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SUMMARY

The complex variable boundary element method (CVBEM) is used to approximate several potential
problems where analytical solutions are known. A modelling result produced from the CYVBEM is a measure
of relative error in matching the known boundary condition values of the problem. A CVBEM error-
reduction algorithm is used to reduce the relative error of the approximation by adding nodal points in
boundary regions where error is lacrge. From the test problems, overall error is reduced significantly by
utilizing the adaptive integration algorithm.

INTRODUCTION

Use of complex variable theory for developing approximations for potential problems has received
some renewed interest in the past few years. Hunt and Isaacs® and Hromadka and Guymon? use a
boundary integral formulation to study boundary value problems of the Laplace equation.
Hromadka and Guymon?® generalized the boundary integral approach into a complex variable
boundary element method (CVBEM) which has direct analogies to the well-known real variable
modelling techniques. In another paper, Hromadka and Guymon* utilize a relative error measure
to reduce the overall CVBEM modelling error by using adaptive integration techniques.

In this paper, the CVBEM will be applied to several potential problems where analytical
solutions exist. In this manner, the success of the CVBEM error-reduction approach can be
examined. Continuity, analyticity and convergence properties of the CVBEM approximation
function are briefly discussed by expanding the resulting approximation function into a finite senes
of products of complex polynomials with logarithm functions.

CVBEM DEVELOPMENT

Let " be a simply-connected contour composed of straight-line segments. Let Q be the simple-
closed interior of T'. Subdivide ' into m complex variable boundary elements (CVBE) by

r={)r, (1)
i=1
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Figure 1. (k + 1)}-Node boundary element I'; nodal definitions

On each I'; define {k + 1) equidistant nodal points such that z;, and z;, , , are the endpoints of ;.

Figure ! shows the global and local nodal number conventions. The giobal nodal co-ordinates are

related to local nodal co-ordinates by z; , = z;and z;, 4y = 2,3 = 2;+,. Define complex numbers

@j; at each node z;;. Then order k compiex polynomiais P4(z) are uniquely defined on each I';.
An order k global trial function is defined by

Gy(2) = ,-21 5,P(z2),zeT | @
where
1, zel',
5= oo ®
Then G,{(z) is continuous on I" and
lim  G,[2) = wlz) 4
max| {0
where in (4) it is assumed that w(z) is analytic on Q| T and that each @ = w(zy).
Consider the H, approximation function @,(z} defined by
dlz) = 5% r%%‘-g; z¢l,zefd 3
Using (4)
J’ Gude _ [ TN _ g [ PO 6
ri—:z r (—z r, L—2
On each T';, define a local co-ordinate system by
(=2, +(Zaer — 2055 0€l ;055,51 (7
Then
=) =2;4+ (2500 — 2085 0,€ 085 <1 {8)
j PAEME, J Pi(s))ds; o
r, Li—2 r; STV

where Pj(sj’) == P}(Cj(sj}}s and
yi=(2 —z)/(z;41 —2)) (10)
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Equation (9) is solved by factoring (s; — 7;) from P¥(s;). Let P¥(s;) be of the form
Pils;)= iioaj,-sj-, 0<s;<1 (11)
where the a; are complex constants.

Dividing P%(s;) by (s;— v;) gives
! P:(Sj) d

s;=RE"'(2) + PhypH, (12)
v y=05"7Y;

where R}~ (z) is a k — 1 order complex polynomial; Pf(y;,) is the order k polynomial of (11) with y;
substituted into the argument; and

j+1 ' d'+ .
Hj=1n.[z’sz_—z—{:|=ln[ﬁz()zl)] +i6;,, (2) (13)

In(13),d{z) =]z ~ z;|,and 8, ; [z)isthe central angle between points z;, z;..,, z (see Figure 2). For
example, let P4(s;) be the order 3 polynomial

P} =a;38] + a;,57 + a;,5;+ ajo (14)
Then
Pi(s))

s = [335;:'! +(‘33?j+az)sj+(03?f +ayy; +ay)]
i i

+[(a3??+a2?%+al?j+a0)/(sj”?j)] (13)

{Zj W )4t)

Figure 2. CVBEM linear trial function geometry
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and
1 P3s,)ds ay (ayy,+a;)
7585095, | a3 | a7+ ap) 2 _
.[o 5;—¥; [3 T2 +@7] 4 ey a)
+ [(03)!? + az'}’f +ayy;+a9)]H;= R}(z) + P?(?;)H; (16)
Summing the m CVBE contributions gives from (5) and (6),
2nidy(z) = Y R}~ (2) + 3 Piy))H, a7

Letting R*~'(2) = (1/2ni) 3 RS~ !(2), (17) is simplified to _
1 -
@k(Z)=R"_1(Z)+mZP§()’j)H; (18)

In (18), it is noted that the P(y;} are of the form of the assumed trial functions on each I,
Letting node z, be on the branch cut of the complex logarithm function In(z — ¢), where ze€}
and (eI (see Figure 3), then (18) can be expanded as

d(z) = R¥ " 1(z) —*%ZA}”‘(Z —z}In(z ~ z)) + PEf2) (19)

where A}~! is an order (k ~ 1) polynomial defined by
(P‘}(?'j) - P}— 1{¥5-1))
(z—2z)

and In(z — z;} is the principal value. From the continuity of G*({), it is seen that, at nodal co-
ordinate z;,

A= 20)

P?(?j)"P}—l(}’j—l)__“O ’ (21)
and that(z — z;) is a factor as shown in (20). In (19), the P%(z) term appears due to the circuit around
the branch point of the multiple valued function, In(z — ).

Letting R*z) = R*~'(z) + P%(z), then
d,fz) = R¥(z) —- —1- i ANz ~-z)In(z—z)) 22)
2mi j=1

Examining (22), it is scen that &,(z) is continuous throughout the entire domain € and has

Figure 3. Branch-cut of In(z — {} function, (eI
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removable singularities at each CVBE endpoint nodal co-ordinate z;,j=1,2,...,m. That is, R*(z)
and A}~! are continuous complex polynomials, and :

lim(z-z)nz~z)=0 23)
z=+2y o
Additionally, ©,(z) is analytic on Q. Thus
(D) =@+ i) .. ” (24)

where ¢{(z) and §/(z) are two-dimensional potential and stream functions which solve the Laplace
equation exactly on . Thus, by forcing the approximation values of &,{2) to be arbitrarily close (¢)
to the boundary condition values of w(z) on T, then it is guaranteed by the maximum modulus
theorem that the approximation of w(z) is bounded by

|ax2) - D(2)| e, 260 - (25)

The CVBEM proceeds by solving? either the integral equation of (6) in térms of nodal values
@y = + i, or by solving for the coefficients of the expansion of @,(z) given in (22).

APPLICATIONS

Because the CVBEM produces an exact solution to the governing partial differential equation on
€, then convergence of d,(z) to w(z) is achieved on QUF by forcing convergence on I'. This is
shown in a straightforward manner (without proof) by noting that from (4),
lim G (d
i [ GO _ [ mairyo dh)dd _ [ o@©d
maxirg~0 ) r {—2 r {-z r{—z

= 2niw(z) (26) )

However, we are limited to a finite number of nodal points on I'. Therefore from {22),if cu(z) is not
an order k (or less) polynomial, then

E(z)= RM2) - dy(2) = 5= Z Af” ‘(z—-Z,)lu(z z;) - 27

and a residual error E(z) is defined by (27) to be minimized on I'. One method of reducing E(z)on I"
is to compare the known boundary condition values of w(z;) on I to the approximation values
&(z;) and locate regions of large deviation. 4 Additional nodal points are then defined along these
large relative error locations.

To demonstrate the application of the CVBEM in determmmg a high precision approximation,
several potential problems are examined. The applications assume that, at each nodal point, either
@ or  is specified (not both) and, consequemly, part of the problem is to determine these unknown
nodal values.

Thus for w(z) analytic on Q{ JT, let @ = w(z,;) which implies ¢, + i/ ; = ¢, + iy ;. But only one
value of ¢, or ¥;; is specified, thus '

By =AL+ AL, (28)

where A is notation that A = 1 if the associated variable is ¢, and A = i if the associated variable is
¥; and k, U are notation for the known and unknown nodal values, respectwcly Thus the
modelling objective is to reduce |AZ, — A,| on I

In the following figures, several potential problems are modelled by the CVBEM Each problem
involves several tries (usually five attempts) to reduce |AZ, — Af,} onT. Because the test problems
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have known analytical solutions, the corresponding (A&, — Aful error can be examined also. In
general applications, the user does not know this second error distribution and must rely on the
boundary condition error exclusively. The test problems do not include sources and sinks as these:
terms can be approximated exactly by analytical logarithm functions which are simply added to
the general approximation solution.

The general procedure for generating the CVBEM solutions is to initially discretize .the
boundary by nodal points. It can be shown that the density of nodal points is related to the
integration accuracy of the approximation. Consequently the user should increase the nodal
densities where the trial function assumptions are most inappropriate, such as at boundary angle
points and changes in the type of specified boundary condition. - ST

. After solving for the approximation function nodal values, the relative error in matching the
known boundary conditions is estimated, A(§, ~ &,). At locations of high error, additional nodal
points are added on both sides of the maximum error nodal point, and another CYBEM
approximation function is generated. In this fashion, nodal points are added on the problem
boundary only where needed to reduce the relative error. This type of adaptive integration
approach is directly programmed into the software, with a program termination based on the
number of attempts (or a relative error tolerance). It should be noted that the A&, — &) error
bound does not apply to the A(&, — &,) error variable. However, in order for the total lw(z) — dd{(z)|
error to be reduced, the A(§, — £,) must be reduced.

DISCUSSION QOF MODELLING RESULTS

Figure 4 shows the modelling results in approximating a complex variable transcendental
function. The square domain (Figure 4a) is used with nodal points initially set to be evenly spaced
on the problem boundary. Aftér three trials, 12 nodal points were added 4t locations of large
relative error. Figures 4(b) and 4(c) show the corresponding relative error plots for the known
relative erfor values and the associated unknown relative -error values. Again, the so-called
unknown relative error would actually be unknown for most applications. However, it is seen that
working with the available relative error allows the analyst to determine subsequent CVBEM
approximation functions which approach the solution to the boundary value problem.

Figures 5, 6 and 7 show the modeiling results in approximating various ideal fluid flow
situations.,Streamlines are superimposed on the problem domains to illustrate the flow patterns.
As in Figure 4, the CVBEM is used to develop an approximation function by initially assuming a
nodal point distribution of the problem boundary and adding nodes at locations of large known
relative error values. From the figures, the known relative error is significantly reduced by using
this procedure for adding nodal points. Additionaily, the so-called unknown relative error is
considerably reduced. ,

Figures 8 and 9 show other ideal fluid flow patterns which have some modelling difficulties due
to singularities. The CVBEM was applied using the nodal placement procedure based on the
known relative error. From the figures, the modelling approach can be used to approximate the
effects of singularities close to (but exterior of) the problem boundary.

CONCLUSION

The CVBEM provides a means to numerically model two-dimensional potential problems with a
high degree of accuracy. Because the CVBEM produces a measure of relative error, the overall
modelling error can be directly reduced by using the adaptive integration techniques of selective
nodal point addition. Use of the CVBEM to approximate steady-state heat transport problems,
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Figure 4. (a) Problem geometry for W =¢% {(b) plot of A(g, —&) for W =¢ problem; (c} plot of A, — &)
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Figure 5. (a) Problem geometry for W= z? (ideal Mluid flow around a corner}; (b) plot of A(¢, — &) for W=z problem;
{c) plot of A(Z, — &,} for W=z? problem
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Figure 6. (a)Problem geometry for W= z? (ideal fluid flow around an angular region); (b} plot of A(é, — &) for W=7
problem; (c} plot of A(¢, — £,) for W =z* problem
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saturated groundwater flow problems, electrostatics and other potential problems is straightfor-

ward and requires approximately the same computational effort as other boundary integral
approaches.
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