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An algorithm is presented for the numerical solution of the Laplace equation
boundery-value problem, which is assumed to apply to soil freezing or thawing. The
Laplace equation is numerically approximated by the complex-varigble boundary-
element method. The algorithm aids in reducing integrated relative error by pro-
viding a true measure of modeling error along the solution domain boundary, This
measure of error can be used to select locations for adding, removing, or relocating
nodal points on the boundary or to provide bounds for the integrated relative error
of unknown nodal variable values glong the boundary. Application of the algorithm
to boundary-value problems is easily programmable and does not require extensive
interpretation of modeling results,

INTRODUCTION

In a recent paper, Hromadka and Guymen [1] develop a geotherma! numerical
model based on a boundary integral equation method (BIEM). A major assumption in
the model is that the phase change effects dominate the heat transfer conduction pro-
cesses, and consequently the heat flux along the slow-moving freezing front (0°C iso-
therm) can be estimated by solving a Laplace equation in appropriately defined sub-
regions, After heat flux values have been estimated along the freezing front, the front
is spatially displaced according to the volumetric latent heat of fusion defined at the
freezing front. In that paper, both a real-variable and a complex-variable BIEM numerical
model] are employed to solve the Laplace equation.

In this paper, the complex-variable BIEM will be used to develop an algorithm for
obtaining a high level of accuracy in numerical results. This is important in problems
where there is a need to estimate heat {lux along the freezing front to some desired
level of precision. Complex-variable methods are used because they provide a convenient
measure of relative error, which is directly (and exactly) determined along the problem
boundary. The algorithm utilizes the Cauchy integral model [2] to generate estimates
for the values of unknown variables (state variable or stream function) along the bound-
ary. These values are then used with another Cauchy integral model to generate values
for comparison with the original boundary conditions. Comparison of these second
estimates with the known boundary values gives an error distribution on the boundary,
which is used to relocate or add nodal points for another model solution. In this fashion,
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NOMENCLATURE
i -1 Eu unknown nodal value
Ny basis function £y, €, unknown and known nodal values
5 local coordinate estimates from &
x, ¥ coordinates r:‘a!, ¥; nodal values of ¢,
z x + iy W CVBEM approximation
z nodal coordinate &y nodal value of ci(z))
r boundary w(z) complex analytic function
Ex known nodal value o domain

the model is used to develop approximations for the unknown boundary variables and
also evaluate the modeling error characteristics.

This paper addresses only the error reduction algorithm and its application in
reducing the modeling relative error developed along the problem boundary for typical
large-scale geothermal problems such as those involving roadway embankments. Con-
sequently, the model applications are focused on steady-state solution (Laplace equation)
problems.

By using the aigorithm, the complex-variable geothermal model of Hromadka and
Guymon [1] can be directly extended to provide a two-dimensional moving boundary
geothermal model where phase change latent heat effects dominate the thermal regime.

THE COMPLEX-VARIABLE BOUNDARY-ELEMENT METHOD

In this section, a brief review of the complex-variable boundary-element method
(CVBEM) is presented; a detailed development is given in [2].

A complex-variable analytic function w(z) is composed of two real-variable two-
dimensional functions

w@)=olx, ) +ivlx,y) z€Q (1

where z = x + iy, i =+/—1, ¢(x, ¥) is a potential function, and Y(x, y)is a stream func-
tion. In Eq. (1), w(z) is defined only in a simply connected domain £ in which w{z}is
analytic [3]. The conjugate functions composing cwi{z) are related by the Cauchy-
Riernann equations

0% _%% % v

x 3y 3y  ox @)
Consequently, each function is harmenic and
0%t 9%t
axz ayz Z s ¢> ‘i’ ( )

For an analytic function w(z) defined in domain £ and on boundary I (Fig. 1), Cauchy’s
integral theorem equates the value of w(z,) to a boundary integral on I' with

2mic(zo) = f wlz)dz 4)
T

Z_ZQ
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Iy

Fig. 1 Problern domain @ with boundary contour 2. ——

where z, is the interior of Q and the line integral is in the positive sense (Fig. 2). From
Eq. (4}, a BIEM can be developed which is analogous to real-variable BIEM models. As
in the real-variable BIEM models, the global boundary I' is subdivided into boundary
elements by boundary nodal points. '

For a point z, in the interior of 2, the Cauchy integral can be rewritten as the sum
of m line integrals (for m CVBE)

2ﬂiw(z°)=z [Q;(z_—)iz (%)
i=1 7%

where I'; is 2 complex-variable boundaty element (CVBE) in an m-element model (Fig. 3).
On each I, n nodal points (z,, 2;, . . ., 2,) ate located as shown in Fig, 4. To define a
linear local coordinate system (Fig. 5), the following relations can be used to calculate
the CVBE I contribution to the line integral of Eq. (5):

)=z, +{z, —z1)s
dz=(z,—z,)ds ZEN; 0<s<] ' (6)
w(z) = w(z(s))
where 5 is a local coordinate.

In the following, the notation (s} will be used for the wi{z(s)) function on each I';.
The Cauchy boundary integral can be written as the sum of m CVBE contributions

(7

2aiw(zg) =

4L [1 wilsKzy —z,) ds
5

‘ z(s) ~ 2z,
/=1 =0

ly

Fig. 2 Domain £ with interior point z,. The positive
sense on the boundary T is shown by an arrowhead, x
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* = Elemant sndpoint nodes
o = Element interior nodes

Fig, 3 Globat domain £ with global boundary I sub-
divided into boundary elements ry.

where the [ ]; notation indicates the value from CVBE I';. Equation (7) can be simpli-

fied to
m 1
wy(s) ds
21riw(z)=z Sl o<s<i 8
it = 2 [ [ ®
i=1 5=0 i
_Zy =2
where G = Zn—2; (9)
and wils) =¢i(s) +iYs) 0<s<1 (10

Equation (8) can now be rewritten as a sum of definite integrals

! wy(s) ds B ! ¢;(s) ds b ! v;(s)ds 1
s+ C]' o s+ Cf ! 7 s+ Cl' ( )
§=0 =0 sc=0

The assumed approximation functions for ¢(s) and (s) are now expressed by

n

86)= Y Mo 0<s<1 (12)
k=1

Y= z Ny, 0<s<1 (13)
k=1

The shape functions N, (s) are analogous to the one-dimensional interpolation functions
used in finite-element methads [4], and (¢, ;) indicate values of ¢ and  at nodal
point k of CVBE T7;.

Fig. 4 Boundary element Iy with associated nodal points

... 2y
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Fig. 5 Definition of the local coordinate system. %4 Z, 4

Combining Egs. (5), (8), (12), and (13) gives the CVBEM approximation statement

m 1 m 1
. Z N o, d . TN, ds
208 éN(z0) = Z(/ = 2 fé ’) +i Z(/ ——-———s’fé‘, ) (14)
J=1\/s=p i J=1\vg=¢ i

APPLICATION OF THE CVBEM TO THE UNIT CIRCLE

In this section the CVBEM will be applied to the unit circle centered at the origin
of the coordinate axis. The boundary I’ is assumed to be subdivided into m boundary
elements [; of equal length. The approximation used is the constant CVBEM, which
includes a single node {; centered on each I';, and the nodal value a; = &(8;) is assumed
to specify the function on Iy, ie., &(z) = &y, z €T

Figure 5 shows the assumed CVBEM configuration. The following definitions are
used:

ap =21
m
3, = 2~ —
m
92=;
3m
93=_’n_

L
m m

Letd(zy,{;) = the distance from coordinate z,, to ¢, . Then

d(zi§1)=2sin 2% (15)

Using Cauchy’s theorem, the limit of w(z) can be used to evaluate

W =)= lim A f wlz) dz (16)

zep, 2mi o z—z*
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where z* approaches nodal coordinate {, from the interior of £2. Thus

' m
2riw; = lim Z/w__(z)dz
2ot z ~z*
b=l Ff

For the constant-boundary-element approximation, we set

m

20, = lim w;

it
23
£
=)
o~
t
0y [*
=
|
ey
=L
L
+
]
b=
45
£
N'\
N
N
0E
*
e

i=2 !
-3 o[ Sen ] (v (4 2)a

Thus, the approximation used is
@) ~ @y ~d3W3 — Gy =0
where a, =in (1 —}—;—)
ap =In (cos%g-+sin %cot%—k) +iézg-

For m large, A8 is small, simplifying the real part of g, to

a, =1In (] +%Qcotg25)

where A8/2 = r/m.

(17)

(18)

(19)

(20)

By symmetry, the nodal point §; could represent any nodal point § forj=1,

2,...,m. Thus, a matrix system is determined by
=, a2 3 " A Am iy
Oy —a a; " dme L. | Wy
Idn-1 @m —d B3 Tm—2 (S5
25} 7%} [/ R 1) =, f:Jm

(21)

or simply ac = L, where L is a load vector and where it is understood that in Eq. (21)
at least one nodal value w(z;) is known and consequently the equation has a unique

solution not necessarily identically zero.
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Relative magnitudes of the a; with respect to a, are given by

IRl = 2. k=1,2,....m (22)
1
The definitions of g, and a,,
lim Ja,|=n
o
and lim g =1In3 im lggl=|in}|=In3 (23)
m—roo mM—+ oo
0y—0 8 —+2m

Thus, R;; has a maximum value of (In 3)/x.
Thus, The global matrix system can be written in terms of R x 48

—1 R2 R3 et Rm—l Rm (:Jl
Ry -1 Ry "Rm_3 Ry, @3
Ryt Ry =1 " Rp_3 Rm_2 ‘:’3 =L (24)
R2 R3 R4 e Rm —1 (:Jm

or simply R@ = f.. where L is a modified Joad vector containing known boundary condi-
tion information and where again in Eq. (24) at least one nodal value &(z;) is known and
@ is not necessarily identically zero.

The unit circle approximation can be used to show how the eryot in the approxima-
tion is manifested in the d}] values. From the above, it can be concluded that if the
assumed trial functions are the actual solution to the boundary-value problem, then
@ =w on ['U K. Suppose that on I, m boundary elements I'; of equal length & are
specified, and on each Iy

(:)=2Nk(:Jk (:Jk =L:)(Zk) ZkEFj

Also suppose that the trial functions N, solve the boundary-value problem on each Iy
except for one element, say T"; , where

W=Z(Nk+Mk)(;)k ZEFz
Then two global matrix systems can be developed such that

¢ +¢)o=1L
t,o=L

where €, is the global matrix of complex coefficients determined by solving the CYVBEM
nodal statement with only the N trial functions defined on each r,j=123,...,m

(25)

1)
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Liy

’l‘[

Fig. 6 Unit circle boundary-element geometry.

and €, is a matrix of complex coefficients resulting from the M trial function contri-
butions on element I'y. Note that w are nodal values of the solution of the boundary-
value problem, whereas & are approximations that differ from e« due to the incorrect
trial functions assumed on ;.

The CVBEM approximation <> can be made arbitrarily close to w by choosing the
number of equally spaced nodal points m sufficiently large. The constant CVBEM assumes

odz . dz
z—z5 z—z
r; ¢ T °

7 7

and the approximation function & based on the sum of these contributions can be shown
to be anatytic. Due to constant trial function assumptions, a complex number & exists

such that
d
["“’z=w,~f T j#2
zZ—2Zg Z2—2Z
r; r;

!
[‘*’dz =kwgf 2 here k = k(5)
Z—2Zy Z—==2q
r T
and & = |Ty|.

Then, from the previous development,

¢, =a

(26)
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and
[-0 as 0---0
¢ =k@)| 0 a 070 @7
_0 dsy 0 T 0_
The error at each nodal point gisgivenbye = w — @, or
Ce=0Cw (28)
where for the constant CVBEM with boundary elements of constant length &
ae:k(a)C‘)Z(aZsal:ans-' . saS)T (29)
or ) Re:k(a)wﬁ(RZ:Rl:Rn!"-aRS)T
where |R,| =1 and IR;1 <0.35,j # 1. Solving for e gives
0
’sz
e= 0 (30)
0

From the simple example above, it can be proposed that the nodal point approximation
error will generally be manifested in the vicinity of the boundary element whose trial
functions are incorrect. It can also be argued that the error of node 2 (element T'y) has
the largest coefficient magnitude (R, =1) and that the largest error contribution is
assigned to node 2.

To improve the trial function and reduce integration errors, additional nodal points
can be specified in the vicinity of the maximum relative error or, perhaps, the trial func-
tion order can be increased. In the next section, the results from the case above will be
used to develop a CVBEM algorithm that addresses the approximation error on I, and
ultimately in 2.

A CVBEM ALGORITHM

In this section, the CVBEM is applied to the simple closed boundary I' of domain
§1. Along T, values of ¢ or y are known continuously on piecewise segments, The solu-
tion of the Dirichlet boundary-value problem is the analytic function

w(z) = &k + Aty E))
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where the notation of Eq. (31} involves the descriptor
1 iftg, =¢ x=k,U
i ifg,=y x=kU

and &; , £y are the known and unknown harmonic functions of w(z), respectively.
On I, we define m nodal points such that

Q= (A + Afy);, j=1,2,...,m (32)

where each _Caj is composed of a known boundary condition value £, and an unknown
nodal value ;.
The integration function &(z) is analytic in the interior of T, where

xz) lfi(y—)‘ﬁ 24T (el (33)
r

=§;17 {—z

and where off) are continuous functions on I'. Because <(2) is analytic in the interior
of T', we can define another boundary I'” that is an arbitrarily close measure of I" and is
interior to I". The boundary I' is chosen such that |w(z; ) — w(z; )| <€, where € > 0 and
z, €'z, €T Using I,

PR | w(z)dt . L -
w(z)—zm. f -2 zE€ " orzinteriorto I (34)

For any z interior to ", we can choose an appropriate I'” such that Eq. (34) is

valid and
w®dd [ of)dt

The strategy in these definitions is to utilize a new boundary I'” arbitrarily close but
interior to I such that w(z) values are within € between appropriate pointson Fand ",
Then the approximation function defined along ['™ is analytic on I'” and can be used
to determine integrated error bounds. The error e(z) is defined by the analytic function

eZ)=w@—z) zEP UL (36)
where £27 is in the interior of I"~,
To evaluate Eq. (36), the w(z} function must be determined. The algorithm defines
w(z) by using the definition of Eq. (33) and (34) and setting

o) = (af + Afy)y, 7=1,2,...,m 37
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whete z; are nodal point coordinates. In Eq. (37) the integration function &(2) results in
real and imaginary harmonic functions, where each function is itself a function of the
nodal point values w; defined by Eq. (32). If at node j the real state variable (27} is
known as a boundary condition, then the imaginary equation for dx(z;) is used to solve
for the unknown approximation Afy . Likewise, if v(z;) is specified, then the real equa-
tion for w(z;} is used to determine the unknown nodal value Afy. Since &x(z) is defined
for z € Q7 U7, the error function can be evaluated, where

@)= Aty ~E) +AGy —Ey)  zeqTuTT (38)

In summary, the first step in the algorithm is to define the unknown nodal point
values (AEU), such that the approximation function (2} satisfies Eq. (37). Using the
Cauchy integral formula on an arbitrarily close interior boundary T, ¢x(z) is analytic
on ['" U Q7 and can be used to directly evaluate the error of approximation. To minimize
the error, the relative error of A(§, — Ek) must also be minimized, so a calculation of
A(E; —&x); can be used to locate regions where nodal points should be added to reduce
integration error due to the improved trial function assumptions. From the unit circle
example of the previous section, relative error may be assumed to manifest itself in the
vicinity of poor trial function fitting.

APPLICATIONS

Two example problems are presented to illustrate the use of the algorithm,

Example 1: Roadway Embankment Freezing

To model the freezing front, estimates of heat flux values are required along the
0°C isotherm, where a soil-water phase change occurs. In this example, a roadway em-
bankment is modeled where the freezing front is assumed to be located about 10 m
below the natural grade (Fig. 7). A —10°C boundary temperature is imposed along the
entire 1op surface, and a 0°C temperature is specified along the bottom boundary at
the freezing front. Symmetry is assumed on the left and right boundaries.

The CVBEM can be used to estimate values of the stream function \ along the
freezing front. From the Cauchy-Riemann relations, normal flux values of temperature
(¢) are calculated.

Figures 7b and 7c¢ show the continuous relative error distribution on I with two
nodal densities, 26 and 32, where the 32-nodal model is based on one usage of the algo-
rithm,

Example 2: Roadway Embankment Underlain
by Buried Freezing Conduit

Another problem of interest is the analysis of soil-water freezing effects due to
buried chilled pipelines or conduits. In this probletn, the roadway geometry of example 1
is studjed with a 1-m box conduit buried at a depth of 5 m (Fig. 8). The temperature of
the conduit is set at —20°C. Figure 8b shows the relative error distribution on I* for the
first solution attempt with the CVBEM algorithm. Figure 8¢ shows the relative error
distribution on I after four attempts using the algorithm,
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Both example problems show that the relative error is significantly reduced by
increasing the nodal point density in regions where relative error is manifested. In addi-
tion, the algorithm provides a means of obtaining a high level of accuracy in modeling
estimates.

CONCLUSIONS

An algorithm for numerically solving a Dirichlet problem has been presented.
The algorithm compuies a true measure of integrated relative error along the solution

10m 2m I0m 4.5m

dy
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oaw 10m
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Fig. 7 (a) Problem geometry and boundary condition data. (b) A(kg —Ek) plot for 26-node
model. (c) Ak — Eg) plot for 32-node model.
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Fig. 8 (a) Problem geometry and boundary condition data. (b) (g — Ek) plot for 64-node model.
{c) Alty — £k) plot for 76-node model.

domain boundary. The nodal point relative error values can be used to identify regions
where a higher density of nodal points is needed to reduce the approximation error, In
addition, the evaluation of computed error can indicate regions where nodal points can
be eliminated without increasing the total error.

The algorithm is based on the complex-variable boundary-element method and is
suitable for programming with both micro- and minicomputers,
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APPENDIX

Rather than examine relative error values on the boundary T, it is useful to deter-
mine an approximative boundary T' on which @(z) satisfies the boundary conditions
given for w(z) on . That is, given an approximator (2), level curves of constant ¢ or ¢
on T [where w(z)y=¢+iy and w(z)= <b+ub] are compared w1th level curves of
constant ¢ or w on I', where I'i is determined by setting the known ¢ = ¢and y = lJl

The resulting boundary I" has the associated property that cx(z) satisfies the de-
fined boundary conditions on [ and satisfies the governing Laplace equation in the in-
terior, Q. Consequently, <(z) is the exact solution to the boundary-value problem with
the true boundary I" transformed to the approximative boundary i

Utilization of the approximative boundary has the following features:

1. An exact solution to the boundary-value problem is provided where the problem
boundary is modified by a complex-variable transformation (which is undeter-
mined).

2. The approximative boundary can be visually compared with the true boundary
to determirie closeness of geometric fit.

3. Nodal points can be added to I" to give a more refined approximation ¢(z) so
that T is closer to I in regions of high discrepancy.

4, The engineer works with a displacement of the problem boundary rather than
examining a more abstract relative error propagation along the boundary.

5. The approximative boundary provides a direct visual representation of the
sensitivity of the approximation ¢(z) in accommodating boundary conditions,
variations in I" geometry, and the addition of nodal points.

Y =100
(0.100) . . - (100,1001
2
®=0 .
;
\ |
I L @=100
y
o i ' (100,0)
w0

Fig. 9 Modeling ideal fluid flow over a cylinder.
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{0.50) £

(300,25)

® 1S LINEAR
SEE FIG. A3
@ IS LINEAR

(0.0} e 7.
®20

Fig. 10 Modeling the thermal effects of a freezing conduit in a roadway embankment,

(275.25)

Applications

In the following, several mixed boundary-value problems of the Laplace equation
are approximated by the CVBEM. The problems all have boundaries I" that geometrically
coincide with lines of constant ¢ or ¥ of w(z). After an &(z) is developed, the approxi-
mative boundary T is determined by plotting the corresponding lines of constant ¢ = ¢
and ¥ =y from @(z). In the figures, both I" and the associated T* are plotted together
for direct comparison. Intuitively, as | — Pll becomes small then [dx(z) — w(z)] is
necessarily reduced, and I~ =0 implies &(z) = w(z).

Application 1. This problem approximates the classical problem of ideal fluid flow
over a cylinder, The exact solution is known to be w(z) =z + 1/z. The problem bound-
ary I' is specified to be the upper right quadrant as shown in Fig, 9. Using a 47-node
discretization, ¢(z) is developed by using the CVBEM. The corresponding approximative
boundary T is plotted along with the true boundary I' in Fig. 9.

Application 2. The usefulness of the CVBEM and the approximative boundary
concept is illustrated for practical problems where the true solution w(z) is unknown.

Pz -0
b B IS LINEAR
NOTE © CURVATURE
[ B =20
——F
'
w0
@ IS LINEAR
©=0

Fig. 11 The approximate boundary near the freezing conduit {square-shaped),
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Using only the known boundary conditions, ¢(z) is determined. In Fig, 10, a large road-
way embankment is modeled for heat transfer effects. A freezing conduit is defined on
the right side of the boundary. The approximative boundary P corresponding to a2 78-
node ¢(z) approximation is shown in Fig. 10. A closer look at [ and T" near the conduit
is provided in Fig. 11.
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