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A DNE GIMENSIONAL FROST HEAVE MODEL BASED UPON SIMULATION OF STMULTANEQUS HEAT AND WATER FLUX
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SUMMARY

A one-dimensicnal frost heave rmodel is groups. The first group conceérns only thermal
presenied for unidirestional freezing in effects where moisture content is considered
moiet stles with ¢ water *able present. a static phenomena. Nakanc and Brown (19)
Frost heaqve 18 corputed based upon a macro- are an excellent example of this approach.
thermodynamic model that simuiates heat and They base their analysis of seil water freezs-
moisture transfer Ifrom an element of soil ing on the apparent heat capacity concept
undergoing freezing. It i3 asswmed that a where the temporal thermal term is given by
portion of water in the zlement will not B(CmT) p; 98, AT
freeze, and all water in addition to this ——Bt - (Cm -tr ;; _SE) gz 1)

amount that freszes in excess of the sgoil

porosity results in a correspording heave. where Cm is the volumetric heat capacity of

The freewing process is asswned to be iso- the soil-ice-water mixture, T is the tempera-
shermal. Simultancous heat and water fluz ture, t is the time, L is the latent heat of
are sitmulated by a Salerkin finite element fusion, p, and p_ are density of ice and

analog of the heat equation, including con-

water, ei is the volumetric ice content. The
J

L term in parenthesis is often referred to as
vective component, and the water flux equa- P

. . . apparent heat capacit C . Generall eq. 1
tion based upon total energy head as the PP P ¥t Yo ®4

o . 14 - : . is integrated or averaged over a narrow freez-
state vartable. The dynamic comporent of the g g
P . . . ing zone of finite thickness in order to ac-
problem te simulated by the Crank-Nicholson 8

‘ . . ‘ curately predict the temperature profile in
procedure, and non-linear parameters ars

, . a one-dimensional seil, In their stud
estimated on the basis of element centered 7

. .oy . . Nakano and Brown noted that convected mois-
state variable valuegs wvhich are generated

by the quadratic shape functions used. To ture may carry heat which would ultimately
avotd instability, the moisture sink term in effect their numerical solution. Another

the water flux equation that arises as a re- problem is that if moisture is mobile, the
sult of water freezing is eliminated and computation of thermal parameters may be in
hardled as a thermodynamic bookkeeping error unless these parameters include the
quantity. effects of a varying unfrozen water content.

INTRODUCTTON For instance, the thermal coenductivity and

. . ¢
Numerical models of soil freezing and volumetric heat capacity of a partly frozen
. il be approximated by the DeVries (5
thawing may be conveniently divided into two soil may PP / (5)
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relationship
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where KT is the thermal conductivity of the
mixture, Yj is a soil weighting factor, Bj is
the relative volumetric content of the ith
constituent, and K, is the thermal conductive
ity of the jth constituent, Cm is the volumet-
ric heat capacity of the mixture, and Cy is
the volumetric heat cepacity of the jth con-
stituent. Thus, neglecting a change in water
content would introduce errors in the KT or
Cm estimation,

The second group of models to be con-
sidered simulate the simultaneous flux of
fluid and heat in freezing and thawing soils
and are the main concern of this paper.

These one-dimensional models are based upon
the concept that moisture flux in freezing
and thawing soils can be analyzed by unsat-
urated flow theory. Either pore pressure or
water content may be the state variable. For
example, the pore pressure relation for water

flux alone,Richard's Equation has been used;

l.e.,
3 Y 2 aeu piaei
™ T wm &Y e R (3

where x is the coordinate (positive downward),
¥ is the pore pressure head, KH is the Darcy
hydraulic conductivity, Gu and Si are the
volumetric unfrozen water and ice content
respectively, Di and pw are the ice and

water density, and t is time. Coupled one-

dimensicnal heat transport is modeled by

2 aT aT 5T p, 98,
— (K, —) -C v—=0C — -1 -+t
ax T oax Wolax Mo p,, Bt
aT
=0 -— (4}
2 ar

Harlan (13} presented a one-dimensional
model of heat and moisture transport using
eqs. 3 and 4, apparent heat capacity, and
various ancilliary relationships to define
fluid and heat parameters. His model was
numerically solved by a finite difference
analog.’ Guymon and Luthin (12) develaped a
similar model to that of Harlan using eqs. 3
and 4, however, they solved the heat and
moisture flux equations with a finite ele-
ment analeg. Both methods were similar ang
for the first time included the gravitational
component of fluid flux for a vertical
column and also included the convective hear
moisture transport component that was absent
from the earlier models such as Nakano and
Brown (19). More recently, the applicatien
of heat and fluid transport models have been
investigated for predicting frost heave.
Dempsey (3} presented a one~dimensicnal model
of heat and moisture flux, similar to that
of Harlan, and Guymon and Luthin but he alsc
included temperature driven moisture flux in
the liquid and vapor phases. His model,
solved by a finite difference approximation
was developed to also study the frost heave
phenomena. Sheppard, et al {(21) also used
eqs. 3 and 4 and the appareant heat capacity
concept to model frost heave; their model is
solved by a finite difference approximation.
Heave is assumed to occur when the sum of ice
and water content exceed the soil porosity.
Overburden effects are modeled by the
Greoenevelt and Kay (9) approximation. Taylor
and Luthin (23) use egs. 3 and 4 but delete
the gravitational component from eq. 3 and
omit the convective component from eq. & to
approximate frost heave. They use a finite
difference approach and use the apparent heat
capacity concept. Heave is allowed to occur
when ice content exceeds 85 percent of the

soil porosity. Various ancilliary functions



are used to estimate parameters. They
closely approximate data obtained by Jame
and Nerum (17} for a horizontal soil column.
Jame (16) also applied what is essentially
Harlan's model to his data with good results
after an apparent instability problem in the
early computations. Both Taylor and Luthin,
and Jame assume convective heat transport as
negligible, which apparently is reasonably
accurate for the relatively short (72 hours
or less) time periods considered. Dudek

and Holden (7) use equations similar to eqs.
3 and 4, but neglect heat convection, to
solve the heat and moisture problem. They
use an expanding-contracting finite differ-
ence mesh to solve the eguations. Latent
heat effects are modeled by the apparent
heat capaclty method and the so-called
capillary thecry of frost heave is used.
They closely approximate laboratory data

for a short time span, less than 8C hours.

Kinpsita (18) and Qutcalt {20) have
considered models of frost heave 1in soils,
Kincsita's work primarily considered in gitu
measurements of soil temperature and water
table drop teo relate heat and moisture flux
to heave and heave pressure as measured in
large outdoor tanks containing silt and
water. OQutcalt considers the thermodynamics
of ice segregation with ancilliary heat
transport computatioms, OQutcalt (20}
applies a simple energy balance to
predict ice segregation.

A second approach 1s to lump the latent
heat effects into an igothermal process,
Guymon and Berg (10) and Guymen and
Hromadka (11) use equations similar to egs.
3 and 4 to model heat and water transport
but handle latent heat effects as an iso-
thermal precess in which an accumulation
heat budget is used in the computational

algorithm. A Galerkin finite element analog
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is used to solve the equations of state, and
linear and quadratic shape functicus are
used.

A third category of the modeling effort
is by Hwang (15) who has developed a quasi-
steady state frost model for application to
chilled pipelines. He assumes a pore water
distribution near the freezing front in order
to estimate water flux. Heat transport in-
cludes both moisture flux and latent heat
effects. Heave 1s modeled by a congideration
of a stress-strain relationships for frozen
and unfrozen scil, and conselidation
theory issued to adjust heave calculations.
He assumes that heave has an upper bound
and that heave will not occur once the
freezing front propogation becomes nil. This
concept is somewhat contrary to -generally
accepted theory which was recently reviewed
by Takagi (22}.

MODEL BASIS

As discussed above, most investigators
use eqs. 3 and 4 to model the simultaneous
movement of heat and water in a freezing
g0il column. However, when modeling of
these equations involve numerical problems,
the equations are specialized to eliminate
the convective components; &,g. a horizontal
column is considered and it is assumed con-
vected heat is negligible (Taylor and Luthin
{23) and Jame (16} are examples of this
approach). In both of these cases, and also
in the case of Sheppard et al (21) a single
valued relationship between unfrozen water
content and temperature is assumed (e.g.
Anderson et al (1)). It is relatively easy
to show that eqs. 3 and 4 can be combined so
that only one equation need be solwved if the
apparent heat capacity approach is used.
Numerical models employing this approach re-
quire exceedingly small time steps, on the

order of seconds, and small descretization,
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on the order of centimeters. Instability
problems may result for lengthy simulations,
involving time spans of a week or more. The
computational difficulty is that latent heat
effects in freezing and thawing soil often
times overshadow the basic parabolic nature
of eq. 3 when latent heat is directly incor-
porated into a numerical analog specifically
designed for a parabolic equation. On the
basis of these problems and the fact that

we desire to produce stable, accurate solu-
tions over time spans of a year or more, we
have concluded that the isothermal approach
to modeling latent heat effects is superior.
Additionally, there are ancilliary benefits
to the isothermal approach; e.g. the compu-
tation of moisture states is enhanced and
made highly stable.

Consider the heat budget AQ required to
alter a unit volume scil=-water-ice mixture
by a temperature change of dl in a time in-
terval ofldt,

1o
ic R P ()

D3t
W

no = T -
Q=1C dr - L

Equation 5 can be rewritten as

aT p, 9

L;Q:Cmﬁ‘dt—'[.

TiI
pw 3t

dt (6)

where temperature is a differentiable func-
tion of time.

Application of eq. 6 to problems where
the ice content of the seil can be assumed
to be a differentiable function of tempera-

ture permits the rewriting

p, 99 aT
A = (C - L ===t ) = dt N

w Lo T )
which establishes the apparent specific heat
formulation of eq. 1.

Inclusion ¢f the moisture convection
term in the heat transfer equation, however,

necessitates consideration of the moisture

flux on the term, BBIIBT. The formation

of the ice lenses in a freezing scil, where
the temperature variations are small with
respect to time, indicate that changes in
ice content are not necessarily dependenc on
temperature changes. The processes of mois-
ture movement within the freezing soil mass
(Dirksen and Miller (6)), and the formacion of
ice lensges illustrate the capability of a
301l mixture to be near a state of thermal
equilibrium wherein the heat conduction loss
rate is approximately equal to the rate of
heat evolution from converting the moisture
influx intc ice, Hence, the soil mixture
would be described by a static temperafure

model where
—_ (8)

The apparent specific heat capacity would be
undefined in an approximately static thermal
regime, and the right side of eq. 4 would
not be valid.

Assuming that the convected moisture
enters the soil system at approximately the
temperature of the freezing point depression,
a small drop in temperature AT (in time At)
0of the soil-ice-water mixture indicates a

heat budgetr of

3t

50 = LI9T - 8(1 )] - L Loar - ¢ AT (93

aT
where o' is the volumetric moisture content
at the beginning of the process; G(TO) is
the volumetric water content described by
the scil freezing curve for temperature
TO, TO is the initial cemperature of the
system, AT is the temperature drop {assumed
negative), and 20 is the heat lost from the
system during the step At.

From eq. 9, three cases arise from a

strictly freezing process



L {8' - BT )] = A0 (10a)
L [8' - 6(T )] > AQ (10b)
L [8' - 8(T_)] < 40 (10¢)

Equation 10a is associated with isothermal
freezing in a static thermal regime. Equa-
tion 1Cb also indicates isothermal freezing

with no temperature variation but addition-

ally indicates possible moisture accumulation.

Equation 10c occurs with a temperature change
of the system AT (during time step At} deter-
mined frem eq. 9 as
L{8' - 8(T )] - &Q

_ o

AT = 38 (11)
L5 ¢
T "

The ice accumulation term is calculated by

%% , AQ < L [8' - 8(T 3]
p, 38, © (12)

(6" - 6(r_)1- %% AT,80Q5L6" -
\ 8(r,)]

Jame (16} approximated €(T) by a set of
linear functions defined on a discretized
thermal domain. Assume for an appropriate
temperature subdomain for T _<T<T, that mois-

ture content is given by
6(T) = B, + B T (13)
where Bo, By are constant soil parameters,

then

38(T)
aT

= B (14)

Thus, for a small change in temperature AT
(AT negative), eqs. 9 and 14 may be combined

as

Ag = {L[B" - G(TOH - LByAT} - cmAT (1.5}
where the term in brackets represents an
isothermal freezing process.

The terms within the parenthesis of eq.

15 may be approximated numerically by de-
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coupling the ice formation term from the
general heat transfer equation (Guymon and
and Hromadka (11)) and allocating the subse-
gquent heat evolution te a latent heat budget
matrix. As the ice content increases, the
thermal and moisture parameters are adjusted,
Ice formation is interpreted as a moisture
sink in the moisture transfer relation.

Only when the necessary heat evolution has
occurred, 1s the soil-water mixture's tem-
perature allewed to racede below the freez-
ing point depression, hence modeling the
isothermal phase change process.

The above described iscthermal approach
together with eq. 4 are used in our model
except Ca in eq. 4 is replaced by, Cm, the
volumetric heat capacity of the mixture of
soil, dice, and water. The thermal conduc-
tivity, KT’ is estimated by eq. 2 and
velocity flux is computed by Darcy's law;
i.e.,

39
v = -k, 5" (16)
%X

Auxiliary conditions of the form

T (x=0, t) = T

u
T {x=L, t} = TL (17)
T (x, t=0) =T

o

are emploved. All parameters are assumed to

be single valued. Effects of dissolved salts

on the unfrozen water and freezing point
depression are not incorporated in the
model.

Although Guymon and Luthin (12) and
Guymon and Berg {10) successfully used eq.
3 to model moisture movement in a vertical
freezing column process, subsequent applica-
tion of eq. 3 to situations where a water
table is present or near steady state dis-
closed errors using a finite element

approach, The problem relates to the
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necessity of linearizing 2q. 3 in the finite
element formulation. This problem whern cou-
pled with the use of the Crank-Nichelson time
solution procedure resulted in the ervonecus
calculation of moisture flux due to gravity.
Another problem with finite element formu-—
lations of equaticns like eq. 3 is that the
gravity component, the so-called nonsymmetri-
cal or convective component, results in neon-
symmetrical matrices, increasing storage re-
quirements. While this is not a great pro-
blem for one-dimensional solutions, it is fer
multi-dimensional problems, which are our
ultimate objective to deal with.

Dudek and Holden (7) seem to have
advocated the use of the energy head equa-
tion; however, to avoid its solution, they
assume a saturated s0il column below the
freezing front and negligible fluid flux in
the frozen zone., The equation of water flux
in an unsaturated media is easily derived by

considering centinuity and assuming Darcy's

law; i.e.
sikag/x] _ 2% (189
ax TS

where the variables have been previously de-

fined. It is assumed that liquid driven by
the hydraulic head gradient is the dominant
fluid flux phenomena. Vapor driven by ther-
mal and hydraulic gradients and 1iquid dri-
ven by thermal gradients are generally sev-
eral orders of magnitude lower than water
flux as defined by eq. 18. Following the
procedure outlined by Guymon and Luthin,
(12}, eu is estimated by Gardner's (8) rela-

tionship
= n h <
eu 80/(Aw|w[ + 1), ¥ <0 (19
and KH may be estimated by
m
= < 2
K KQ/(AKNJ! +1), <0 (20)

where 8 1is the porosity, KO is the saturated
Q

hydraulic conductivity, angd Aw, AK, n and

m are constants for a particular soil as-
suming single valued functions for eqs. 19
and 20, The moisture sink term, representing
the variation of water content due to phase
change is not included because we have found
that the solution of eq. 18 is hipghly unsta-
ble in a freezing soil since the sink term
is so large. The water sink term is hand-
led as a bookkeeping quantity, estimated

froem the latent heat budget computation; i.e.

o, aei
—— - (21)

Equation 18 is rewritten using eq. 19 for
computational convenience

a[Kap/ 3x] b
— = 0% — (22
ax ot

where

and (23
3 B

gt 9t

where ¢ = § - % (x positive downward).
Equation 22 is subject to the auxiliary con-
ditions

3B/ 3x (x=0, t) = 0

$ (x=L, t) (24)

]
=
el

]
h=d

¢ (%, t=0)

NUMERICAL METHOD
The finite element method is uded to

salve eqs. 3 and 22 subject to their respec-
tive auxiliary conditions. The finite ele-
ment approach used is the Galerkin version
of the weighted residual process, Desal (4).
The solution domain is discretized into the
union of n rigid finite elements (i.e. the

soil column is assumed nendeformable) by



L
L= UG & (25)

where &, is the length of each element, The

i
state variable is approximated within each

finite element by the Ritz procedure
u{x, t) = z Nj(x, t)uj (26)

where Nj is the appropriate linearly inde-
pendent shape functions; uj 1s the state
variable values (u = ¢ or T depending on
the equation being solved) at element-nodal
points designated by the general summation
index j.

The Galerkin technique utilizes the
set of shape functicns as the weighting
functions, which indicates that the corres-
ponding finite element representation for
the infiltration process for Ju/dt assumed
invariant, is

n
} [ A v, -0 (27)
i=1 JQ 1

i
where A is the partial differential opera-
tor, given in egs. 3 and 2Z, operating on
the respective state variable, designated
by U, Equation 27 is customarily integrated
by parts as described in Desal (4) yielding
a statement of the boundary conditions and
another integral. This integral is solved
by substituting the appropriate element ap-
proximations and shape functions inte the
integrand and selving by numerical integra-
tion. The nonlinear nature of the partial
differential equations, however, generally
introduces difficulties in integrating. It
is customary to deal with this problem by
assuming the parameters to be constant with-
in each finite element during a finite time
interval, At (e.g. Guymon and Luthin (12)}.
The Crank-Nicholson time advancement approx-

imation has been widely used (Desai (4)) to
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solve the time derivative.

The Crank-Nicholson formulation reduces
eq. 27, where parameters are assumed constant
within each finite element, intoc a system of
linear equations expressed in matrix form as
{p + o 5}5”1: {» - & shut (28)

2 h 2 T
where g is a capacitance matrix and is a
function of element nodal global coordinates;
§ is a stiffness matrix and is a function of
element nodal global coordinates and con-
stant finite element parameters (during time
step At); At is the finite time step incre-
ment; and Ek is the vector of nodal srate
variable approximations at time steps
k=4, 1 +1, =--.

By assuming the parameter function to
be constant within each finite element, error
is introduced into the numerical solution.
Additicnal error is involved by empleying
the Crank-Nicholson finite difference time
advancement, Hromadka and Guymon (14)
studied a variety of methods for determining
quasi-constant values of the parameter
functions (e.g. K(¢)) used in the linearized
formation of eq. 28, The urmodified Crank-
Nicholscn capacitance matrix based upon
values of the parameters in eqs. 3 and 22
evaluated as the mean parabelic value of
the state variable gave superior results and
are the basis of our numerical approach. Al-
though there is no numerical advantage to
using shape functiocns of higher than first
order when empleying Crank-Nicholson, we use
a quadratic (parabolic) shape function to
facilitate estimation of nonlinear paramecers
and secondary variables (e.g. veloeity flux}
required in the numerical solution precedure.

The isothermal heat budget method is
used as described by eq. 15. The liquid
water sink approximation as described by eq.

21 is also used In the model in order to
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carefully balance mass at each time step.
Computed hydraulic heads are adjusted in ac-
cwrdance with the moisture sink term. At
edcn time step, hydraulic conductivity is es-
timated by eq. 20, 6% is estimated by eq. 16,
and heat capacity is estimated by eq. 2.

Initial conditions for temperature and
hvdraulic head are required as defined by
eqs. 17 and 24. The upper and lower temper-
ature boundary conditions must be specified
according to eq. 17. The lower hydraulic
head boundary conditions must be specified
and 1s usually the water table which may be
a function of time. The upper hydraulic
head boundary condition, specified by eq. 24,
is determined by a special algorithm. The
Crank=Nicholson procedure results in bother=-
some oscillatory behavior at the seil surface
alement during the early simulation phase.
Computed hydraulic heads at any 4t time step
in the top element are smoocthed by fitting a
parabola through the computed heads and forc-
ing the parabola slope to be zero at x=0,
insuring no liquid flux frem the column at
its top. If the top of the column is freez-
ing, or any lower element for that matter, a
specified unfrozen water content as described
by Anderson, et al (1) is assumed, and using
the fact ?»=0~x and eq. 19, hydraulic head is
recomputed, This procedure essentially means
that a moving boundary condition 1s used and
avoids the considerable problem of defining
the so0il surface boundary condition.

The computer program is written in
FORTRAN IV and has been designed to rum on
small to medium size computers such as the
PDP 11/34, To conserve space and computer
execution time, full advantage has been
taken of the banded nature of the stiffness

and capacitance arrays.

APPLICATION OF MCDEL

The proposed model was applied to a set
of laboratory data as described by Berg et
al (2) with excellent results. Frost heave
measured in & labaratory column was simu-
lated with the model using experimental data
on soil parameters and boundary conditons.
Table 1 shows a comparison of measured and
simulated unrestrained frost heave, position
of the freezing isotherm, and unfrozen pore
pressures at 24 cm below the column top.
The simulation was discontinued after 15
days; however, other computer trials indi-
cated that frost heave estimates are very
stable, and frost heave can be realistically
simulated for much longer perieds of time.

Comparison of measured and simulated
restrained frost heave were performed for
one case which was for a laboratory column
test with a 5 psi surcharge added to the
soil column top. Table 2 shows the compari-
son for simulated and measured frost heave
for 20 days. Surcharge effects are modeled
by computing the total weight of soil water,
and ice above the freezing front, including
the surcharge. This weight is converted to
an equivalent water pressure which is added
to the computed water tension at the freez-
ing front. This procedure effectively re-
duces the water tension at the freezing
front which results in less water being
drawn into the freezing area. The model
accurately predicts the start of heave which
occurred seven days after the initiation of
the freezing test, Simulated heaves agree
well with measured results for the 20-day
simulation. However, after about 23 days,
heave seemed to level off in the laboratory
column while simulated heaves were greater,
somewhat tending to diverge. We attribute
this to inaccurate representation of bounda-

ry conditions which will be corrected in



subsequent column tests.
TABLE 1
COMPARISON OF SIMULATED AND RECORDED FROST
HEAVE
UNRESTRAINED CASE

TIME, DBAYS

3 10 15 _
Laboratery Column
Total Frost
oHaava, cm 1.6 2.8 4.0
0°C Isotherm
Depth, cm 6 11 11

Tension at 24 ecm ~200 -200 ~200
Depth, cm of water

Simulated with Model

Total Frost Heave,

Som 1.5 2.4 3.9
O°C Isctherm Depth
cm 4,5-7.5 7-10 10-12.5
Tension at 24 cm 110 130 150
TABLE 2

COMPARISON OF SIMULATED FROST HEAVE AND
MEASURED ¥ROST HEAVE, RESTRAINED CASE
{5 PSI SURCHARGE)

3 10 15 20
Days Days Days Days
Laboratory 0.00 0.68 1.50 2.28
Column, cm
Simulated 0.00 0.54 1.43 2.30
with Model, cm
Error, 7 0 21 3 1
DISCUSSION

Results of our model indicate that the
approach we use is feasible for estimating
frost heave., The macroscopic thermodynamic
approach for estimating ice segregation and
accounting for freezing moisture is practi-
cal and minimizes the need for a detailed
understanding of the microphysics of the ice
segregation process.

Limited werk on sensitivity of the wmany
parameters that arise in the model suggest
that the model is highly sensitive to hy-

draulic parameters and boundary conditious.
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This is not surprising since it has been
known for some time that slight variaticns
in so0il parameters will substantially alter
fraost heave of a scil. It is our view that
the direction future research should take is
not only to develop other or better numeri-
cal algorithms but to deal with parameter
identification and optimizatien problems and
to incorporate some sort of confidence
limits to modeled solutions in order to

apply frost heave models to field situations.
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