal point approximation values and esti-
mates of nodal point relative error. HNodal points are then
added (or removed when possible) in regions where the domain
model estimates of the steady-state values differ significantly
from the CVBEM predicted values. In this fashion, the conduc-
tion process modeling error due to choice of discretization is
reduced.

Only the two-dimensional discretization of the groundwater
basin is considered where all vertical direction effects are
averaged by integration. The procedures can be extended to
the three-dimensional case by examining several two-dimensional
cross sections of the problem domain (such as vertical and
horizontal slices of the domain).

The paper is divided into four parts. The first part presents
the development for approximation of the transient groundwater
flow regime. The NDI (nodal domain integration technique}
(Hromadka, et al., 1981) is used to develop the domain numeri-
cal solution. An advantage of using the WDBI approach is that
the Galerkin finite element method, the subdomain integration
method, and an integrated finite difference method can be
represented by a single computer code. The second part of the
paper presents a brief development of the CYBEM for use in
determining a highly accurate solution of the two-dimensional
Laplace equation. Because the CVBEM affords an immediate and
exact evaluation of approximation error and results in an ap-
proximation function which exactly solves the Laplace equation,
the numerical technique can be used to determine {to a high
level of accuracy) an approximation of a Laplace equation
boundary value problem. Part three presents the error evalua-
tion technique (Hromadka and Guymon, 1984b) used with the CVBEM.
Finally, part four presents two illustrations of the presented
approach in locating domain method nodal points.

DOMAIN NUMERICAL MODEL DEVELOPMENT

Two-dimensional models of groundwater basins have been exten-
sively reported in the literature. Generally, either the
finite element or finite difference method is used to develop

a matrix system of nodal point values as functions of the basin
geometry, flow parameters, and boundary conditions. The gen-
eral equation solved is to the form (for a confined aquifer)
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where [k] is a symmetrical banded matrix representing the soil-
water flowrates from the nodal point control volumes; [C] is a
symmetrica1 banded matrix representing the capacitance of the
nodal point control volumes; F is a vector of specified nodal

point values and flux boundar} conditions (with [K] and el
appropriately modified); and ¢ and & are the vectors of nodal

point values and their time derivatives. Hromadka, et al.
(1981} show that an infinity of domain methods can be described
by (3) when written in the form

(K] ¢ + (0§ = F (4)

where n = 2, 22/7, = results in the Galerkin analog, subdomain
integration, and an integrated finite difference formulation,
respectively.

In this paper, only errors in approximating the flowrates are
considered. That is, it is assumed that the integration
approximation scheme for the state variable in each nodal point
control volume is assumed adequate {i.e., an appropriate n
exists in (4)), and the specified flow parameters and boundary
conditions are assumed adequately defined. To evaluate the
numerical errors resulting from the [K] matrix, a steady-state
problem is solved of the form

(Kl ¢ =F (5)
where F is a vector representing the boundary conditions for a

selected steady-state scenario. Usually, several groundwater
basin scenarios are considered resulting in several approxima-
tions from {5) which can be examined for numerical error de-
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velopment. However, to evaluate the error in (5), the ¢ vector
needs to be compared to the correct solution vector ¢*. Be-

cause an analytic solution for the problem approxima%ed by (5)
is seldom available, the CVBEM is used to develop another ap-
proximation vector ¢' and a corresponding relative error dis-

tribution. The ¢' values represent a highly accurate estimate
of the exact solution values, ¢. The ¢' vector is then used
for comparison purposes with the domain model selution of ¢ In

order to locate regions where the domain method approximat%on
deviates substantially from the CVYBEM approximation values.

CVBEM DEVELOPMENT

Hromadka and Guymon (1984a) present a detailed development of
the CVBEM, A comprehensive presentation of the method is given
in Hromadka {1984). A feature available with the CVBEM is the
generation of a relative error measure which can be used to
match the known boundary condition values of the problem.
Consequently, the method can be used to develop a highly
accurate approximation function for the Laplace equation and
yet provide a descriptive relative error distribution for
analysis purposes. Because the main objective of this paper
is to analyze the numerical error in solving (5), it is noted
that the Laplace equation is solved throughout the problem
domain (if homogeneous) or in connected subregions (if inhomo-
geneous). Many anisotropic effects can be accommodated by the
usual rescaling procedures or by subdividing the total domain
into easier-to-handle subproblems. The CVBEM is then applied
to the probiem domain(s} as discussed in the following.

Let ¢ be a simply connected domain with boundary T where I is
a simple closed contour (Figure 1). Discretize r by m nodal

points into m boundary elements such that a node is placed at
every angle point on T (Figure 2). Each boundary element is

defined by

ry = iz: 2 =z(s) where z(s) = 25+ (zj+]—zj)s, 0<s<1}, j#m (6)

with the exception that on the last element,

Tn ® {z: z =2{(s) where z(s) = z, +(z, -zm)s, 0<s<1}

Then m

p- U s {7)
Let each rj be discretized by (k+1) evenly spaced nodes (k1)
such that Fj is subdivided into k equilength segments (Figure

3). Then rj is said to be a (k+1)-node element. From
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Figure 3, each Fj has an associated nodal coordinate system

such that Z31 7 Z; and Zike) T 2

j i+ T i,

On each Fj, define a local cocrdinate system by

cJ(s) =23 4 + (Zj,k+] - zj’])s, 0<s<]
{8)
=z ¢ (Zj+1 - zj)s
where dgj = (Zj,k+] - zj’])ds.
on each {k+1)-node element ry. @ set of order k polynomial
basis functions are uniquely defined by
k _ k
Nioi(s) = a5 g o vag g8 ke g s (9)
where 1 = 1,2,---,(k+1) and 0<s<1, and where
K zj n "2y 1, n=1
Nj L JLn _J.t o - (10)
Zj,k+1 'Zj,] O, n# i

The basis functions are further defined to have the property

that for zeT
3
L -z,
|rN-k~ {——i’i-_J, CET

I
l 0, cirj

Let w(z) be analytic on aUr. That is, let w(z) be the solution
{unknown) to the steady-state boundary condition problem being
used to study (5). At each nodal point on I, define a speci-
fied nodal value by (Figure 3)
we » = w{z.
" w2y,

hy ) (12)

i

where from Figure 3, Wil TR T 850y ke

Using (11) and {(12), an order k global trial function is
defined hy
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k 7 - Z,
64(z) = 3 Gk(cj(s)) =D Iag Njki[ Fp—— J (13)
J NE e Tt A

From (13), the global trial function is continuous on . An Hk

approximation function &k(z) (Hromadka, 1984) is defined by the
Cauchy integral

) ] J 6(z) dq

2ni
T

> Zefl, Z4T (14)
L -z

Because the derivative of ;k(z) exists for all z:c5, then &k(z}
is analytic in 0 and exactly solves the Laplace equation in q.

Expanding (14) and using (7) gives

[ ) e " eke a

= e —— (15)
] -z = g -z
I Fj

Integrating on boundary element j gives (Hromadka, 1984)

[ &) 8e Kook 2 "254 ] (16)
—— =Rz} + 3w NS Ly )n m—l_J
%‘ - 2 j PR F B I RN 7 -2
J
where R§'l(z) is an order (k-1) complex polynomial resulting

from the circuit around point z {Figure 4) and v5 is equal to

(z - Zj)/(zj+] ‘Zj}-

Thus, the CVBEM results in the approximation function

&k(z) =

k-1 - k [z ~z. ]
. NS v +1
.~ § RJ (z}) + ? 554 J,1(YJ) no - i+l }

or in a simpler form (Hromadka, 1984)

o {2) = RN ] 5 In (z -z.) 5 T.X (18)
me— nzzjii

2ni ]

z) +

k _ - k - k k
where T." = wil1 4 Nj-],i (Yj—1) ey Nj,i (yj), and R™(z)
follows from (17).
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The approximation function of (18) exactly satisfies the gov-
erning flow equation in the problem domain o for the approxi-
mated boundary conditions on the problem houndary, I'. Because

oz 18 analytic on @, then the maximum relative error of
lw(z) - wk(z)l must occur on T'. Consequently, the total

approximation error can be simply evaluated on I with the cor-
responding errors in the interior of o being less in magnitude.
gecause the boundary conditions used to evaluate {18} are known

continuously on T, then w (z} can be determined within arbi-

travy accuracy by the addition of nodal points on T due to
(without proof)

lim  6R(z2) de

. max|T|+o wlz) dg
2ni 1im w, (2} = J = = 2ni w(z){19)
max|Ts|+o t-? -z
J T

CYBEM ERROR REDUCTION TECHNIQUE

The previous discussion shows that the resulting CVBEM approx-

imation function ;(z) is analytic in the problem domain.
Therefore, both the real equipotential approximation function

& and the imaginary approximation y function satisfy the
faplace equation vZ2¢ = g2y = Q for z 9, and w = ¢ + iy.

Therefore, the only approximation remaining is the continuous
matching of the boundary conditions on the problem boundary, T.

This error of approximation is reflected in the difference be-

tween ;(z) and w(z) on r for the conjugate function specified.
For example, if ¢ is known on element Ty, then the error used

is e¢ =¢ - ¢ for z e T;. Likewise, if ¢ is known on element
r, then the error used is ew =y -~ ¢. This relative error can

be determined continuously on © and an appropriate plot of the
ercor in matching the boundary constructed. Hromadka and
Guymon {1984b) use this error distribution on r to locate addi-
tional collocation points on T in order to develop & subsequent
refined CVBEM approximation function. In this fashion, a high-
1y accurate approximation of the boundary conditions 1is
achieved on T while still retaining an exact solution of the
governing partial differential equation (Laplace equation) in @.

Aftgr developing a ;(z) which has an acceptable error distri-
bution on r, the appreximation function is then used as a sub-
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sti?ute for the exact solution of the boundary value problem,
w(z).

From the maximum modulus theorem, the maximum value of

M = |u(z) -w(z)| occurs for some point z* er. Thus, the CVBEM
approximation values for points in the interior of & (such as

nodal points specified for the discretization of o for the NDI
model) are guaranteed to have an approximation error less than

It is stressed that the principal step in the proposed procedure
is the development of an accurate CVBEM approximation function.

Generally, two to four attempts are required to develop a ;(z)
which has associated e, and ew magnitudes which can be con-

sidered negligible.
APPLICATION

After developing the CVBEM w(z) function, the accuracy of the
NDI domain model can be tested in the solution of the steady-
state problems. Using identical boundary conditions on r, the
CVBEM and the NDI models are compared as to the discrepancy in
nodal values for all nodes located in the interior of Q. The
variation in modeling estimates determines a distribution of
the approximation error throughout o. At regions of large
error in @, additional nodal points are added to the domain
discretization. Continuing in this fashion, the approximation
error due to the nodal point distribution in © is reduced.

In the following application problems, the domain model is
initially applied to a uniform distribution of nodal points
in . That is, the density of nodal points oy (number of nodes

per unit area) is a constant. After developing a w(z) function,
the error distribution E(z)} between the CVBEM and NDI models is
determined in . The next step is to redistribute the NDI in-
terior nodes such that the nodal density oN variation is re-

lated to an error density distribution op which is defined by

( [
pglzy) =J |E|dA/ J |E|dA (20)

£ £
J

where zj is a nodal point coordinate; Qj is the domain control
volume associated to nodal point zj; and |Ef is the magnitude
of the error between the CVBEM and NDI* models. The pE(Zj) val-

ues may be estimated as simple point values. In the applica-
tions, pN(Zj) is reset by letting



273

ey = op (total number of nodes). (21)

[t is noted that equations (20) and {21) are arbitrary and
other relations could be used. It is also noted that in the
applications presented, the total number of nodes is assumed
fixed, and only a redistribution of nodes is performgd. Gener-
ally, the analyst would simply add nodes to regions in @ where
the error distribution is large.

Application T

i confined groundwater aquifer of thickness 30.5 m and with
flow parameters K = 30.5 m/day and S = 0.01 has a centrally
located well. The problem domain is a 360 m radius field with
the well Tocated at the centroid (Figure 5}. The problem is to
calculate the drawdown within the confined aquifer due to a
constant pumping of Q@ = 1.7 m¥/min at the well.

In order to numerically model the problem, the domain has to be
discretized by nodal points. Figure 5 shows a uniform nodal
point distribution. Assuming a typical drawdown at the well

and a uniform constant head boundary condition along the
problem domain, the CVBEM is now used to estimate the drawdown
values throughout the domain. Comparing the CVBEM values to
estimates of drawdown (steady-state conditions) obtained from
the domain model of (5) indicates a nearly uniform increase in
relative error as the distance to the well decreases (Figure 6).

The problem domain is rediscretized by the nodal densities
shown in Figure 7. Figure 8 shows the estimated relative
error for steady-state conditions using the selected nodal
point densities of Figure 7.

In order to check the performance of the two discretizations in
the transient problem, the drawdown can be checked along a
radial {for a short simulation time) by using the well-known
Theis solution. Figure 9 shows the plots of drawdown obtained
by both discretizations along with the drawdown predicted by
the Theis analytic solution. (In the domain model, the Crank-
Nicolson time advancement algorithm is used with a timestep of
0.1 days.) From the Theis solution, the adjusted nodal point
distribution provides a significant reduction in error.

In this application problem, the nodal point density is deter-
mined to be increased near the vicinity of the well. The
motivation for adjusting the nodal peint distribution s to
reduce the relative error obtained in solving a steady-state
problem which approximates the range of conditions that are
anticipated for the associated transient problem. The key to
this approach is determining the steady-state problem approx-
imation error in order to evaluate the nodal point densities.
Because the CVBEM provides a highly accurate approximation for
the Laplace equation, it can be used for determining the
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relative error by comparison with the results generated by
the domain model.

Application Il

The above procedure can be applied to improving the nodal point
distribution in steady-state problems which are governed by the
Laplace equation. The domain problem shown in Figure 10 is
initially discretized using the shown nodal point distribution.
{0f concern is the pressure distribution along the specified
pressure surface, Figure 11 shows the relative error (percent)
in comparison to the CVBEM predicted values. Using the error
distribution as a guide, the 40 nodal points were redistri-
buted to be concentrated more in regions of large relative
error. Resolving the domain method steady-state problem
produced a significant decrease in relative error along the
pressure surface. In comparison, increasing the original
40-node distribution uniformly to 120 ncdes resulted in a
relative error along the pressure surface of comparable magni-
tude to the redistributed 40-node model.

The adjusted 40-node distribution and the 120-node models were
used to examine several boundary conditions of various water
depths upstream and downstream of the dam. In all test trials,
both models produced comparable results which indicates that
the adjusted nodal point distribution is not significantiy
affected by changes in magnitude of the problem boundary
conditions.

CONCLUSIONS

In using domain models for estimating groundwater flow effects,
the choice as to the nodal point distribution is usually left
to the experience of the hydrologist. Typically, nodal
densities are increased in regions where it is anticipated that
there may be a large departure from the assumed trial function
distribution within a nodal point's associated control volume.

In this paper, a procedure to examine the nodal point distri-
bution is proposed. Using steady-state conditions in portions
of the problem domain, the CVBEM is used to generate a solution
of the Laplace equation for comparison with the analogous do-
main model approximation. Based on the accompanying relative
error, the domain model nodal distribution is adjusted to have
an 1?creased density in regions of large error between the
models.

The adjusted nodal distribution is found to significantly re-
duce modeling error for the subsequent transient problems, and
is not significantly affected by changes in the boundary
conditions.

The two applications problems illustrate the proposed procedure
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in studying the nodal point distributions for two classic
roblems. For large-scale problems where available computer
memory becomes an issue, the procedure can be used to aid in
Optimizing the_noda] point distribution throughout the problem
gomain. In this way, nodal point densities can be increased
ipn regions of large anticipated relative error and, perhaps
nore important, decreased in regions of small relative error
with the end result of keeping the computer memory require-

ments at a minimum.
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Fig. 9. Radial Drawdown at time = 0.5 days
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