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SUMMARY

By a proper treatment of the known beoundary conditions of a boundary value problem, a complex variable
boundary element method (CVBEM) can be used to exactly satisly the known nodal peint boundary values.
In this fashion, a numerical model can be devetoped which generates relative error information along the
problem boundary that can be used to reduce the modelling error by either an mtegrated measure or a
maximum relative error measure.

INTRODUCTION

Recently, the use of complex variable analytic function theory has been shown to be a powerful
means of numerical analysis for approximating the Dirichiet, Neuman and mixed boundary value
problems of the Laplace equation. Using a linear trial function approximator, Hunt and Isaacs’
and Hromadka and Guymon? have analysed several two-dimensional boundary value problems.
In a subsequent paper, Hromadka and Guymon® generalized the method into a complex variable
boundary element method (CVBEM) which has a direct analogy to the well-known real variable
boundary element method.

During the past several months, three papers were prepared on topics addressing the
approximation error associated to the CVBEM. These three papers all deal with a complicated
numerical method which promises to be a very useful tool for engineering analysis. Specificaily, the
CVBEM allows a direct evaluation of approximation error. Consequently, various techniques for
minimizing error, nodal point placement and discretization of the boundary, and error magnitude
estimation are available.

The three subject papers each address a specific topic involving the error analysis of the
CVBEM. Hromadka and Guymon* deal with a method to strategically place nodal points on the
boundary as prescribed by a relative error plot generated by a CVBEM computer program. This
‘algorithm’ is then specifically applied to soil freezing problems where a moving boundary freezing
front is modelled. Hromadka® addresses the calculation of error magnitudes and the magnitudes of
error produced by the CVBEM. Knowing such error magnitudes allows the engineer to place
additional nodal points only where nodal points are needed to reduce error. Using the derived
formuiae, nodal points can actually be eliminated along the problem boundary, where error
bounds are determined to be small. Finally, the current paper addresses a new and sophisticated
approach to minimizing the CVBEM modelling error by setting a dual set of mathematic
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conditions: (a) matching nodal point boundary condition values, and (b) forcing the approximator
function to match the unknown nodal point values imposing oniy one of the above two conditions.
To reduce matrix computation effort, an iteration scheme is advanced which retains the smaller
matrix requirements.

BOUNDARY INTEGRAL EQUATION FORMULATION

Consider a simply connected domain, &, with a simple closed contour boundary, I, as shown in
Figure 1. The boundary can be subdivided into m boundary elements, I';, such that

'

r=|Jr, (1)

J

=1

On each boundary element, define two nodal points located at the element end points; for element j,
the co-ordinates of the nodes are z;and z;, ;. A simple linear trial function, o(s), is assumed on each
element such that

a(s)f=@js+caj+l(1_s);053£1 2)

where @; is the complex nodal values for node j, and where @; = &, + iff . In equation (2), ¢, and ¥;
are state variable and stream function nodal values at co-ordinate z;. The bar notation significs a
specified nodal value.

The CVBEM utilizes an integral function (z} defined by

2mic(z) = if (“(C)d ),zen,z¢r 3)
=) j

{—z

where { is the complex variable of integration, «({) are the continuous trial functions, and subscript
j refers to element contour I';. Because the ({) are continuous on Iy, the approximation function
@(z) is analytic for all z interior of T

Equation (3) can be solved for any point z interior of I' by noting that’

w0l 22
Lj (—z _wj“[l +(ZJ'+1 —ZJ)HJ}
— Z—Zj4,
-1+ (352 )m

(4

Figure i. Problem domain, Q, with boundary, I’
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A boundary integral equation can be formulated for each nodal point by

2mid(z,) = lim ij (“(Odc) (5)
Ty i

where

2oz S5 {—z

where the limit is evaluated as z approaches arbitrary nodal co-ordinate z, from the interior of I'.
Solving equation (5} gives

m-1 — —_—.
2midNz,) = d,H, + .Zz[as,.ﬂ(z—z‘i)_@j(z‘—@)]ﬂj 6)
P

12 Tj+1— %
where
dij+L1\ .
-—— e ———— 7
H; ln( i) >+19(]+1,j} (N
and
L {d2,1) ,
Hl-—ln(d(m,l))+18(2,m)

In equation (7), d(j + 1, 1) is the distance between nodal co-ordinates z;,, and z, and 6(j + 1, j) is
the angle between co-ordinates z;.,; and z; with vertex at z, (Figure 2). Additionally, 6(2, m}is the
vertex exterior angle shown in Figure 2.

An examination of the approximation function definition of equation {6) reveals that iz ) is a
function of the boundary geometry and nodal values, @;. Should the assumed trial functions «({) be

iy

{Zj.{.l,wj'.H)

Za

Figure 2. CVBEM linear trial function geometry
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the solution of the boundary value problem, then {z) is the solution of the boundary value
problem and &(z) = @(z), j = 1,2,...,m. Generally, however, &(z) is not the desired solution of
w(z) = ¢ + iy, and d(z) # @(z;).

MODEL DEVELOPMENT

The nodal values, @, are composed of two components @; = ¢, + iy, where either ¢ or  is known
at each z; by the given boundary condition definitions. Consequently, each nodal point has an
assigned known boundary value and a corresponding unknown boundary value. Should both
boundary nodal values be known at each z;, then the approximation function (z) is defined
throughout the interior of I'. Therefore, in order to calculate d(z)) values, estimates of the unknown
nodal boundary condition values are required. In the following discussion, it is assumed that ¢, is
specified at each z (¢, = ¢ )and the ;are unknown (except for a singie nodal point vaiue where the
constant of integration iC is evaluated). The discussion is assumed to be extendable to the case of
mixed boundary conditions. The following notation is used for the three sets of nodal point values:

wy=(z;) = ¢;+ iy;; exact solution of boundary value problem solution at node j
@;=¢;+ if;; boundary condition nodai values
@;=¢;+if;; approximation values at node j

Solution of equation (6} for each nodai point results in m linear equations which can be written in
matrix form as

& = Cg(d, ) +iC((, ) (8)

where Cp and C; are m x 2m matrices of real constants representing the real and imaginary parts of
the boundary integral equations, respectively. From (8), two matrix systems require simultaneous
solution,

‘ﬁ = CR(&} 'p)
¥ =Cld ¥ &)

where (¢, ¥) is the array of nodal point boundary values.
One method of solving equation (9} is to set § = # (References 1 and 2) and solve

¥=C( ) (10)

using the known @, followed by the solution of § = Cg{, %), which results in values for ¥ such that
¥ = . but generally, @ # @. It should be noted that the calculation of § can also be achieved by
solving

$=Culd, ¥ (1)

which results in @ = ¢ but generally,  # . One may use equation (11) due to the approximator
aXz} matching the boundary condition values at each nodal point, and then evaluate the relative
error of (w — &) by analysis of (F — ) and (¢ — ¢) on I". However, (, /) is not known continuously
onT. Should the model of equation (10) be used, evaluation of the relative error of (i, /) is aided by
¥ =y, and (¢ — $) is known continuously on T,

Hromadka and Guymon®* use the model of equation (10) to develop values of ¢ and then define
an analytic relative error function e(z) = w(z) — &(z) which is evaluated on I'. From that study,
integrated relative error bounds are derived and an algorithm advanced to reduce relative error by
evaluating the continuously known boundary condition approximation relative error of {¢ — P).
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The algorithm requires the addition of nodal points to the boundary in regions where computed
relative error is relatively large.

In order to better satisfy the boundary conditions and improve the numerical algorithm, a
different scheme is presented in the following paragraphs. The scheme requires the approximation
function &(z) to equal the known boundary nodal values (i.c. § = @) and also require that ¢ = §in
order to preserve the more desirable limitations on the unknown nodal point boundary condition
values. This approach can be accommodated by redefining the known nodal boundary condition
values ($j = ¢(z;)) to new values, $j = ¢, such that

$j = {¢(Zj)} = Cu{e], 'pj) (12)
';j = C;(‘ﬁf » 'Ij)

The above process requires that new values ¢} be computed at each nodai point such that the
approximation function &(z) has the property that

Map=¢;+if,=¢z) +if3j=12...,m (13)

and

ITERATION SCHEME

A major difficulty in imposing the double requirements on &(z) as defined by equation (12) and (13)
is that a 2m x 2m matrix system results which is 4 times the sizes of the m x m system determined by
the simpler approaches of equations {10) or {L1).

However, by using another approach, namely by using an iteration procedure as shown below,
the system of equations (12) and (13) can be solved by an m x m matrix system. Using the model of
equation (10), the first step of the iteration procedure is to set

=B y+L,9 (14)

where B; and L, are m x m matrices resulting from the global matrix of equation (10), C;. Because ¢
is known (@ = {¢(z;}}), solution of equation (14) results in an estimate of . Using the estimated ,
values for ¢ are computed by

$=BP + L {15)

where B, and Ly are m x m matrices from global matrix Cg. From equation (14), and dropping
matrix notation,

f=¢=(01-B)"'L¢ (16)
whete I is the m x m identity matrix. Then, in simpler notation,
¢=D¢
Y =D*¢ (17
where
D*=(I-B)™ 'L,
D=BR(I‘_B!}-1L’+LR (18)

A known boundary condition relative error, ¢, = ¢ — ¢, can be computed continuously along I'.
The nodal values of ¢, are given by

d)e:&;'_& (19)

The ¢, (and hence @) function is known continuously on I” and can be used to locate additional
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nodal points on I' to locaily reduce error. However, in the current development the nodal point
structure is assumed fixed. Using ¢, as the boundary condition for a new boundary value problem,
an approximation function &(z) can be determined analogous to the development of di(z). Letting
ez) = ¢, + ith,, where y, =y — iy, the second step of the iteration process is setting

‘pe = J’_e = Bl‘ﬁe +L,$,
$. =Bl + Lpd, (20)

where ¢, and i, are nodal point values of the harmonic ¢, and y, functions. In simpler notation,
equation (20) can be written as

Ve=V.=DXI - D)§

.= (BxD* + Le)(I — DG = DI -- D)§ (21
in which D and D* are as defined before. The next relative error function is defined by
e'(z) = e(2) — &(2) (22)

Repeating the above process, the several approximation functions can be summed giving

ba=d+dot g+
Va=g+i -+ (23)
or, in simpler notation,
Pu=U+I-Dy+{I-D¥+-1D¢
Ya=+U-D)+(I- D) +--1D*@ (24)
where ¢, and , arc the summed nodal point approximation values.
By examination, the two infinite series of equation (24) are not unconditionally convergent.

Consequently, either the global matrix D needs to be verified that equation (24) converges, or the
incremental error contributions need to be examined to ensure that convergence is occurring. In

Figure 3. Test problem definition showing iteration approach nodal placement and specified boundary conditions
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practice, usuaily only one or two iterations are used to find the required boundary values as the
incremental error contributions generally become negligible. However, in cases where convergence
is not occurring, additional nodal points need to be added to the boundary in order to reduce the
magnitudes of the incremental error contributions.

APPLICATIONS

As an application of the method, a difficult boundary value problem was numerically
approximated by both the iteration process of equation (24) and by the solution of equation (10}
for the special case of doubling the number of boundary nodal points. Figure 3 shows the test
boundary value problem geometry and imposed boundary conditions. In this test problem it is
assumed that the state variable, ¢, is known continuously along the boundary, T, and the objective
is to evaluate the stream function, i, along I" given that a reference value of ¢ = 0 is assumed at the
origin of the co-ordinate axis.

Figure 4 shows the computed relative error values of (¢ — @) along I after three consecutive
applications of equation {24). Also shown in Figure 4 is the relative error values of (¢ — @) along I’
from the approximation of equation (10). From Figure 4, a comparabile relative error distribution
of (¢ — ¢) is achicved by the iteration approach as obtained by a double nodal point density
CVBEM meodel approximation.

DISCUSSION

The application problem illustrates the use of the CVBEM in developing an approximation
function, &, and also in determining an actual relative error distribution of (w — <) along the
problem boundary. Because the true solution of the boundary value problem (w = ¢ + it)) is
partially given by the boundary conditions (e.g. ¢), the task of the numerical analysis is to
determine the unknown values (e.g. ) along I'. The CVBEM develops the approximation
@ = ¢ + it which is based on the integral function of boundary values and geometry (equation 3).
Consequently, we want the relative error function ¢ = w — & to be identically zero along I".
Because we are dealing with analytic functions in '™ Q™ then the error functton e is analytic

-

001 X ¥OYH3 3IAILYIIY (D-d)

———————e— EQ. {24}
EQ.(10)

Figure 4. Comparison of boundary relative error values
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and can be studied with respect to the Cauchy integral theorems. Namely,

j DAl =0 (25)

where I'” is simply connected contour arbitrarily close to but interior of I, and €~ is the interior of
I'". But ¢ is composed of two harmonic functions ¢, and ¥, such that

e=d.+iy, {26}
where
pe=0—0¢
dle = U:’ - ]1&
For the subject study case, ¢, is known continuously on I'"™ (and I'} and
—j c;bedz:ij W, dz (27
r- r-

For the mixed boundary condition case, Hromadka and Guymon* develop integral equations
similar to equation (27). Since the CVBEM develops a matrix system as a function of specified ¢, or
¥; nodal values, the various possibilities for which type of nodal value is defined at each z;e [ still
results in an approximation function <)(z) which is analytic on Q. Consequently, integrated relative
error bounds exist for the CYBEM which can be actually evaluated for at least the function ¢, on T

Further research is needed for several topics. For example, the sensitivity of the relative error to
nodal point placement is of concern, especially when comparing the nodal point CVBEM error
minimization to domain collocation methods. Another topic is the approximation bounds of the
W, error given a continuously defined ¢, function on I

CONCLUSIONS

In this paper a new method of reducing the ¢, error function is proposed which entails the
computation of a set of specified boundary conditions so that the ¢(z;) = ¢(z;}, j=1.2,....m. The
resulting approximation function is shown to reduce relative error magnitudes similar to the effect
of doubling the number of nodal points on the model boundary. It is concluded that the CVBEM is
a very worthwhile tool for numerical analysis, due to the convenience of a relative error measure
being a by-product of the modelling solution, and that this measure of error can be used to develop
subsequent modets which have even smaller magnitudes of relative error.
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